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Yang-Mills Matrix Model

The SU(2) matrix model is very easy to describe:
▶ Building blocks:

▶ 2 × 2 hermitian matrices Mi(t), i = 1,2,3.
▶ Equivalently, a single 3 × 3 matrix M ∈ M3(R).

▶ Physical rotations: M → RM, R ∈ SO(3),
Gauge rotations: M → MST , S ∈ ad SU(2).

▶ Gauge group ad SU(2) (= SO(3)) is finite-dimensional.
▶ The configuration space C2 = M3(R)/SO(3).
▶ Nontrivial topology: C2 ≃ R× (S5 − RP2) (Narasimhan-Ramadas

1979).
▶ Curvature Fij = −ϵijkMk − i[Mi ,Mj ].
▶ A natural reduction of SU(2) YM on S3 × R to a matrix

model.
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Matrix Model Dynamics

▶ For dynamics, we need a gauge-invariant Lagrangian.
▶ The electric Ei ≡ DtMi and magnetic Bi ≡ 1

2ϵijkFjk :

Ei = Ṁi − i[M0,Mi ], Bi = −Mi −
i
2
ϵijk [Mj ,Mk ].

▶ M0: parallel transporter in the t direction. We set M0 = 0.
▶ The matrix model Lagrangian is

LYM =
1

2g2 Tr(EiEi − BiBi) =
1

2g2 Tr(DtMiDtMi)− V

(Balachandran-Queiroz-Vaidya 2015)

▶ V (M) has upto quartic terms.
▶ The matrix model is just a multi-dimensional quartic

oscillator.
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Ei = Ṁi − i[M0,Mi ], Bi = −Mi −
i
2
ϵijk [Mj ,Mk ].

▶ M0: parallel transporter in the t direction. We set M0 = 0.
▶ The matrix model Lagrangian is

LYM =
1

2g2 Tr(EiEi − BiBi) =
1

2g2 Tr(DtMiDtMi)− V

(Balachandran-Queiroz-Vaidya 2015)

▶ V (M) has upto quartic terms.
▶ The matrix model is just a multi-dimensional quartic

oscillator.



Matrix Model Dynamics

▶ For dynamics, we need a gauge-invariant Lagrangian.
▶ The electric Ei ≡ DtMi and magnetic Bi ≡ 1

2ϵijkFjk :

Ei = Ṁi − i[M0,Mi ], Bi = −Mi −
i
2
ϵijk [Mj ,Mk ].

▶ M0: parallel transporter in the t direction. We set M0 = 0.
▶ The matrix model Lagrangian is

LYM =
1

2g2 Tr(EiEi − BiBi) =
1

2g2 Tr(DtMiDtMi)− V

(Balachandran-Queiroz-Vaidya 2015)

▶ V (M) has upto quartic terms.
▶ The matrix model is just a multi-dimensional quartic

oscillator.



Matrix Model Dynamics

▶ For dynamics, we need a gauge-invariant Lagrangian.
▶ The electric Ei ≡ DtMi and magnetic Bi ≡ 1

2ϵijkFjk :
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SVD Coordinates

▶ We write M = RAST , with R ∈ O(3), S ∈ SO(3) (Iwai 2010).
▶ A is diagonal with real entries.
▶ R = physical rotations + parity; S = gauge rotations.
▶ Define Ω = R−1Ṙ angular velocity, Λ = S−1Ṡ gauge

angular velocity to get

LYM =
1

2g2 Tr
(

Ȧ2 − A2(Ω2 + Λ2) + 2ΩAΛA
)
− V (A)

▶ The Hamiltonian can be computed easily.
▶ Gauge invariant dynamics: set Λ = 0.
▶ We will focus on the gauge-invariant sector with Ω = 0.
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▶ Define Ω = R−1Ṙ angular velocity, Λ = S−1Ṡ gauge
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Ȧ2 − A2(Ω2 + Λ2) + 2ΩAΛA
)
− V (A)

▶ The Hamiltonian can be computed easily.
▶ Gauge invariant dynamics: set Λ = 0.
▶ We will focus on the gauge-invariant sector with Ω = 0.



SVD Coordinates

▶ We write M = RAST , with R ∈ O(3), S ∈ SO(3) (Iwai 2010).
▶ A is diagonal with real entries.
▶ R = physical rotations + parity; S = gauge rotations.
▶ Define Ω = R−1Ṙ angular velocity, Λ = S−1Ṡ gauge
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Ȧ2 − A2(Ω2 + Λ2) + 2ΩAΛA
)
− V (A)

▶ The Hamiltonian can be computed easily.
▶ Gauge invariant dynamics: set Λ = 0.
▶ We will focus on the gauge-invariant sector with Ω = 0.



SVD Coordinates

▶ We write M = RAST , with R ∈ O(3), S ∈ SO(3) (Iwai 2010).
▶ A is diagonal with real entries.
▶ R = physical rotations + parity; S = gauge rotations.
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V (M) =
1

2g2

(
TrMT M − 6 detM +

1
2
[(TrMT M)2 − TrMT MMT M]

)
.

▶ With M = RAST , we have

V (M) =
1

2g2

(
(a2

1 + a2
2 + a2

3)− 6a1a2a3 + (a2
1a2

2 + a2
1a2

3 + a2
2a2

3)
)
.

▶ V possesses a tetrahedral symmetry Td in (a1,a2,a3).
▶ The full symmetry of H is Td × T , T is time-reversal.
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Tetrahedral Symmetry

g2V = 0.05

g2V = 1.5

g2V = 0.09375

g2V = 75

High energies: approximate octahedral symmetry.



Extrema of V (M)

▶ The extrema are at a1 = a2 = a3 = a, for a = 0, 1
2 ,1.

▶ Compute the Hessian
[

∂2V
∂ai∂aj

]
.

▶ It is positive definite at M = 0,1 (minima).
▶ M = 1

21 is a saddle point.
▶ Other minima and saddle points can be obtained by the

action of Td .
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A 3-dimensional Henon-Heiles System

▶ In the color-0 spin-0 sector, the Hamiltonian is

H =
g2

2

(
p2

a1
+ p2

a2
+ p2

a3

)
+

1
2g2

(
a2

1 + a2
2 + a2

3 − 6a1a2a3 + (a2
1a2

2 + a2
1a2

3 + a2
2a2

3)
)

▶ This is a 3-d version of the Henon-Heiles (Efstathiou-Sadovskii

2004).
▶ Thus the SU(2) matrix model in this sector is exactly 3-d

Henon-Heiles.
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Nonlinearity

▶ The constant energy surface is disconnected (5 pieces) for
g2E < 3

32 and connected for g2E > 3
32 .

▶ The critical energy g2Ec = 3
32 is the saddle point

a1 = a2 = a3 = 1
2 .
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, ϵ ≡ gE1/2

▶ The parameter ϵ measures nonlinearity.
▶ For ϵ = 0, the system is a 3-d isotropic oscillator, has

closed orbits.
▶ Periodic orbits (non-linear normal modes) continue to exist

for small ϵ. (Weinstein)
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▶ Nonlinear normal modes are characterized by the stabilizer
G ⊂ Td × T (Montaldi-Roberts-Stewart 1990).

Conjugacy class of Stabilizer No. of orbits
D2d × T (≡ A4) 3
C3v × T (≡ A3) 4
C2v × T (≡ A2) 6
S4 ∧ T2 (≡ B4) 6
C3 ∧ Ts (≡ B3) 8

Table: Non-linear normal modes - Classification



Orbit Pictures

A2

B3

A3

B4

A4

A non-critical closed orbit



▶ We will study perturbations about each type of orbit.
▶ Generically, the orbits destabilize for large enough

perturbations.
▶ Typically, the orbits destabilize by becoming weakly ergodic

(Lyapunov = 0) and then (strongly) ergodic (Lyapunov
̸= 0).

▶ Orbits of A4 and A3 destabilize in a most interesting
manner.

▶ We will focus on these.
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Monodromy Matrix I

▶ Let X (t) be a periodic solution of period T , and x(t) a
perturbation around X .

▶ Then dx
dt = F [X (t)]x(t).

▶ Equivalently, there is a time-evolution matrix
U(t) : x(0) → x(t).

▶ The monodromy matrix is U(T ).
▶ U(T ) tells us what happens to x as it is taken along the

periodic orbit.
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Monodromy Matrix II

▶ Eigenvalues (may be complex) of U have information on
orbit stability.

▶ For Hamiltonian systems:
▶ Eigenvalues come in reciprocal pairs
▶ Always have at least two unit eigenvalues.

▶ U is real so eigenvalues come in conjugate pairs.
▶ A periodic orbit is unstable iff at least one of its eigenvalues

is outside the unit circle |z| = 1.
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Monodromy Matrix III

▶ Typically, periodic orbits can only be found numerically.
▶ So monodromy matrix computations are also done

numerically.
▶ A3 and A4 are straight line orbits.
▶ Both A3 and A4 orbits are known analytically.
▶ So we can gain analytic insight about U and its

eigenvalues.
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Stability of A4 Orbits

▶ Initial condition: (a1,a2,a3,pa1 ,pa2 ,pa3) = (A,0,0,0,0,0).
▶ Fluctuation: (x1, x2, x3,p1,p2,p3).
▶ Fluctuation equations:

ẋ1 = p1, ṗ1 = −x1

ẋ2 = p2, ṗ2 = −x2(1 + A2 cos2 t) + (3A cos t)x3

ẋ3 = p3, ṗ3 = −x3(1 + A2 cos2 t) + (3A cos t)x2

▶ Using b± = (x2±x3)√
2

decouples the equations completely.
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ẋ1 = p1, ṗ1 = −x1
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Stability of A4 Orbits

▶ The b− obeys the Whittaker-Hill equation

b̈−(s) + (η + 2α cos2s + 2β cos4s)b−(s) = 0.

(Here s = t
2 , α = −6A, β = A2, η = 4 + 2A2).

▶ This is the Schrödinger equation for a particle in the
periodic potential V (s) = −(α cos2s + β cos4s) and energy
η/2.

▶ The allowed energies form bands, and between them are
band gaps.

▶ Allowed energy ⇔ Bloch wave function ⇔ stable
perturbation.

▶ Band gap ⇔ nonnormalizable solution ⇔ unstable
perturbation.
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Stability of A4 Orbits

▶ Eigenvalues of U are {1,1, λ, λ, µ, µ}.
▶ Only two possibilities:

▶ Real eigenvalues ⇒ exactly one out of {λ, µ (= 1/λ)} will
be outside the unit circle ⇒ unstable orbit.

▶ Imaginary eigenvalues ⇒ eigenvalues on the unit circle ⇒
stable orbit.

▶ Enough to study γ ≡ λ+ µ = (TrM−2)
2 (or equivalently

TrM).
▶ Numerically, we see that we have

▶ Instability for all g2E < 3/2.
▶ Quasiperiodic transitions between stability and instability

g2E > 3/2.
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▶ Quasiperiodic transitions between stability and instability

g2E > 3/2.
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Stability of A3 Orbits

▶ Initial condition: (a1,a2,a3,pa1 ,pa2 ,pa3) = (A,A,A,0,0,0).
▶ The orbit is now an elliptic function of t .
▶ The time period can be computed exactly in terms of

(in)complete elliptic functions of the first kind.
▶ The perturbations again obey the Schrödinger equation for

a (more complicated) periodic potential.
▶ Again, there is the structure of bands and band gaps.
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Stability A3 Orbits

Specifically, we find numerically that
▶ For E < Ec , TrM oscillates between ±2 with ever

increasing frequency.
▶ Peak spacings vary geometrically as we approach Ec from

below.
▶ For E > Ec , TrM oscillates between ±2 with ever

decreasing frequency.
▶ Peak spacings vary geometrically as we approach Ec from

above.
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Stability of A3 Orbits

▶ The bands/gaps have a self-similar structure as a function
of energy.

▶ We can compute the Feigenbaum constant on either side
of Ec .

▶ Define ν = |1 − Ec/E |, look at ratios of bifurcation energies
νn/νn+2.
▶ νn/νn+2 → δ1 = e−π

√
2
5 for E < Ec .

▶ νn/νn+2 → δ2 = e−2π
√

2
5 for Ec < E .

▶ We get a different Feigenbaum constant for either side.
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Lyapunov Exponents for A4

▶ Non-zero Lyapunov exponent means chaotic dynamics.
▶ The Lyapunov exponents reflect the band structure.

Lyapunov Exponent for A4
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▶ The growth is logarithmic, exponent easily calculated.
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Lyapunov Exponents for A3

▶ Lyapunov exponents for A3 also have a band structure.
Lyapunov Exponent for A3
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▶ Bands are wider, spaced apart by geometric progression.
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Lyapunov Exponents: Generic Perturbations

Lyapunov Exponents for arbitrary trajectories as a function of energy.
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completely random initial conditions.
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▶ The log plot is linear (y = 0.131465x + 2.27547).



Lyapunov Exponents: Generic Perturbations

Lyapunov Exponents for arbitrary trajectories as a function of energy.

0 25 50 75 100 125 150 175
0.0

0.5

1.0

1.5

Energy(E)

Ly
ap
un
ov
E
xp
on
en
t(
λ
)

▶ We can compute the Lyapunovs for trajectories with
completely random initial conditions.

Lyapunov Exponents for arbitrary trajectories as a function of energy.

0 25 50 75 100 125 150 175

0

5

10

15

20

25

Energy(E)

(E
c
)λ

▶ The log plot is linear (y = 0.131465x + 2.27547).



Ergodicity and Thermodynamics

▶ For arbitrary initial conditions, the trajectories are strongly
chaotic (LE ̸= 0).

▶ Equipartition holds: ⟨p2
1⟩ = ⟨p2

2⟩ = ⟨p2
3⟩, ⟨·⟩ = time

average. We have numerical verification.
▶ The LEs have an intimate relation to Kolmogorov-Sinai

entropy:
∑

LE ≲ SKS (Pesin 1977).
▶ One can define a useful quantity called “temperature" TB.

(Berdichevskii 1988).
▶ TB and SKS obey the known relation between entropy and

temperature: 1
T = ∂S

∂E .
▶ Again, we have checked this numerically.
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Ergodicity Breaking

▶ The A3 and A4 trajectories are special.
▶ Under a generic perturbation, even in the chaotic domain,

the trajectories do not explore all available phase space.
▶ Rather, they are confined to particular corners.
▶ These trajectories break ergodicity!
▶ Numerical evidence: equipartition does not hold.
▶ Ergodicity breaking: different phases or glasses.
▶ There are at least two corners (A3 and A4) of phase space

from which the dynamics cannot break out.
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Quantum Image of Ergodicity Breaking
▶ Remarkably, the quantum SU(2) model + quarks has

quantum phases because of superselection sectors.
(Pandey-Vaidya 2017)

▶ Quarks get trapped in special corners of the gauge field
space.
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▶ The top tip is one such quantum phase: corresponds
classically to A4 type trajectories.

▶ The bottom tips are the quantum color-spin locked phase:
A3 type trajectories.
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▶ What is the quantum signature of classical chaos? There
is no simple answer!

▶ To the list of possibilities, we have added one more:
▶ Classical ergodicity breaking leads to quantum phases.
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Summary

▶ The matrix model corresponds to the low energy sector of
the Yang-Mills gauge theory.

▶ The SU(2) model has an unexpected tetrahedral
symmetry.

▶ Its color-0 spin-0 sector is exactly the 3d Henon-Heiles
system .

▶ The model is chaotic. One of the routes is via
Feigenbaum-like "period-doubling".

▶ The model possesses sectors that break ergodicity.
▶ Ergodicity breaking in classical theory = Phases (or

superselection sectors) in quantum theory.
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