

The value of single time point imaging to make RPT dosimetry practical for the clinic

Yuni K Dewaraja, PhD

Department of Radiology University of Michigan Single Time Point Methods to determine time integrated activity (TIA): Why it Works? Even wide variations in effective half-life gives similar ŢIA

$$\overline{D}(r_T) = \sum_{r_S} \tilde{A}(r_S) S(r_T \leftarrow r_S)$$

Teff (h)	Diff in TIA
35	-27%
40	-15%
45	-7%
50	-3%
55	0%
60	1%
65	2%
70	2%
75	1%

Madsen, Med Phys 2018; Hanscheid et al, JNM 2018

Evaluation of STP imaging in 177Lu-DOTATATE: using Michigan multi-timepoint data

Variation in Teff across patients: Univ Mich Data

Teff (h)	Tumor	L Kidney	R Kidne	ey	Sple	en	Normal Liver
Median	85.4	52.3	5	50.7		71.4	74.9
Min	47.9	41.6	4	0.7		51.2	32.2
Max	159.5	107.0	11	.2.3		84.4	124.7
STD	26.5	15.1	1	.6.3		7.8	19.1

Kidney median (range): Sundlov et al 51.6 h(38-69); Hanscheid et al , 51 h (40-106)

Will the same single time point work for lesions and organs?

Single TP Results Patient example 1: Slow kidney clearance

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 50h	Single TP= <mark>98 h</mark>	
L Kidney	107	31%	-1%	
R Kidney	112	34%	-2%	

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 50h	Single TP= <mark>98 h</mark>	
Tumor 1	71	13%	-10%	
Tumor 2	71	13%	-9%	
Tumor 3	70	12%	-8%	
Tumor 4	84	21%	-3%	
Tumor 5	74	17%		

N

Single TP results, example 2: Tumor-slow clearance & noisy

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 100h	Single TP= 120 h	
L Kidney	49	-3%	-11%	
R Kidney	48	-2%	10%	

Teff (h)	Diff in AUC between Single & Multi TP		
	Single TP= 100h	Single TP= 120h	
160	8%	13%	
117	26%	-27%	
118	-1%	2%	
160	18%	6%	
131	9%	1% MICH	
	Teff (h) 160 117 118 160 131	Teff (h) Diff in A Single Single TP= 100h Single TP= 100h 160 8% 117 26% 118 -1% 160 18% 131 9%	

N

Single TP Results, patient example 3: wide range of tumor Teff

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 100h	Single TP= 171 h	
L Kidney	52	-1%	21%	
R Kidney	54	-3%	25%	

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 100h	Single TP= 171h	
Tumor 1	54	-5%	21%	
Tumor 2	84	-5%	-5%	
Tumor 3	106	-1%	-6%	

MICHIGAN MEDICINE

Prior Information Method: How much does pharmacokinetics change between cycles?

Example 4-Cycle Time-Activity Curves: Typical Tumors

Tumor4

Tumor5

136

129

125

134

135

134

124

130

A

1.575E-2

P A 2.270E-1°,

Example 4-Cycle Time-Activity Curves: Typical Kidney

	Effective Half-life (hr)					
Structure	Cycle 1	Cycle 2	Cycle 3	Cycle 4		
Healthy						
liver	124	125	121	119		
spleen	71	68	65	70		
Kidney_L	45	46	41	40		
Kidney_R	42	52	45	46		

4 Cycle Results: Example case with lesion shrinkage during 4 cycles (rare)

Tumor 1: significant shrinkage during treatment

Tumor 2: Nearly disappeared during treatment

¹⁷⁷Lu DOTATATE: performance of single TP method for tumor/organs at different imaging TPs

FIGURE 5. Average absolute percent error in single-timepoint dosimetry with Hänscheid approach. Results are shown for kidney, liver, and tumor ROIs in bins for the acquisition time post-injection. Early timepoints from Day 0 or Day 1 include results from both patient cohorts.

OPTIMAL: ~ 60 - 106 h for kidney, longer for tumor (due to prolonged retention) but 96 h good compromise across all tissue

FIGURE 7. Average absolute percent error in single-timepoint dosimetry with the prior-information approach. Results are shown for kidney, liver, and tumor ROIs in bins for the acquisition time post-injection. Early timepoints from Day 0 or Day 1 include results from both patient cohorts.

Reasonable at any TP > 12h, optimal 60 -106 h

SurePlan MRT White Paper: Dosimetry for Targeted Molecular Radiotherapy Using a Single Measurement Timepoint

Other STP models: Time-activity information sharing using nonlinear mixed effects models (NLME) in ¹⁷⁷Lu DOTATATE PRRT

Time-activity information sharing using nonlinear mixed models: study demonstrated potential to reduce outliers

- Clinical data: The STP mixed models outperform the Madsen & Hanscheid methods for 94% (17/18), 72% (13/18) of kidneys
- Simulated data: Mixed model resulted in more than a two-fold reduction in the proportion of kidneys with |bias| > 10% (6% vs. 15%).
- The mixed models eliminated extreme outliers with 0/500 virtual and 0/18 clinical kidneys showing bias ≥ 25%
- Potential for subgroup models: separate models could be built based on baseline factors

Heat maps of |% bias| vs. biexponential parameters in 500 virtual kidneys modeled with clinically realistic biokinetics

Devasia T, Dewaraja YK, Frey KA et al. J Nucl Med. 2021 Aug 1;62(8):1118-1125

Other STP models: Combining pharmacokinetic (PBPK) model and a nonlinear mixed effects approach

Single-time-point estimation of absorbed doses in PRRT using a non-linear mixed-effects model

Deni Hardiansyah^a, Ade Riana^a, Ambros J. Beer^b, Gerhard Glatting^{b,c,*}

^aMedical Physics and Biophysics, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia

^b Department of Nuclear Medicine, Ulm University, Ulm, Germany

^c Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany

- 8 patients with either NETs or meningioma scheduled for 2 to 3 cycles of PRRT using 90Y-DOTATAT E
- Biokinetic data of 111In-DOTATATE using planar imaging at ~ 3, 5, 23, 47, 71 h post injection.
- Relative difference between TIAC from STP and 5 point fits: kidney: 5 [1, 21]%, tumor 2 [15, 21]%. Optimal STP is T4

Other models: Can we further improve STP estimates? Data driven models

Hanscheid

Madsen

Model1

Model2

EANM 2022: EPS-209

Regression models for single time point dosimetry optimized across range of timepoints with application in 177 Lu-DOTATATE therapy C. Wang₁, A. B. Peterson₂, K. Wong₁, M. J. Schipper₁, Y. K. Dewaraja₁; 1University of Michigan, Ann Arbor, MI

Tumor: Percentage Bias Distribution

AN Ne

Single TP methods: What about other radionuclides, therapies ...?

Single time point dose estimation in other therapies

Feasibility of Single-Time-Point Dosimetry for Radiopharmaceutical Therapies

Xinchi Hou¹, Julia Brosch², Carlos Uribe^{1,3}, Alessandro Desy^{4,5}, Guido Böning², Jean-Mathieu Beauregard^{4,5}, Anna Celler¹, and Arman Rahmim^{1,3,6} J Nucl Med 2021; 62:1006–1011 butions. The STP framework was promising for dosimetry of ¹⁴² u-DOTATATE and for kidney dosimetry of different radiopharmaceuticals (errors < 30%). Meanwhile, for some radiopharmaceuticals, STP accuracy was compromised (e.g., in bone marrow and tumors for ¹⁷⁷-labeled prostate-specific membrane antigen [PSMA])). The optimal SPECT scanning time for ¹⁷⁷Lu-DOTATATE was approximately 72 h p.i., whereas 48 h p.i. was better for ¹⁷⁷Lu-PSMA. **Conclusion:** Simplified

Kidney Results

-100

100

50

-50 -100

(%)

Bone Marrow Results

TATE 1^{177} Lu-PSMA-I&T T_{sc} = 144 h T_{sc} = 144 h TATE 1^{177} Lu-PSMA-I&T TATE 1^{177} Lu-PSMA-I&T TATE 1^{177} Lu-PSMA-I&T TATE 1^{177} Lu-PSMA-I&T 1^{177} Lu-PSMA-I

177Lu-PSMA-I&1

DEs (%) of kidney doses estimated using method 1 (blue) and method 2 (red) when patient Teff is within simulated 95% CI range listed in Table 2. Green and magenta dashed lines indicate 610% and 630% of DEs, respectively. Four sets of results shown in 177Lu-DOTATATE column correspond to Teff data from studies 1–4.

177Lu-PSMA: Full Imaging in Cycle 1 + Single Timepoint at Others:

Streamlined Schemes for Dosimetry of ¹⁷⁷Lu-Labeled PSMA Targeting Radioligands in Therapy of Prostate Cancer

Cancers 2021, 13, 3884 Jens Kurth ¹,*[®], Martin Heuschkel ¹, Alexander Tonn ¹, Anna Schildt ^{1,2}, Oliver W. Hakenberg ³, Bernd J. Kra and Sarah M. Schwarzenböck ¹

 Compared dosimetry with 4 timepoints (2,24,48,72h) after each cycle with 4 timepoints in cycle 1 + single timepoint at subsequent cycles

 Difference: ~ ±6% for kidney and ±10% for parotids

۲

- Small increase in kidney T_{eff} (38 to 41 h) & AD (0.5 to 0.6 Gy/GBq) over 5 cycles
 - Tumor sink effect?
 - Repeat full dosimetry once?

Optimal single timepoint varies with tissue & radiopharmaceutical

• PRRT of NETs

- for Lu-177 DOTATATE PRRT. Hanscheid et al, J Nuc Med, 2018. Considering both tumor and kidney 96h
 - Several others confirming this
- Y-90 DOTATOC PRRT. *Madsen et al. Med Phys 2018*. Optimal time for kidney 48 h

- ¹⁷⁷Lu-PSMA Radioligand Therapy of mCRPC
 - ¹⁷⁷Lu-PSMA-617 : *Jackson PA et al. J Nucl Med. 2020;61:1030-1036.* Optimal time for kidney, parotid 48 h; tumor 120 h. Presented scale factors to convert single timepoint measurement at any timepoint to TIA and the expected uncertainty
 - ¹⁷⁷Lu-PSMA I&T: *Rinscheid, et al. EJNMMI Phys 2020. 7, 41*. Considering kidney and tumor optimal time was 52 h, tumor; 72 h
 - ¹⁷⁷Lu-PSMA-617 and I&T: Hou X et al.J Nucl Med. 2021;62:1006-1011. Kidney 48h; tumor 48h (for I&T); unreliable for bone marrow

¹³¹I RIT for NHL: Revisiting Michigan data to see if STP would have worked?

1000

3 TP SPECT/CT Lesion imaging \bullet

Day 2 post-therapy

Day 8 post-therapy

Lesion dose map

450

Lesion dose - outcome ۲

Lumbar imaging ullet

SPECT/CT based marrow dosimetry

Marrow dose - toxicity •

Revisiting I-131 RIT: Would single time point methods work?

Post-TRACER IMAGING

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 47h	Single TP= 143h	
Tumor 1	64	12%	4%	
Tumor 2	66	11%	2%	
Lumbar	65	24%	0.2%	

Post-THERAPY IMAGING

	Teff (h)	Diff in AUC between Single & Multi TP		
		Single TP= 47h	Single TP= 118h	
Tumor 1	65	11%	-8%	
Tumor 2	64	9%	-6%	
Lumbar	71	13%	0.1%	

MICHIGAN

Revisiting I-131 RIT: Summary of single TP performance

- 133 tumor in 39 patients
 - Difference between AUC from STP (Hanschied) and 3 point bi-exponential

	Time Point 1	Time Point 2	Time Point 3
Post- Tracer	~ 2 h	~ 2 d	~ 6 d
Median	98%	9%	4%
Range	91-100%	-16-73%	-77-62%
< +-20%		74%	
Post- Therapy	~ 2 d	~ 5 d	~ 8 d
Median	0%	-1%	36%
Range	-22-58%	-39-86%	-42-100%
< 20%	88%		

- one marrow and whole-body data not yet fully analyzed
- Large data set : well suited to identify and understand outliers

