Searching for dark matter in extended Higgs sectors

Emmy Noether-Programm

DFG Deutsche Forschungsgemeinschaft

Spyros Argyropoulos

Corfu 2022 - Workshop on Standard Model and Beyond

annus mirabilis for particle physics & cosmology

Higgs mechanism

CMB radiation

The two Standard Models

particle physics

perfectly describe (almost) everything we measure

Open questions

+ are these connected with the Higgs sector?

Dark Energy What is the nature of DE?

Baryon Asymmetry

why matter dominates over antimatter?

Dark Matter

What is the nature of DM?

The Higgs - cosmology connection

1. Scalar bosons ubiquitous in cosmology

2. EW phase transition can trigger baryogenesis

3. Higgs sector can act as a portal to the dark sector

- ➡ this talk
 - based on: SA, Brandt, Haisch <u>2109.13597</u> & SA, Haisch <u>2202.12631</u>

Brax, RPP 81 (2018) 016902 Gubitosi et al JCAP 02 (2013) 032 Bezrukov, Shaposhnikov, PLB 659 (2008) 703 Germani, Kehagias, PRL 105 (2010) 011302 Burrage et al, JCAP 11 (2018) 036

Kuzmin, Rubakov, Shaposhnikov, PLB 155 (1985) 36 <u>Shaposhnikov, NPB 287 (1987) 757 (1987)</u> Nelson, Kaplan, Cohen, NPB 373 (1992) 453

Silveira, Zee, PLB 161 (1985) 136 Ipek et al, Phys. Rev. D 90 (2014) 055021 Bell et al, JCAP 03 (2017) 015 Berlin et al, JHEP 06 (2014) 078 Duerr et al, JHEP 09 (2016) 042

DM properties

• stable

- weakly interacting
- non-relativistic ("cold")
- non-baryonic
- probably "matter" (not modified gravity)
- can't consist solely of dark astronomical objects (MACHO)

-Look for stable weakly interacting massive BSM particles

DM defection

Complementarity is important

$$\begin{array}{c}
10^{24} \\
10^{21} \\
10^{18} \\
10^{12} \\
10^{9} \\
10^{6} \\
10^{7} \\
10^{7} \\
10^{-3} \\
10^{-12} \\
10^{-12} \\
10^{-12} \\
10^{-13} \\
10^{-24} \\
10^{-27} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-30} \\
10^{-$$

DM models predict a vast range of cross-sections/masses

Complementarity is important

Standard Halo Model

isotropic + thermal equilibrium

Different experiments sensitive to different assumptions

Purcell et al, JCAP 08(2012) 027 ; Bozorgnia et al, JCAP 07 (2020) 036 ; Necib et al, Nature Astron. 4 (2020) 11

Dark Matter interactions

Mediator = "Portal"

Standard Model

SM Higgs, BSM Higgs Z', SUSY, ...

In the following

- DM is assumed to be a SM singlet
- we concentrate on BSM Higgs portals

Dark Sector

classes of models

$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + rac{c}{\Lambda^{d-4}} \mathcal{O}_{\mathrm{DM}}^{(d)}$

 agnostic to microscopic (UV) theory
 ✓ only 1 parameter (Λ)
 ● breaks down at high energies add only 1/few mediator coupling DM to SM
 ✓ very few parameters (g_{SM}, g_{DM}, m_a)
 ✓ easier to constrain
 ⇒ workhorse for DM searches

simplified

Complete

- e.g. MSSM
- several new particles
- ✓ valid at high energy scales
- predictions for everything
- many parameters
- very hard to constrain

The need for extended Higgs sectors

Englert et al, 1604.07975; Haisch, Polesselo, 1812.00694; Bell et al, 1503.07874

If a is singlet \Rightarrow unitarity violation $\mathcal{M} \sim \ln^2 s$

Extended Higgs sector:

- fixes unitarity violation
- ★ bonus: resonant signatures

The 2 Higgs Doublet Model

- 5 Higgs bosons
- 5 parameters considered: $m_A, m_H, m_{H\pm}$ a: mixing between H, h tanß: ratio of vacuum expectation values
- Different Yukawa structures suppressed/enhanced couplings to fermions
- Alignment limit: $cos(\beta a) = 0$ h has the same couplings as the SM Higgs
- related to other models (e.g. axion, MSSM, ...)

Branco et al, Phys.Rept. 516 (2012) 1 Rompotis, Ferrari, Symmetry 2021,13,2144

Constraints

Higgs coupling measurements: we are close to alignment limit
 H[±] must be degenerate with A or H
 in the following we only consider cos(β-α)=0 & m_A=m_H=m_{H±}

Model #1: 2HDM + scalar

- 2HDM Type-II
- Extra scalar mediator S that couples to DM
- Mixing between CP-even scalars
- 6 Higgs bosons
- Resonant signatures

Bell et al, 1612.03475; Arcadi et al, 2001.10540

$H = \cos\theta H + \sin\theta S$ $S = -\sin\theta \tilde{H} + \cos\theta \tilde{S}$

A

S

2HDM + scalar: constraints

- Not very much explored @ LHC
- Scalar mediator ⇒ dominant constraints from direct detection

★ DD experiments blind in certain regions

- scalars are degenerate (m_s=m_H)
- $tan\beta \approx 1$
- even for models that are considered DD territory, LHC can provide complementary constraints

Model #2: 2HDM + pseudoscalar

- 2HDM Type-II
- Mixing between CP-odd Higgses
- 6 Higgs bosons
- Extra pseudoscalar mediator a that couples to DM
 - suppressed DD constraints
 - originally proposed to explain Fermi-LAT excess
- Very rich phenomenology: colliders + ID + DD

<u>Ipek, et al, 1404.3716</u>; <u>No, 1509.01110</u>; <u>Goncalves, et al, 1611.04593</u>; <u>Bauer, et al, 1701.07427</u>; <u>Abe et al, 1810.09420</u>

 $A = \cos\theta A + \sin\theta \tilde{a}$ $a = -\sin\theta A + \cos\theta \tilde{a}$

2HDM + pseudoscalar: constraints

SA, Brandt, Haisch, Symmetry 13 (2021) 2406

- Goal: close sensitivity gaps (e.g. low m_A, m_a at intermediate tan β)

• A lot of parameter space excluded, $m_a \gtrsim 500$ GeV, $m_A \gtrsim 1$ TeV for a range of mixing angles

- $m_a > m_h/2 \& low m_x: X + E_T^{miss}$
- $m_a < m_h/2 \& m_x < m_a/2 : h \rightarrow invisible$
- $m_a < m_h/2 \& m_x > m_a/2 : h \rightarrow 4$ fermions
 - generally when $h \rightarrow aa$ is open the model is tightly constrained from Higgs width unless finely tuned

2HDM + pseudoscalar: complementary searches

Model #3: 2HDM + vector

- 2HDM Type-II + Z' only coupling to up-type quark \Rightarrow evades dilepton constraints
- CP-odd Higgs A couples to DM particles
- Large h+E_T^{miss} signal (highly boosted Higgs in contrast to 2HDM+a)
- Also constraints from EW measurements and dijets

h

 \sim

V

2HDM + vector: constraints

- $m_{Z'}$ excluded up to 2-3 TeV for $m_A \leq 1$ TeV
- EW and flavour measurements provide significant constraints
- Zh and dijet resonances provide better constraints (and this seems hard to avoid)
 - "DM searches" don't always provide the best constraints to DM models

SA, Brandt, Haisch, Symmetry 13 (2021) 2406

"Model-independent" limits

Parameter choices can affect signal characteristics (e.g. softer E_T^{miss})
 How to produce limits that are easy to re-interpret?

"Model-independent" limits

• Present constraints in terms of $\sigma_{h+DM}^{V1S} \equiv \sigma_{h+DM} \times BR(h \rightarrow bb) \times (\mathcal{A} \times \epsilon)$

- of a given variable (e.g. E_T^{miss})
- Folding with Axε theorists can re-interpret results in any model with SM-like Higgs

JHEP 11 (2021) 209

• Maximum cross-section of a signal-like resonance that the data can accommodate in bins

Conclusions

Dark Matter: among the few evidence for new physics

Multifaceted approach necessary different experiments + different analyses

Higgs sector(s) can provide a portal to DM studying SM and BSM Higgs sectors crucial

Simple models increasingly ruled out - we need: systematic approach: combinations + re-interpretations exploration of all possible final states

Backeyp

2HDM couplings

Coupling modifier	Type I	Type II
ξ (h,u)	s _{β-a} +c _{β-a} /t _β	s _{β-a} +c _{β-a} /t _β
ξ(h,d), ξ(h,l)		Sβ-α-Cβ-αtβ
ξ(H,u)	Cβ-α-Sβ-α/tβ	Cβ-a-Sβ-a/tβ
ξ(H,d), ξ(H,l)		Cβ-a+Sβ-atβ
ξ(A,u)	1/t _β	1/t _β
ξ(A,d), ξ(A,l)		tβ
ξ(h,VV)	Sβ-a	
ξ(H,VV)	Cβ-α	
ξ(A,VV)	0	

2HDM constraints

Higgs vs Z portal

X

 $\Gamma_Z \simeq 2.5 \text{ GeV}, \Gamma(Z \to \chi \bar{\chi}) \lesssim 2 \text{ MeV} \Rightarrow g \lesssim 0.03$ $\Gamma_h \simeq 4.1 \text{ MeV}, \Gamma(Z \to \chi \bar{\chi}) \lesssim 0.5 \text{ MeV} \Rightarrow g \lesssim 0.01$

 $\Gamma(X \to \chi \bar{\chi}) \sim g^2 m_X$

 $BR(X \to \chi \bar{\chi}) = \frac{\Gamma(X \to \chi \bar{\chi})}{\Gamma_X}$

 $g \sim \frac{\Gamma_X \cdot \mathrm{BR}(X \to \chi \bar{\chi})}{m_X}$

SM Higgs portal

 $c_m \phi^2 (H^\dagger H)$

Rudhofer et al, 1910.04170; Haisch et al, 2107.12389; SA, Brandt, Haisch 2109.13597

- DM scalar dim 4 operator
- LHC constraints relevant for m < 5 GeV
- ID constraints from Fermi-LAT assume $\phi \phi \rightarrow$ bb and

Derivative Higgs portal

- dim 6 EFT operator
- arise in models with global symmetry breaking, where DM is a pNGB - Λ ~ scale of symmetry breaking
- kinetic dependence of interaction suppresses DD constraints

Rudhofer et al, 1910.04170; Haisch et al, 2107.12389; SA, Brandt, Haisch 2109.13597

2HDM + scalar: WIMP-nucleon cross-section

Wilson coefficient of
$$\chi \bar{\chi} NN$$

$$c_N = \frac{m_N}{v} \frac{y_{\chi} \sin(2\theta)}{2} \left(\frac{1}{m_{S_1}^2} - \frac{1}{m_{S_2}^2} \right)$$

$$\times \left[\cot \beta f_{T_u}^N - \tan \beta \sum_{q=d,s} f_{T_q}^N + \frac{4 \cot \beta - 2 \tan \beta}{27} f_{T_G}^N \right]$$

- Up and down-quark contributions interfere destructively in Type-II
- Numerically close to 0 for $tan\beta \approx 1$

DD scalar vs pseudoscalar

2HDM+a - Large mixing

2HDM+a - mixing angle scan

0.9

Constraints from taus

Phys. Rev. Lett. 125 (2020) 051801

$$\Gamma(h \to aa) = \frac{g_{haa}^2 m_h}{32\pi} \sqrt{g_{haa}} = \frac{1}{m_h v} \left[2\left(m_A^2 - m_a^2 + \frac{m_h^2}{2} - \lambda_3 v^2\right) \sin^2 \theta \right]$$
$$= \frac{1}{m_h v} \left[2\left(m_A^2 - m_a^2 + \frac{m_h^2}{2}\right) \sin^2 \theta - 2\lambda_3 v^2 \right]$$

LHC VS g-2

- Original idea from Arcadi, Djouadi & Queiroz (2112.11902) to simultaneously explain DM & muon g-2
- Can also evade constraints from **Γ**_h
- Large tanβ and small m_a needed to get the correct sign for δa_{μ}
- $h \rightarrow 4f$ extend down to very low m_x because $\Gamma(a \rightarrow \chi \chi) \sim y_{\chi}^2 \cos^2 \theta = 0.005$
- h→inv has small BR and MET spectrum very soft so mono-h(bb) has no sensitivity

<u>However</u>

- 1. g-2 motivated region already ruled out
- 2. Non-perturbative Haa coupling (g_{Haa} ~ 40) leading to
 - $\Gamma_{\rm H} > m_{\rm H}$ over the whole $m_{\rm a}$ - $m_{\rm X}$ plane

[GeV]

 m_{χ}

2HDM+Z': coupling scan

