A string-inspired running-vacuum-model of cosmology and the current tensions in cosmological data

Nick E. Mavromatos Natl. Tech. U. Athens, Greece &

King's College London, UK

CA18108 - Quantum gravity phenomenology in the multimessenger approach

Workshop on the Standard Model and Beyond August 28 - September 8, 2022

Corfu Summer Institute

Heliphic School and Warkshaps on Elementary Particle Physics and Gravity

Dedicated to the memory of Prof. Costas Kounnas and Prof. Graham Ross

- 1. Motivation
- 2. Topological invariants in Gravity theories
- 3. String-Inspired Gravitational Theory with Gravitational Anomalies & axions
- 4. Primordial Gravitational Waves (GW) induced Condensates of Anomalies, the role of supersymmetry
- 5. Running Vacuum Model (RVM) of Cosmology & inflation without external inflatons
- 6. (a) Post-inflationary Cosmic evolution
 - (b) Modern-era phenomenology: deviations from ΛCDM and alleviation of cosmological data tensions?

- 1. Motivation
- 2. Topological invariants in Gravity theories
- 3. String-Inspired Gravitational Theory with Gravitational Anomalies & axions
- 4. Primordial Gravitational Waves (GW) induced Condensates of Anomalies, the role of supersymmetry
- 5. Running Vacuum Model (RVM) of Cosmology & inflation without external inflatons
- 6. (a) Post-inflationary Cosmic evolution
 (b) Modern-era phenomenology: deviations from ΛCDM and alleviation of cosmological data tensions?

- 1. Motivation
- 2. Topological invariants in Gravity theories
- 3. String-Inspired Gravitational Theory with Gravitational Anomalies & axions
- 4. Primordial Gravitational Waves (GW) induced Condensates of Anomalies, the role of supersymmetry
- 5. Running Vacuum Model (RVM) of Cosmology & inflation without external inflatons
- 6. (a) Post-inflationary Cosmic evolution
 (b) Modern-era phenomenology: deviations from ΛCDM and alleviation of cosmological data tensions?

Bonus features

- 7. Enhanced cosmic perturbations & densities of primordial black holes (PBH) & GW → dark matter components: PBH, together with the torsion-induced axions
- 8. Spontaneous Lorentz and CPT-Violation by axion backgrounds & Leptogenesis in radiation era → Baryogenesis ;
- 9. Conclusions & Outlook

Ø	00000000000	erated expansion
Sim	What still we do not know/did not	×
	observe:	
red	Nature of Dark Energy	
Meers	Nature of Dark matter	Lensing
	Primordial Gravitational Waves	
	(through detection of B-mode	
	polarisation	
	in CMB from very early Universe	_
	Microscopic models of Inflation	-
uffic	Is it due to fundamental inflatons or	
lack since lack	dynamical e.g. Starobinsky type?)	$-8\pi \mathrm{G}T_{i}$

de la	* * * *	ΛCDM appears		
		to be in tension with		
Sim	What still we	both, perturbative &		
01	30 0	non-perturbative string		
red	Nature (theory (& UV complete		
Neer	Nature (Theories of Quantum		
	Primordial G	Gravity- swampland ?)		
	(through de.	CUTIVIT VI D-IIIVAG		
	polarisation			
	in CMB from very early Universe)			
	Microscopic models of Inflation			
Also I	(Is it due to fundamental inflatons or dynamical e.g. Starobinsky type?) $8\pi G T_{\mu}$			
Black (since Black				

Topological invariants (total derivatives) in (3+1)-dimensional (curved) space-times

Gauss Bonnet (quadratic-curvature) combination

$$R_{\rm GB} \equiv R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2$$
$$= \nabla_{\mu} \mathcal{F}^{\mu}_{\rm GB}$$

Chern-Simons – Hirzenbruch signature (Chiral Anomaly terms)

$$CS \equiv R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$= \nabla_{\mu} \mathcal{K}^{\mu}_{CS}$$
$$= 2 \partial_{\mu} \left[\epsilon^{\mu\nu\alpha\beta} \omega^{ab}_{\nu} \left(\partial_{\alpha} \omega_{\beta ab} + \frac{2}{3} \omega^{c}_{\alpha a} \omega_{\beta cb} \right) - 2 \epsilon^{\mu\nu\alpha\beta} \left(A^{i}_{\nu} \partial_{\alpha} A^{i}_{\beta} + \frac{2}{3} f^{ijk} A^{i}_{\nu} A^{j}_{\alpha} A^{k}_{\beta} \right) \right]$$

$$\widetilde{R}^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \varepsilon^{\mu\nu\lambda\pi} R_{\lambda\pi}^{\ \rho\sigma} , \quad \widetilde{F}^{\mu\nu} \equiv \frac{1}{2} \varepsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$

$$\varepsilon_{\mu\nu\rho\sigma} = \sqrt{-g} \,\epsilon_{\mu\nu\rho\sigma} \,, \quad \varepsilon^{\mu\nu\rho\sigma} = \frac{\mathrm{sgn}(g)}{\sqrt{-g}} \,\epsilon^{\mu\nu\rho\sigma} \qquad *R^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \epsilon^{\mu\nu\lambda\pi} R_{\lambda\pi}^{\ \rho\sigma}$$

Topological invariants (total derivatives) in (3+1)-dimensional (curved) space-times

Gauss Bonnet (quadratic-curvature) combination

$$R_{\rm GB} \equiv R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2$$
$$= \nabla_{\mu} \mathcal{F}^{\mu}_{\rm GB}$$

Chern-Simons – Hirzenbruch signature (Chiral Anomaly terms)

$$CS \equiv R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \widetilde{F}^{\mu\nu}$$

$$= \nabla_{\mu} \mathcal{K}^{\mu}_{CS} \qquad \text{Spin connection} \qquad \text{Gauge fields}$$

$$= 2 \partial_{\mu} \left[\epsilon^{\mu\nu\alpha\beta} \omega_{\nu}^{ab} \left(\partial_{\alpha} \omega_{\beta ab} + \frac{2}{3} \omega_{\alpha a}^{\ c} \omega_{\beta cb} \right) - 2 \epsilon^{\mu\nu\alpha\beta} \left(A^{i}_{\nu} \partial_{\alpha} A^{i}_{\beta} + \frac{2}{3} f^{ijk} A^{i}_{\nu} A^{j}_{\alpha} A^{k}_{\beta} \right) \right]$$

$$\widetilde{R}^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \epsilon^{\mu\nu\lambda\pi} R_{\lambda\pi}^{\ \rho\sigma}, \quad \widetilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$$

$$\varepsilon_{\mu\nu\rho\sigma} = \sqrt{-g} \epsilon_{\mu\nu\rho\sigma}, \quad \varepsilon^{\mu\nu\rho\sigma} = \frac{\text{sgn}(g)}{\sqrt{-g}} \frac{\epsilon^{\mu\nu\rho\sigma}}{\text{Flat}} * R^{\mu\nu\rho\sigma} \equiv \frac{1}{2} \epsilon^{\mu\nu\lambda\pi} R_{\lambda\pi}^{\ \rho\sigma}$$

 Gauss Bonnet coupling to dilatons (spin-0 scalars of string massless gravitational multiplet)

$$\mathcal{S} \ni \int d^4x \sqrt{-g} \frac{1}{8g_s^2} e^{-2\Phi} \left(R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right)$$

Kanti, NEM, Rizos,

Kanti, NEM, Rizos, Tamvakis, Winstanley, ... Bakopoulos....

Applications: (i) Dilaton scalar hair (secondary type) in Black Holes

(ii) String-Brane modified cosmologies

Binetruy, Charnousis, Odintsov,....

 Gauss Bonnet coupling to dilatons (spin-0 scalars of string massless gravitational multiplet)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{8g_s^2} e^{-2\Phi} \left(R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right)$$
Kanti, NEM, Rizos,
Tamvakis, Winstanley, .

Applications: (i) Dilaton scalar hair (secondary type) in Black Holes . .

Dilaton sources of BHs

Anatomy of a Schwarzschild Black Hole

$$\Box \Phi \propto e^{-2\Phi} \frac{M_{\rm Pl}^{-2}}{g_s^2} R_{\rm GB} \\ \begin{array}{c} {\rm Non\ trivial}\\ {\rm BH\ solutions} \end{array}$$

A Remark

NB:

Horndeski Theories $\Phi \rightarrow \Phi + c$ (evasion of no hair theorem similar to string case)

Sotiriou, Zhou....

 Gauss Bonnet coupling to dilatons (spin-0 scalars of string massless gravitational multiplet)

$$\mathcal{S} \ni \int d^4x \sqrt{-g} \frac{1}{8g_s^2} e^{-2\Phi} \left(R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right)$$

 Chern-Simons coupling to axions (pseudoscalars) a(x) (string-model independent axions (dual in (3+1)-dim to the field strength of Kalb-Ramond antisymmetric (spin-1) tensor field) as well as axions from string compactification)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{f_a} a(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - \mathbf{F}_{\mu\nu} \widetilde{\mathbf{F}}^{\mu\nu} \right)$$
Jackiw, Pi, Yunes, Alex
Chatzifotis, Dorlis, NEM

Jackiw, Pi, Yunes, Alexander, Chatzifotis, Dorlis, NEM, Papantonopoulos

Applications: (i) Pseudoscalar (axion) hair (secondary type) in Rotating (Kerr-like) Black Holes

 Chern-Simons coupling to axions (pseudoscalars) a(x) (string-model independent axions (dual in (3+1)-dim to the field strength of Kalb-Ramond antisymmetric (spin-1) tensor field) as well as axions from string compactification)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{f_a} a(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - \mathbf{F}_{\mu\nu} \widetilde{\mathbf{F}}^{\mu\nu} \right)$$
Jackiw, Pi, Yunes, Alex

Jackiw, Pi, Yunes, Alexander, Chatzifotis, Dorlis, NEM, Papantonopoulos

Applications: (i) Pseudoscalar (axion) hair (secondary type) in Rotating (Kerr-like) Black Holes

Axions source (via Chern-Simons coupling) rotating (spinning) black holes

$$\Box a(x) \propto \frac{1}{f_a} \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \widetilde{F}^{\mu\nu} \right)$$
Spinning BH solutions

 Chern-Simons coupling to axions (pseudoscalars) a(x) (string-model independent axions (dual in (3+1)-dim to the field strength of Kalb-Ramond antisymmetric (spin-1) tensor field) as well as axions from string compactification)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{f_a} a(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - \mathbf{F}_{\mu\nu} \widetilde{\mathbf{F}}^{\mu\nu} \right)$$

Alexander, Peskin,
Sheikh-Jabbari

Applications: (ii) Non-trivial Chern-Simons gravity terms if chiral gravitational waves are present

 Chern-Simons coupling to axions (pseudoscalars) a(x) (string-model independent axions (dual in (3+1)-dim to the field strength of Kalb-Ramond antisymmetric (spin-1) tensor field) as well as axions from string compactification)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{f_a} a(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - \mathbf{F}_{\mu\nu} \widetilde{\mathbf{F}}^{\mu\nu} \right)$$

Non trivial if chiral gravitational
Waves (GW) or spinning BH present
(including primordial configurations.)

Applications: (ii) Non-trivial Chern-Simons gravity terms if chiral gravitational waves are present

(iii) String-inspired modified cosmologies with gravitational anomalies (& torsion)

NEM, Solà, Basilakos

 Chern-Simons coupling to axions (pseudoscalars) a(x) (string-model independent axions (dual in (3+1)-dim to the field strength of Kalb-Ramond antisymmetric (spin-1) tensor field) as well as axions from string compactification)

$$S \ni \int d^4x \sqrt{-g} \frac{1}{f_a} a(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} - \mathbf{F}_{\mu\nu} \widetilde{\mathbf{F}}^{\mu\nu} \right)$$

Applications: (ii) Non-trivial Chern-Simons gravity terms if chiral gravitational waves are present

(iii) String-inspired modified cosmologies with gravitational anomalies (& torsion)

This talk

3. String-Inspired Gravitational Theory with Torsion & Grav. Anomalies, axions and torsion

15

Massless Gravitational multiplet of (closed) strings:

spin 0 scalar (dilaton $\mathbf{\Phi}$) spin 2 traceless symmetric rank 2

tensor (graviton $\bm{g}_{\mu\nu}$) spin 1 antisymmetric rank 2 tensor

KALB-RAMOND FIELD

 $B_{\mu\nu} = -B_{\nu\mu}$

Effective Actions & Anomaly Cancellation – Addition of Counterterms

Green, Schwarz

$$S_B = \int d^4x \sqrt{-g} \left(\frac{1}{2\kappa^2} \left[-R + 2\,\partial_\mu \Phi \,\partial^\mu \Phi \right] - \frac{1}{6\kappa^2} e^{-4\Phi} H_{\lambda\mu\nu} H^{\lambda\mu\nu} + \dots \right)$$

String Anomaly Cancellation requires modification in definition of $H_{\mu\nu\rho}$

Implement in path-integral as a field theory $\delta(...)$ via Lagrange multiplier b(x) pseudoscalar (axion-like) field (Kalb-Ramond (KR) Axion) becomes dynamical after H-torsion integration

Effective Actions & Anomaly Cancellation – Addition of Counterterms

Green, Schwarz

$$S_B = \int d^4x \sqrt{-g} \left(\frac{1}{2\kappa^2} \left[-R + 2\,\partial_\mu \Phi \,\partial^\mu \Phi \right] - \frac{1}{6\kappa^2} e^{-4\Phi} H_{\lambda\mu\nu} H^{\lambda\mu\nu} + \dots \right)$$

String Anomaly Cancellation requires modification in definition of $H_{\mu\nu\rho}$

Implement in path-integral as a field theory $\delta(...)$ via Lagrange multiplier b(x) pseudoscalar (axion-like) field (Kalb-Ramond (KR) Axion) becomes dynamical after H-torsion integration

$$\Pi_{x} \delta \left(\varepsilon^{\mu\nu\rho\sigma} \mathcal{H}_{\nu\rho\sigma}(x)_{;\mu} - \mathcal{G}(\omega, \mathbf{A}) \right) = \int D\mathbf{b} \exp \left[i \int d^{4}x \sqrt{-g} \frac{1}{\sqrt{3}} b(x) \left(\mathcal{H}_{\nu\rho\sigma}(x)_{;\mu}^{\mathbf{\epsilon}\mu\nu\rho\sigma} \mathcal{G}(\omega, \mathbf{A}) \right) \right] = \int D\mathbf{b} \exp \left[-i \int d^{4}x \sqrt{-g} \left(\partial^{\mu}b(x) \frac{1}{\sqrt{3}} \epsilon_{\mu\nu\rho\sigma} \mathcal{H}^{\nu\rho\sigma} + \frac{b(x)}{\sqrt{3}} \mathcal{G}(\omega, \mathbf{A}) \right) \right]$$

$$\mathcal{Z} = \int DH \, Db \, \exp(-H \wedge *H + c_1 b (dH - \mathcal{G}) + \dots)$$

Effective action after H-torsion (exact) path-integration

$$S_{B}^{\text{eff}} = \int d^{4}x \sqrt{-g} \Big[-\frac{1}{2\kappa^{2}} R + \frac{1}{2} \partial_{\mu}b \,\partial^{\mu}b + \frac{\sqrt{2} \,\alpha'}{96 \,\kappa\sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \,\widetilde{F}^{\mu\nu} \right) + \dots \Big]$$

$$\begin{array}{c} \text{KR-axion anomalous} \\ \text{CP-Violating interaction} \end{array}$$

Fermions and (generic) Torsion

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$\mathcal{L} = \sqrt{-g} \left(i \bar{\psi} \gamma^{a} D_{a} \psi - m \bar{\psi} \psi \right)$$

$$\gamma^{a} \gamma^{b} \gamma^{c} = \eta^{ab} \gamma^{c} + \eta^{bc} \gamma^{a} - \eta^{ac} \gamma^{b} - i \epsilon^{dabc} \gamma_{d} \gamma^{5}$$

$$D_{a} = \left(\partial_{a} - \frac{i}{4} \omega_{bca} \sigma^{bc} \right),$$

$$G_{\mu\nu} = e^{a}_{\mu} \eta_{ab} e^{b}_{\nu},$$

$$g_{\mu\nu} = e^{a}_{\mu} \eta_{ab} e^{b}_{\nu},$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_{a} e^{\lambda}_{c} + \Gamma^{\lambda}_{\gamma\mu} e^{\gamma}_{c} e^{\mu}_{a} \right).$$
Gravitational covariant derivative including spin connection
$$\sigma^{ab} = \frac{i}{2} \left[\gamma^{a}, \gamma^{b} \right]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g}\bar{\psi}\left[(i\gamma^a\partial_a - m) + \gamma^a\gamma^{[B_a]}\psi,\right]$$

 $B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma^{\lambda}_{\alpha\mu} e_{c}^{\alpha} e_{a}^{\mu} \right)$

If torsion then $\Gamma_{\mu\nu} \neq \Gamma_{\nu\mu}$ antisymmetric part is the contorsion tensor, contributes

FERMIONS COUPLE TO H - TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

$$\overline{\mathcal{D}}_{a} = \partial_{a} - \frac{i}{4} \overline{\omega}_{bca} \sigma^{bc} \qquad \qquad \overline{\omega}_{ab\mu} = \omega_{ab\mu} + K_{ab\mu}$$
contorsion
$$1 \neq 1$$

$$K_{abc} = \frac{1}{2} \left(T_{cab} - T_{abc} - T_{bca} \right)$$

FERMIONS COUPLE TO H – TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

FERMIONS COUPLE TO H – TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

FERMIONS COUPLE TO H - TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

$$\begin{split} S_{\psi} \ni \int d^{4}x B_{a} \,\overline{\psi} \gamma^{a} \gamma^{5} \psi & \overline{\omega}_{ab\mu} = \omega_{ab\mu} + K_{ab\mu} \\ & \text{contorsion} \\ B^{d} \sim \epsilon^{abcd} H_{bca} & K_{abc} = \frac{1}{2} \left(T_{cab} - T_{abc} - T_{bca} \right) \\ & \mathsf{Non-trivial \ contributions \ to \ \mathbf{B}^{\mu}} & H_{cab} \\ B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{d}^{2} e_{a}^{\mu} \right) & \overline{\Gamma}_{\nu\rho}^{\mu} = \Gamma_{\nu\rho}^{\mu} + \frac{\kappa}{\sqrt{3}} H_{\nu\rho}^{\mu} \neq \overline{\Gamma}_{\rho\nu}^{\mu} \end{split}$$
FERMIONS COUPLE TO H - TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

TORSIONFUL CONNECTION

FERMIONS COUPLE TO H - TORSION VIA GRAVITATIONAL COVARIANT DERIVATIVE

$$S_{\psi} = \frac{i}{2} \int d^4x \sqrt{-g} \Big(\overline{\psi} \gamma^{\mu} \overline{\mathcal{D}}_{\mu} \psi - (\overline{\mathcal{D}}_{\mu} \overline{\psi}) \gamma^{\mu} \psi \Big)$$

TORSIONFUL CONNECTION

 $\cdot \Gamma^{\lambda}_{\alpha\mu} e^{lpha}_{c} e^{\mu}_{a} ig)$

Non-trivial contributions to **B**^µ

 $B^d = \epsilon^{abcd} e_{b\lambda} \left(\partial_a e_c^\lambda \right)$

 $S_{\psi} \ni$

→ AXION-LIKE CP-VIOLATING INTERACTION

$$d^4x B_a \,\overline{\psi} \gamma^a \gamma^5 \psi \longrightarrow -\int d^4x \sqrt{-g} \,\partial_\alpha b \left(\overline{\psi} \,\gamma^\alpha\right)$$

Universal (gravitational) Coupling

$$B^{d} \sim \epsilon^{abcd} H_{bca} \longrightarrow -3\sqrt{2}\partial_{\sigma}b = \sqrt{-g} \epsilon_{\mu\nu\rho\sigma} H^{\mu\nu\rho}$$

b(x) = KR (gravitational) axion

$$\overline{\Gamma}^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho} + \frac{\kappa}{\sqrt{3}} H^{\mu}_{\nu\rho} \neq \overline{\Gamma}^{\mu}_{\rho\nu}$$

torsion

cf. classically in 4 dim: (duality relationship)

$$-3\sqrt{2}\partial_{\sigma}b = \sqrt{-g}\,\epsilon_{\mu\nu\rho\sigma}H^{\mu\nu\rho}$$

torsion

cf. classically in 4 dim:
$$-3\sqrt{2}\partial_{\sigma}b = \sqrt{-g}\epsilon_{\mu\nu\rho\sigma}H^{\mu\nu\rho}$$
 (duality relationship)

torsion

cf. classically in 4 dim: -3 (duality relationship)

$$-3\sqrt{2}\partial_{\sigma}b = \sqrt{-g}\,\epsilon_{\mu\nu\rho\sigma}H^{\mu\nu\rho}$$

$$\begin{split} S_B^{\text{eff}} &= \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_{\mu} b \, \partial^{\mu} b + \frac{\sqrt{2} \, \alpha'}{96 \, \kappa \sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \, \tilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \, \tilde{F}^{\mu\nu} \right) + \dots \Big] \\ &+ S_{Dirac}^{Free} + \int d^4x \sqrt{-g} \left(\mathcal{F}_{\mu} + \frac{\kappa}{2} \sqrt{\frac{3}{2}} \partial_{\mu} b \right) J^{\mu} - \frac{3\kappa^2}{16} \int d^4x \sqrt{-g} \, J_{\mu}^5 J^{5\mu} + \dots \Big] + \dots \\ &\mathcal{F}^d = \varepsilon^{abcd} e_{b\lambda} \partial_a e_c^{\lambda}, \text{ vielbeins} \\ J^{5\mu} &= \bar{\psi}_j \, \gamma^{\mu} \, \gamma^5 \psi_j \quad \text{Axial Current} \\ &\text{All fermion species} \end{split}$$

torsion

cf. classically in 4 dim: (duality relationship)

$$-3\sqrt{2}\partial_{\sigma}b = \sqrt{-g}\,\epsilon_{\mu\nu\rho\sigma}H^{\mu\nu\rho}$$

$$\begin{split} S_B^{\text{eff}} &= \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_{\mu} b \, \partial^{\mu} b + \frac{\sqrt{2} \, \alpha'}{96 \, \kappa \sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \, \widetilde{F}^{\mu\nu} \right) + \dots \Big] \\ &+ S_{\mu\nu\sigma\sigma}^{Free} \int \mathcal{A} - \mathcal{I} a \left(\mathcal{F}_{\mu} + \frac{\kappa}{2} \sqrt{\frac{3}{2}} \partial_{\mu} b \right) J^{5\mu} - \frac{3\kappa^2}{16} \int d^4x \sqrt{-g} \, J_{\mu}^5 J^{5\mu} + \dots \Big] + \dots \\ \mathcal{F}^d &= \varepsilon^{abcd} e_{b\lambda} \partial_a e_c^{\lambda}, \quad \text{elbeins} \\ \mathcal{Vanishes for Friedmann-Lemaitre-Roberston-Walker backgrounds} \end{split}$$

torsion

cf. classically in 4 dim: $-3\sqrt{26}$ (duality relationship)

$$-3\sqrt{2}\partial_{\sigma}b = \sqrt{-g}\,\epsilon_{\mu\nu\rho\sigma}H^{\mu\nu\rho}$$

Kalb-Ramond (KR) or string-model independent (``gravitational") axion
torsion
cf. classically in 4 dim:
$$-3\sqrt{2}\partial_{\sigma}\dot{b} = \sqrt{-g} \epsilon_{\mu\nu\rho\sigma} H^{\mu\nu\rho}$$

(duality relationship)

The Model

$$\begin{split} S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \frac{\sqrt{2} \, \alpha'}{96 \, \kappa \sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \, \widetilde{F}^{\mu\nu} \right) + \dots \Big] \\ &+ S_{Dirac}^{Free} + \int d^4 x \sqrt{-g} \, \Big(-\frac{\kappa}{2} \sqrt{\frac{3}{2}} \, \partial_\mu b \Big) \, J^{5\mu} - \frac{3\kappa^2}{16} \, \int d^4 x \sqrt{-g} \, J_\mu^5 J^{5\mu} + \dots \Big] + \dots \\ &J^{5\mu} \, = \, \bar{\psi}_j \, \gamma^\mu \, \gamma^5 \psi_j \qquad \text{All fermion species} \end{split}$$

$$\begin{split} \textbf{The Model} \\ S_B^{\text{eff}} &= \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \frac{2\alpha'}{96\kappa\sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} - F_{\mu\nu} \, \widetilde{F}^{\mu\nu} \right) + \dots \Big] \\ &+ S_{Dirac}^{Free} + \int d^4x \sqrt{-g} \, \Big(-\frac{\kappa}{2} \sqrt{\frac{3}{2}} \partial_\mu b \Big) \, J^{5\mu} - \frac{3\kappa^2}{16} \int d^4x \sqrt{-g} \, J^5_\mu J^{5\mu} + \dots \Big] + \dots \\ &J^{5\mu} &= \bar{\psi}_j \, \gamma^\mu \, \gamma^5 \psi_j \quad \text{All fermion species} \end{split}$$

$$\delta \Big[\int d^4x \sqrt{-g} \, b \, R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} \Big] = 4 \int d^4x \sqrt{-g} \, \mathcal{C}^{\mu\nu} \, \delta g_{\mu\nu} = -4 \int d^4x \sqrt{-g} \, \mathcal{C}_{\mu\nu} \, \delta g^{\mu\nu}$$

Cotton tensor

$$\begin{aligned} \mathcal{C}^{\mu\nu} &= -\frac{1}{2} \Big[v_{\sigma} \left(\varepsilon^{\sigma\mu\alpha\beta} R^{\nu}_{\ \beta;\alpha} + \varepsilon^{\sigma\nu\alpha\beta} R^{\mu}_{\ \beta;\alpha} \right) + v_{\sigma\tau} \left(\tilde{R}^{\tau\mu\sigma\nu} + \tilde{R}^{\tau\nu\sigma\mu} \right) \Big] = -\frac{1}{2} \Big[\left(v_{\sigma} \, \tilde{R}^{\lambda\mu\sigma\nu} \right)_{;\lambda} + \left(\mu \leftrightarrow \nu \right) \Big] \\ v_{\sigma} &\equiv \partial_{\sigma} b = b_{;\sigma}, \ v_{\sigma\tau} \equiv v_{\tau;\sigma} = b_{;\tau;\sigma} \end{aligned}$$

Traceless $g_{\mu\nu} \, \mathcal{C}^{\mu
u} = 0$

Jackiw, Pi (2003)

$$\delta \Big[\int d^4x \sqrt{-g} \, b \, R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} \Big] = 4 \int d^4x \sqrt{-g} \, \mathcal{C}^{\mu\nu} \, \delta g_{\mu\nu} = -4 \int d^4x \sqrt{-g} \, \mathcal{C}_{\mu\nu} \, \delta g^{\mu\nu}$$

Cotton tensor

$$C^{\mu\nu} = -\frac{1}{2} \Big[v_{\sigma} \left(\varepsilon^{\sigma\mu\alpha\beta} R^{\nu}_{\ \beta;\alpha} + \varepsilon^{\sigma\nu\alpha\beta} R^{\mu}_{\ \beta;\alpha} \right) + v_{\sigma\tau} \left(\tilde{R}^{\tau\mu\sigma\nu} + \tilde{R}^{\tau\nu\sigma\mu} \right) \Big] = -\frac{1}{2} \Big[\left(v_{\sigma} \tilde{R}^{\lambda\mu\sigma\nu} \right)_{;\lambda} + (\mu \leftrightarrow \nu) \Big]$$

$$v_{\sigma} \equiv \partial_{\sigma} b = b_{;\sigma}, \ v_{\sigma\tau} \equiv v_{\tau;\sigma} = b_{;\tau;\sigma}$$

$$\text{not necessarily positive contributions to vacuum energy}$$

37

Einstein's equation

$$R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R - \mathcal{C}^{\mu\nu} = \kappa^2 T^{\mu\nu}_{\text{matter}}$$

Einstein's equation

$$R^{\mu\nu} - \frac{1}{2} g^{\mu\nu} R - \mathcal{C}^{\mu\nu} = \kappa^2 T^{\mu\nu}_{\text{matter}}$$

4. Primordial Gravitational Waves, Anomaly condensates – The role of Supersymmetry

Basilakos, NEM, Solà (2019-20)

$$\begin{split} S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \,\kappa} \, b(x) \, R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \, \sqrt{-g} \Big[-\frac{1}{2\kappa^2} \, R + \frac{1}{2} \, \partial_\mu b \, \partial^\mu b - \sqrt{\frac{2}{3}} \, \frac{\alpha'}{96 \,\kappa} \, \partial_\mu b(x) \, \mathcal{K}^\mu + \dots \Big] \,, \end{split}$$

Basilakos, NEM, Solà (2019-20)

$$\begin{split} \textbf{NB:} & \qquad \qquad \text{absent before} \\ S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \, \kappa} \, b(x) \, R_\mu \, \rho_\sigma \, d^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \, \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \, \partial_\mu b \, \partial^\mu b - \sqrt{\frac{2}{3}} \, \frac{\alpha'}{96 \, \kappa} \, \partial_\mu b(x) \, S_\mu^\mu + \dots \Big] \,, \end{split}$$

No potential for KR axion before generation of GW → stiff-matter, equation of state W=+1 → stiff-axion-matter dominance during very early (pre-inflationary) Universe

Basilakos, NEM, Solà (2019-20)

$$\begin{split} \textbf{NB:} & \qquad \qquad \text{absent before} \\ S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \, \kappa} b(x) \, R_\nu \, \rho_\sigma \, R^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \, \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b - \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \, \kappa} \partial_\mu b(x) \, e^\mu + \dots \Big] \,, \end{split}$$

No potential for KR axion before generation of C.F. Zeldovich -> stiff-matter, equation of state W=+1 but for baryons but for baryons but for baryons but for baryons c.f. also Chavanis c.f. also Chavanis Universe

Basilakos, NEM, Solà (2019-20)

$$\begin{split} S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \,\kappa} \,b(x) \,R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \,\sqrt{-g} \Big[-\frac{1}{2\kappa^2} \,R + \frac{1}{2} \,\partial_\mu b \,\partial^\mu b - \sqrt{\frac{2}{3}} \,\frac{\alpha'}{96 \,\kappa} \,\partial_\mu b(x) \,\mathcal{K}^\mu + \dots \Big] \;, \end{split}$$

Primordial Gravitational Waves Potential Origins in pre-inflationary era? NEM,Sola EPJ-ST (2020)

Basilakos, NEM, Solà (2019-20)

$$\begin{split} S_B^{\text{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \,\kappa} \,b(x) \,R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \,\sqrt{-g} \Big[-\frac{1}{2\kappa^2} \,R + \frac{1}{2} \,\partial_\mu b \,\partial^\mu b - \sqrt{\frac{2}{3}} \,\frac{\alpha'}{96 \,\kappa} \,\partial_\mu b(x) \,\mathcal{K}^\mu + \dots \Big] \;, \end{split}$$

Primordial Gravitational Waves Potential Origins in pre-inflationary era? Collapse/collisions of Domain walls formed in theories with (approximate) discrete symmetry breaking, e.g. via bias in double-well potentials of some condensate (gravitino ψ_{μ} or gaugino) NEM,Sola EPJ-ST (2020)

Ellis, NEM, Alexandre, Houston

4b. Spontaneous Lorentz & CPT Violation by axion backgrounds and RVM Inflation

$$\begin{split} & \begin{array}{l} \begin{array}{l} \mbox{Basilakos, NEM, }\\ \mbox{Solà (2019-20)} \end{array} \end{array} \\ & \begin{array}{l} \mbox{Basilakos, NEM, }\\ \mbox{Solà (2019-20)} \end{array} \\ & \begin{array}{l} \mbox{Solà (2019-20)} \end{array} \end{array} \\ & \begin{array}{l} \mbox{Solà (2019-20)} \end{array} \\ & \begin{array}{l} \mbox{Solà (2019-20)} \end{array} \\ & \begin{array}{l} \mbox{Sola (2019-20)} \end{array} \end{array} \\ & \begin{array}{l} \mbox{Sola (2019-20)} \end{array} \\ &$$

Primordial Gravitational Waves, & De Sitter space times & Spontaneous Lorentz & CPT Violation

Basilakos, NEM, Solà (2019-20)

$$\begin{split} & \operatorname{Gravitational}_{\operatorname{Chern-Simons}} \left(\operatorname{gCS} \right) \\ S_B^{\operatorname{eff}} &= \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \, \partial_\mu b \, \partial^\mu b + \sqrt{\frac{2}{3}} \, \frac{\alpha'}{96 \, \kappa} \, b(x) \, R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4 x \, \sqrt{-g} \Big[-\frac{1}{2\kappa^2} \, R + \frac{1}{2} \, \partial_\mu b \, \partial^\mu b - \sqrt{\frac{2}{3}} \, \frac{\alpha'}{96 \, \kappa} \, \partial_\mu b(x) \, \mathcal{K}^\mu + \dots \Big] \,, \end{split}$$

Primordial Gravitational Waves → Condensate < ...> of Gravitational Anomalies

$$g\mathcal{CS} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \int d^4x \sqrt{-g} \left(\langle b(x) R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle + : b(x) R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} : \right)$$
quantum ordered

Basilakos, NEM, Solà (2019-20)

Gravitational Chern-Simons (gCS) $S_B^{\text{eff}} = \int d^4x \sqrt{-g} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} b(x) R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} + \dots \right]$ $= \int d^4x \sqrt{-g} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \partial_\mu b(x) \,\mathcal{K}^\mu + \dots \right] \,,$ $+\sqrt{\frac{2}{3}}\frac{\alpha'}{96\kappa}\int d^4x\sqrt{-g}\,\langle b(x)\,R_{\mu\mu\rho\sigma}\,\widetilde{R}^{\mu\nu\rho\sigma}\rangle$ **Mild time** Cosmological-Condensate < ...> of Dependence Constant-like **Gravitational Anomalies** through H(t) $g\mathcal{CS} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \int d^4x \sqrt{-g} \left(\langle b(x) R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle + : b(x) R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} : \right)$ quantum ordered

Basilakos, NEM, Solà (2019-20)

$$\begin{aligned} & \text{Gravitational}\\ \text{Chern-Simons (gCS)}\\ S_B^{\text{eff}} &= \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} b(x) R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} + \dots \Big] \\ &= \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \partial_\mu b(x) \, \mathcal{K}^\mu + \dots \Big] , \\ &+ \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \int d^4x \sqrt{-g} \langle b(x) R_{\mu\mu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} \rangle \\ & \text{Condensate < ...> of} \\ & \text{Gravitational Anomalies} \\ & \text{Cosmological-Constant-like} \\ & \text{Mild time} \\ & \text{Dependence} \\ & \text{through H(t)} \\ & \text{g}\mathcal{CS} = -\sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \int d^4x \sqrt{-g} \langle \partial_\mu b \, \mathcal{K}^\mu \rangle \rightarrow \text{Quantum flcts.} \end{aligned}$$

Effective action contains **CP violating axion-like coupling**

$$S_B^{\text{eff}} = \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \frac{\sqrt{2}\,\alpha'}{96\,\kappa\sqrt{3}} b(x) \left(R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \right) \Big] \Big] + \frac{1}{2} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \frac{\sqrt{2}\,\alpha'}{96\,\kappa\sqrt{3}} \right] \Big] + \frac{1}{2} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \frac{\sqrt{2}\,\alpha'}{96\,\kappa\sqrt{3}} \right] \Big]$$

(i) Assume de Sitter era, first, to discuss anomaly condensate in the presence of GW perturbation

 $\sqrt{-g} \, \mathcal{K}^{\mu}(\omega)_{;\mu}$

´) + . . . |

(ii) deduce RVM vacuum behaviour

and

(iii) Inflation is obtained self consistently from RVM evolution

Effective action contains CP violating axion-like coupling

$$S_B^{\text{eff}} = \int d^4x \sqrt{-g} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_{\mu} b \, \partial^{\mu} b + \frac{\sqrt{2} \alpha'}{96 \kappa \sqrt{3}} k(x) \left(R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} \right) + \dots \right]$$

$$\begin{cases} ds^2 = dt^2 - a^2(t) \left[(1 - h_+(t, z)) \, dx^2 \right] \\ + (1 + h_+(t, z)) \, dy^2 \\ + 2h_{\times}(t, z) \, dx \, dy + dz^2 \end{cases}$$
Average
over inflationary
space time in the
presence of
primordial
Gravitational waves
n* = proper number density of
sources of GW(assumed of O(1))
$$\mu = \text{UV k-momentum Cut-off}$$

$$\frac{d}{dt} \left(\sqrt{-g} \, \mathcal{K}^0(t) \right) = \left\{ \langle R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} \rangle = \frac{16}{a^4} \, \kappa^2 n \int \frac{d^3k}{(2\pi)^3} \, \frac{H^2}{2k^3} k^4 \, \Theta + O(\Theta^3) \right\}$$
Homogeneity
& lsotropy

$$\Theta = \sqrt{\frac{2}{3}} \frac{\kappa^3}{12} H \dot{b} \ll 1 \qquad \kappa = M_{\text{Pl}}^{-1}, \\ \dot{b} = db/dt \\ H \approx \text{const.} \\ (inflation) \qquad a(t) \sim e^{Ht} \end{cases}$$

Effective action contains CP violating axion-like coupling

$$S_B^{\text{eff}} = \int d^4x \sqrt{-g} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \frac{\sqrt{2} \alpha'}{96 \kappa \sqrt{3}} (x) \left(R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} \right) + \dots \right]$$

$$S_B^{\text{eff}} = \int d^4x \sqrt{-g} \left[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \, \partial^\mu b + \frac{\sqrt{2} \alpha'}{96 \kappa \sqrt{3}} (x) \left(R_{\mu\nu\rho\sigma} \tilde{R}^{\mu\nu\rho\sigma} \right) + \dots \right]$$

$$ds^2 = dt^2 - a^2(t) \left[(1 - h_+(t, z)) \, dx^2 \right] + (1 + h_+(t, z)) \, dx^2 + (1 + h_+(t, z)) \, dy^2 + (1 + h_+(t, z))$$

Solutions (backgrounds) to the Eqs of Motion $\alpha' = M_s^{-2}$ $\partial_{\alpha} \left[\sqrt{-g} \left(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{\alpha}(t) \right) \right] = 0 \quad \Rightarrow \quad \dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{0}$ n* = proper number density of sources of GW(assumed of O(1)) $\frac{d}{dt}\left(\sqrt{-g}\,\mathcal{K}^{0}(t)\right) = \left\langle R_{\mu\nu\rho\sigma}\,\widetilde{R}^{\mu\nu\rho\sigma}\right\rangle = \frac{16}{a^{4}}\,\kappa^{2}\mathsf{n}\int\frac{d^{3}k}{(2\pi)^{3}}\,\frac{H^{2}}{2k^{3}}\,k^{4}\,\Theta + \mathcal{O}(\Theta^{3})$ time evolution of Anomaly $\Theta = \sqrt{\frac{2}{3} \frac{\kappa^3}{12}} H \dot{b} \propto \mathcal{K}^0$ μ = UV k-momentum Cut-off $\mathscr{K}^{0}(t) \simeq \mathscr{K}^{0}_{\text{begin}}(0) \exp\left[-3Ht\left(1 - 0.73 \times 10^{-4}_{\text{N}^{\star}}\left(\frac{H}{M_{\text{Pl}}}\right)^{2}\left(\frac{\mu}{M_{\text{S}}}\right)^{4}\right)\right]$

Solutions (backgrounds) to the Eqs of Motion $\alpha' = M_s^{-2}$ $\partial_{\alpha} \left[\sqrt{-g} \left(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{\alpha}(t) \right) \right] = 0 \quad \Rightarrow \quad \dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{0}$ n* = proper number density of sources of GW(assumed of O(1)) $\frac{d}{dt} \left(\sqrt{-g} \,\mathcal{K}^0(t) \right) = \left\langle R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} \right\rangle = \frac{16}{a^4} \,\kappa^2 n \int \frac{d^3k}{(2\pi)^3} \,\frac{H^2}{2k^3} \,k^4 \,\Theta + \mathcal{O}(\Theta^3)$ time evolution of Anomaly $\Theta = \sqrt{\frac{2}{3} \frac{\kappa^3}{12}} H \dot{b} \propto \mathcal{K}^0$ $\mu = \mu k$ -momentum Cut-off $\mathscr{K}^{0}(t) \simeq \mathscr{K}^{0}_{\text{begin}}(0) \exp\left[-3H\left(1 - 0.73 \times 10^{-4}_{\text{N}^{*}}\left(\frac{H}{M_{\text{Pl}}}\right)^{2}\left(\frac{\mu}{M}\right)\right]$ \approx []
Solutions (backgrounds) to the Eqs of Motion $\alpha' = M_s^{-2}$ $\partial_{\alpha} \left[\sqrt{-g} \left(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{\alpha}(t) \right) \right] = 0 \quad \Rightarrow \quad \dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{0}$ n* = proper number density of sources of GW(assumed of O(1)) $\frac{d}{dt} \left(\sqrt{-g} \,\mathcal{K}^0(t) \right) = \left\langle R_{\mu\nu\rho\sigma} \,\widetilde{R}^{\mu\nu\rho\sigma} \right\rangle = \frac{16}{a^4} \,\kappa^2 n \int \frac{d^3k}{(2\pi)^3} \,\frac{H^2}{2k^3} k^4 \,\Theta + \mathcal{O}(\Theta^3)$ time evolution of Anomaly $\Theta = \sqrt{\frac{2}{3} \frac{\kappa^3}{12}} H \dot{b} \propto \mathcal{K}^0$ μ = UV k-momentum Cut-off $\mathscr{K}^{0}(t) \simeq \mathscr{K}^{0}_{\text{begin}}(0) \exp\left[-3Ht\left(1 - 0.73 \times 10^{-4}_{\text{N}^{*}}\left(\frac{H}{M_{\text{Pl}}}\right)^{2}\left(\frac{\mu}{M_{\text{Pl}}}\right)^{4}\right)\right]$ $\left|\frac{\mu}{M_{\odot}} \simeq 15 \, (n^{\star})^{-1/4} \left(\frac{M_{\rm Pl}}{H}\right)^{1/2}\right| \Longrightarrow \mathcal{K}^0 = {\rm const.}$ $H/M_{\rm Pl} < 10^{-4}$ to ensure constant anomaly $\mu = O(10^3 \text{ (n*)}^{-1/4}) M_s \leq M_{planck}$ **Planck Data**

$$\partial_{\alpha} \Big[\sqrt{-g} \Big(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{\alpha}(t) \Big) \Big] = 0 \quad \Rightarrow \quad \dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96\kappa} \mathscr{K}^{0} \sim \text{constant}$$
Using slow-roll assumption b
$$\dot{\bar{b}} \sim \varepsilon_{ijk} H^{ijk} \approx \text{constant}$$

$$\varepsilon = \frac{1}{2} \frac{1}{(HM_{\text{Pl}})^{2}} \dot{\bar{b}}^{2} \sim 10^{-2} \quad \text{Planck Data}$$

$$\dot{\bar{b}} \sim \sqrt{2\varepsilon} M_{\text{Pl}} H \sim 0.14 M_{\text{Pl}} H$$

$$H = H_{\text{infl}} \simeq \text{const.}$$

$$\partial_{\alpha} \left[\sqrt{-g} \left(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \mathscr{K}^{\alpha}(t) \right) \right] = 0 \quad \Rightarrow \quad \left[\dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \mathscr{K}^{0} \sim \text{constant} \right]$$

Using **slow-roll assumption** b $\varepsilon = \frac{1}{2} \frac{1}{(HM_{\rm Pl})^2} \frac{\dot{b}^2}{b} \sim 10^{-2}$ Planck Data $\dot{\overline{b}} \sim \sqrt{2\varepsilon} M_{\rm Pl} H \sim 0.14 M_{\rm Pl} H$ $H = H_{\text{infl}} \simeq \text{const.}$ @ end of Fix b_{initial} to arrange Inflationary approx. constant $b_{\rm end} \sim b_{\rm initial} + 0.14 M_{\rm Pl} H_{\rm infl} t_{\rm end}$ condensate era $t_{\rm end}H_{\rm infl} \sim \mathcal{N} = e - \text{foldings}$ during appropriate time period (inflation) ~ 55-70

Basilakos, NEM, Sola

$$\Lambda \equiv \langle b(x) R_{\mu\mu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle \simeq 5.86 \times 10^7 \, \epsilon \, \mathcal{N} \, H^4 > 0$$
e-foldings

Positive Cosmological Constant-like

Positive total energy density since Λ-term dominates

$$\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_\Lambda \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}}\right)^2 + \left(1.17 - 1.37\right) \times 10^7 \left(\frac{H}{M_{\rm Pl}}\right)^4 \right] > 0$$

Basilakos, NEM, Sola

Positive

$$\Lambda \equiv \langle b(x) R_{\mu\mu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle \simeq 5.86 \times 10^7 \,\epsilon \,\mathcal{N} \,H^4 > 0 \quad \begin{array}{l} \text{Cosmological} \\ \text{Constant-like} \end{array}$$

Positive total energy density since Λ-term dominates

$$\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_\Lambda \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}}\right)^2 + \left(1.17 - 1.37\right) \times 10^7 \left(\frac{H}{M_{\rm Pl}}\right)^4 \right] > 0$$

NEM, Sola

$$\Lambda \equiv \langle b(x) R_{\mu\mu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle \simeq 5.86 \times 10^7 \,\epsilon \,\mathcal{N} \, H^4 > 0$$

Positive Cosmological Constant-like

Positive total energy density since Λ-term dominates

$$\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_\Lambda \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}}\right)^2 + \left(1.17 - 1.37\right) \times 10^7 \left(\frac{H}{M_{\rm Pl}}\right)^4 \right] > 0$$

Equation of state :

$$0 > \rho_b + \rho_{gCS} = -(p_b + p_{gCS}) \text{ cf. phantom ``matter''}$$
$$0 < \rho_{\Lambda} = -p_{\Lambda} \rightarrow \text{dominates} \rightarrow$$

 $0 < \rho_b + \rho_{gCS} + \rho_{\Lambda} = -(p_b + p_{gCS} + p_{\Lambda})$ true RVM vacuum

5. Running-Vacuum Model Cosmology – Inflation without external inflatons

$$\rho_{\rm RVM}^{\Lambda}(t) = \Lambda(t)/\kappa^2 \qquad \kappa = \sqrt{8\pi G} = M_{\rm Pl}^{-1}$$
$$p(t)_{\rm RVM} = -\rho_{\rm RVM}^{\Lambda(t)}(t)$$

NB: Renormalization-Group-like equation for the evolution of vacuum energy density Hubble parameter H(t) $\leftarrow \rightarrow$ RG scale μ

$$\frac{d\rho_{\Lambda}^{\text{RVM}}(t)}{d\ln H^2} = \frac{1}{(4\pi)^2} \sum_{i=F,B} \left[a_i M_i^2 H^2 + b_i H^4 + \mathcal{O}\left(\frac{H^6}{M_i^2}\right) \right]$$

general covariance \rightarrow
even powers of H

$$\begin{array}{c} \mbox{The Parts} & \mbox{Shapiro + Sola}\\ \mbox{Sola, ...}\\ \end{tabular} \\ \mbox{Dark Energy}\\ (`running vacuum model}\\ (RVM) type" \end{tabular} & \end{tabular} \\ \e$$

Late dark-Energy $H^2(a) = H_0^2 \left[\tilde{\Omega}_{m0} a^{-3(1-\nu)} + \tilde{\Omega}_{\Lambda 0} \right] \quad \tilde{\Omega}_{\Lambda 0}$ dominated era

Basilakos, Lima, **Cosmological Evolution of RVM** Sola + Gomez Valent + ... (2013 - 2018) $\omega = \rho_m / p_m$ m = matter, radiation $\nabla^{\mu} T_{\mu\nu} = 0 \quad \blacksquare \quad \dot{\rho}_m + 3(1+\omega)H\rho_m = -\dot{\rho}_{\rm RVM}^{\Lambda}$ $\dot{H} + \frac{3}{2}(1+\omega)H^2\left(1-\nu-\frac{c_0}{H^2}-\alpha\frac{H^2}{H^2}\right)$ $H(a) = \left(\frac{1-\nu}{\alpha}\right)^{1/2} \frac{H_I}{\sqrt{D \, a^{3(1-\nu)(1+\omega_m)} + 1}}$ Solution D > 0 $Da^{4(1-\nu)} \ll 1$ $M^2 = (1-\nu)H_I^2/\alpha$ Early de Sitter (unstable) $Da^{4(1-\nu)} \gg 1$ $M^2 \sim a^{3(1-\nu)(1+\omega_m)} \sim a^{-4}$ Radiation $\omega = 1/3$ Late dark-Energy $H^2(a) = H_0^2 \left[\tilde{\Omega}_{m0} a^{-3(1-\nu)} + \tilde{\Omega}_{\Lambda 0} \right] \quad \tilde{\Omega}_{\Lambda 0}$ dominant dominated era

Cannot obtain such terms in ordinary Quantum Field Theories You need the condensate of the gravitational anomalies which have CP-violating couplings with the gravitational axions

NEM, Sola

 $\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_{\Lambda} \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}} \right)^2 + 1.17 - 1.37 \right) \times 10^7 \left(\frac{H}{M_{\rm Pl}} \right)^4 \right]$

Dark Energy

("running vacuum model

(RVM) type")

RVM-like terms drive inflation contain scalar d.o.f. from the anomaly condensate

But slow roll is due to the KR axion field $\epsilon \sim \frac{1}{2} \frac{1}{(HM_{\rm Pl})^2} \dot{\overline{b}}^2 \sim 10^{-2}$

Cannot obtain such terms in ordinary Quantum Field Theories You need the condensate of the gravitational anomalies which have CP-violating couplings with the gravitational axions

$$\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_{\Lambda} \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}} \right)^2 + 1.17 - 1.37 \right) \times 10^7 \left(\frac{H}{M_{\rm Pl}} \right)^4 \right]$$

Dark Energy

("running vacuum model

(RVM) type")

RVM-like terms drive inflation contain scalar d.o.f. from the anomaly condensate

But slow roll is due to the KR axion field $\epsilon \sim \frac{1}{2} \frac{1}{(HM_{\rm Pl})^2} \dot{\overline{b}}^2 \sim 10^{-2}$

Basilakos, NEM, Sola

Positive

 $\Lambda \equiv \langle b(x) R_{\mu\mu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle \simeq 5.86 \times 10^7 \,\epsilon \,\mathcal{N} \,H^4 > 0 \quad \begin{array}{l} \text{Cosmological} \\ \text{Constant-like} \end{array}$

Positive total energy density since A-term dominates

$$\rho_{\rm total} = \rho_b + \rho_{gCS} + \rho_{\Lambda} \simeq 3M_{\rm Pl}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\rm Pl}} \right)^2 + \left(1.17 - 1.37 \right) \times 10^7 \left(\frac{H}{M_{\rm Pl}} \right)^4 \right] > 0$$

Negative coefficient v < 0 due to CS anomaly in early Universe, unlike late-era RVM RVM-like terms drive inflation contain scalar d.o.f. from the anomaly condensate

But slow roll is due to the KR axion field $\epsilon \sim \frac{1}{2} \frac{1}{(HM_{\rm Pl})^2} \dot{\overline{b}}^2 \sim 10^{-2}$

Basilakos, NEM, Sola

$$\Lambda \equiv \langle b(x) R_{\mu\mu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle \simeq 5.86 \times 10^7 \,\epsilon \,\mathcal{N} \,H^4 > 0 \qquad \begin{array}{l} \text{Positive} \\ \text{Cosmological} \\ \text{Constant-like} \end{array}$$

Positive total energy density since Λ-term dominates

$$\rho_{\text{total}} = \rho_b + \rho_{gCS} + \rho_\Lambda \simeq 3M_{\text{Pl}}^4 \left[-1.7 \times 10^{-3} \left(\frac{H}{M_{\text{Pl}}} \right)^2 + \left(1.17 - 1.37 \right) \times 10^7 \left(\frac{H}{M_{\text{Pl}}} \right)^4 \right] > 0$$

$$\frac{\text{RVM-like terms drive inflation contain scalar d.o.f. from the anomaly condensate}}{\text{Condensate}}$$
But slow roll is due to the KR axion field $\epsilon \approx \frac{1}{2} \frac{1}{(HM_{\text{Pl}})^2} \dot{\overline{b}}^2 \sim 10^{-2}$

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

approximately de Sitter provided during the duration of inflation

$$\begin{split} b(t) &= b(0) + 0.14 M_{\rm Pl} \, H \, t_{end} \simeq b(0) & \text{order of magnitude} \\ &< 0 & \text{N=e-folds} & \underset{of inflation}{\text{beginning}} \\ & \left| \overline{b}(0) \right| \gtrsim \mathcal{O}(10) \, M_{\rm Pl} & \underset{conjectures?}{\text{Distance-swampland}} \end{split}$$

slow running of db/dt can be constrained by data

$$\partial_{\alpha} \left[\sqrt{-g} \left(\partial^{\alpha} \bar{b} - \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \mathscr{K}^{\alpha}(t) \right) \right] = 0 \quad \Rightarrow \quad \left[\dot{\bar{b}} = \sqrt{\frac{2}{3}} \frac{\alpha'}{96 \kappa} \mathscr{K}^{0} \sim \text{constant} \right]$$

Undiluted KR axion background at the end of Inflation

@ end of $\dot{\overline{b}} \sim \sqrt{2\varepsilon} M_{\rm Pl} H \sim 0.14 M_{\rm Pl} H$ Inflationary

era

 $H = H_{\text{infl}} \simeq \text{const.}$

6a. Post Inflationary Eras & Cosmic Evolution of the stringy RVM

Post-RVM-Inflation Eras & Evolution

Cancellation of Gravitational Anomalies in Radiation Era

by:

Chiral Fermionic Matter generation @ end of Inflation

Required by consistency of quantum theory of matter and radiation (**diffeomorphism invariance**)

Basilakos, NEM,Sola (2019-20)

Cancellation of Gravitational Anomalies in Radiation Era

by:

Chiral Fermionic Matter generation @ end of Inflation

Required by consistency of quantum theory of matter and radiation (**diffeomorphism invariance**)

Basilakos, NEM,Sola (2019-20)

The Whole String King Cosmological

Werner Der Teil Heisenberg und das Ganze

"There is a fundamental error in separating the parts from the whole, the mistake of atomizing what should not be atomized.

Unity and complementarity constitute reality"

Werner Karl Heisenberg German Scientist & Nobel Prize 1901-1976

Gespräche im Umkreis der Piper Atomphysik

Cosmic

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

Possible potential (mass) generation for b \rightarrow axion Dark matter

Matter Era

Possible potential (mass) generation for $b \rightarrow axion$ Dark matter

Cosmic

direction

forward

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

Cosmic

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

 $\varepsilon' \sim \varepsilon = \mathscr{O}(10^{-2})$ Phenomenology

forward direction

Cosmic

direction

forward

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

Cosmic

direction

forward

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

Summary of (stringy-RVM) Cosmological Evolution

Cosmic

direction

forward

Time Big-Bang, pre-inflationary phase (broken Sugra)

Basilakos, NEM, Sola

6b. Modern Era 8 **Cosmological data Tension(s)** potential alleviation by the stringy RVM

Basilakos, Lima,
Sola + Gomez Valent
+... (2013 - 2018)
$$\omega = \rho_m/p_m$$
 $m =$ matter, radiation $\nabla^{\mu} T_{\mu\nu} = 0$ $\dot{\rho}_m + 3(1+\omega)H\rho_m = -\dot{\rho}_{\rm RVM}^{\Lambda}$ $\dot{H} + \frac{3}{2}(1+\omega)H^2 \left(1-\nu-\frac{c_0}{H^2}-\alpha\frac{H^2}{H_I^2}\right) = 0$ Solution $H(a) = \left(\frac{1-\nu}{\alpha}\right)^{1/2} \frac{H_I}{\sqrt{D a^{3(1-\nu)(1+\omega_m)}+1}}$ $D > 0$ Early de Sitter $Da^{4(1-\nu)} \ll 1$ $D > 0$ Early de Sitter $Da^{4(1-\nu)} \ll 1$ $D = 1/3$ $H^2 = (1-\nu)H_I^2/\alpha$ $\mu^2(a) = H_0^2 \left[\tilde{\Omega}_{m0} a^{-3(1-\nu)} + \tilde{\Omega}_{\Lambda 0}\right]$ $\tilde{\Omega}_{\Lambda 0}$ dominant

The H0 tension

We have two different blocks giving estimates of the Hubble constant in tension with each other:

- CMB (WMAP, Planck, ground based telescopes), BAO, BBN, Pantheon;
- Direct local distance ladder measurements (HST, SH0ES) and Strong lensing (H0LiCOW).

E. Di Valentino

September 10th, 2019 VII Meeting on Fundamental Cosmology Madrid

A tension on S8 is present between the Planck data in the ACDM scenario and the cosmic shear data.

S8 tension

Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

While there is no tension with DES galaxy lensing, a tension at about 2.5 sigma level is present for the DES results that include galaxy clustering.

Joudaki et al, arXiv:1601.05786

Hildebrandt et al., arXiv:1606.05338.

The S8 tension is at about 2.6 sigma level between the Planck data in the ACDM scenario and CFHTLenS survey and KiDS-450.

Solà, Gómez-Valent, De Cruz Perez, Moreno-Pulido, (Planck 2018 data)

to statistics Alleviation of the H_0 , σ_8 tension by RVM model

If tensions

are not due

Integrating out graviton flcts

NEM, Solà (2021)

 $\rho \propto (c_1 + c_2 \ln H) H^2 + (c_3 + c_4 \ln H) H^4 + \Lambda$

References:

Thank you! a microscopic (stringinspired) model for RVM Universe....

> Links with : spontaneous Lorentz violation (via (gravitational axion) backgrounds) and Matter-Antimatter Asymmetry in theories with Right-Handed Neutrinos

Basilakos, NEM, Solà (i)JCAP 12 (2019) 025 (ii) IJMD28 (2019) 1944002 (iii) Phys.Rev.D 101 (2020) 045001 (iv) Phys.Lett.B 803 (2020) 135342 (v) Universe 2020, 6(11), 218 NEM, Solà (vi) EPJST 230 (2020), 2077 (vii) EPJPlus 136 (2021), 1152 NEM (viii) arXiv:2205.07044 (ix) Universe 7 (2021), 480 (x) Phil. Trans. A380 (2022) 2222 NEM, Spanos, Stamou, (xi) hep-th:2206.07963

- (i) NEM & Sarben Sarkar, EPJC 73 (2013), 2359
- (ii) John Ellis, NEM & Sarkar, PLB 725 (2013), 407
- (iii) De Cesare, NEM & Sarkar, EPJC 75 (2015), 514
- (iv) Bossingham, NEM & Sarkar,
 - EPJC 78 (2018), 113; 79 (2019), 50
- (v) NEM & Sarben Sarkar, EPJC 80 (2020), 558

SPARES: Bonus Features

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} \rangle \, b(x)$

approximately de Sitter provided during the duration of inflation

$$\begin{split} b(t) &= \overline{b}(0) + 0.14 M_{\rm Pl} \, H \, t_{end} \simeq \overline{b}(0) & \text{order of magnitude} \\ &< 0 & \text{N=e-folds} & \text{beginning} \\ & & \text{of inflation} \\ & & & \\ & & \left| \overline{b}(0) \right| \, \gtrsim \, \mathcal{O}(10) \, M_{\rm Pl} & \text{Distance-swampland} \\ & & \text{conjectures?} \end{split}$$

NEM, Universe 7 (2021) 12, 480, e-Print: 2111.05675 [hep-th]

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \, \widetilde{R}^{\mu\nu\rho\sigma} \rangle \, b(x)$

$$V(b) \simeq b \,\widetilde{\Lambda}_0^4 \sqrt{\frac{2}{3}} \, \frac{M_{\rm Pl}}{96 \, M_s^2} \equiv b \, \frac{\widetilde{\Lambda}_0^4}{f_b} \, \equiv b \, \Lambda_0^3$$

Such a potential can also arise in appropriate brane compactifications (eg type IIB strings)

L. McAllister, E. Silverstein and A. Westphal, Phys. Rev. D 82 (2010), 046003 [arXiv:0808.0706 [hep-th]].

We may extend the model to include other stringy axions arising from compactification

$$V_{a_{I}}^{\text{lin}} = a_{I}(x) \frac{f_{b}}{f_{a}} \Lambda_{0}^{3} \qquad \Lambda_{0} = 8.4 \times 10^{-4} M_{\text{Pl}} \qquad f_{a} = \text{axion coupling}$$
canonical kinetic terms for a-axions
$$f_{b} \equiv \left(\sqrt{\frac{2}{3}} \frac{M_{\text{Pl}}}{96 M_{s}^{2}}\right)^{-1} \stackrel{Eq.(9)}{\simeq} 5.3 \times 10^{-6} M_{\text{Pl}}$$

NEM, Stamou, Spanos, gr-qc...

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$V_{\text{wsinst}}^b \simeq \Lambda_b^4 \cos\left(\frac{b}{f_b}\right) \qquad \Lambda_b^4 \sim M_s^4 e^{-S_{\text{wsinst}}} \rightarrow \Lambda_b \ll \Lambda_0$$

$$V_{\text{wsinst}}^{a_I} \simeq \Lambda_I^4 \cos\left(\frac{a_I}{f_{a_I}}\right) \qquad \Lambda_0 \gg \Lambda_I \neq \Lambda_b, \qquad \text{Restrict to} \quad I = 1: \ a_1 \equiv a$$

$$V_{brane-compact.-effects}(a) \ni \Lambda_2^4 \frac{1}{f_a} a + \Lambda_I^4 \left(1 + \xi_a \frac{a}{f_a}\right) \cos\left(\frac{a}{f_a}\right)$$

warp factor
$$\frac{\Lambda_2^4}{f_a} \sim \frac{\epsilon}{L} \sqrt{\frac{3}{(2\pi)^3}} M_s^3$$

.

L. McAllister, E. Silverstein and A. Westphal, Phys. Rev. D 82 (2010), 046003 [arXiv:0808.0706 [hep-th]].

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$V(a, b) = \Lambda_1^4 \left(1 + f_a^{-1} \tilde{\xi}_1 a(x) \right) \cos(f_a^{-1} a(x)) + \frac{1}{f_a} \left(f_b \Lambda_0^3 + \Lambda_2^4 \right) a(x) + \Lambda_0^3 b(x)$$

Case I

$$\left(rac{f_b}{f_a}+rac{\Lambda_2^4}{f_a\,\Lambda_0^3}
ight)^{1/3}\Lambda_0\,<\,\Lambda_1\ll\Lambda_0$$

NEM, Sola + Basilakos Stamou, Spanos, gr-qc...

$$\text{Case II} \qquad \Lambda_0 \ll \Big(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\Big)^{1/3} \Lambda_0 < \Lambda_1 \qquad \qquad \begin{array}{c} \text{Zhou, Jiang, Cai, Sasaki, Pi,} \\ \text{Phys. Rev. D 102 (2020) no.10, 103527} \end{array}$$

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$V(a, b) = \Lambda_1^4 \left(1 + f_a^{-1} \tilde{\xi}_1 a(x) \right) \cos(f_a^{-1} a(x)) + \frac{1}{f_a} \left(f_b \Lambda_0^3 + \Lambda_2^4 \right) a(x) + \Lambda_0^3 b(x)$$

$$\begin{array}{ll} \mathsf{Case} \ \mathsf{I} & \left(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\right)^{1/3} \Lambda_0 < \Lambda_1 \not \sim \Lambda_0 \\ \mathsf{Case} \ \mathsf{Enhancement} \ \mathsf{of} \ \mathsf{cosmic} \ \mathsf{perturbations} \\ \Lambda_0 \ll \left(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\right)^{1/3} \Lambda_0 < \Lambda_1 \end{array} \right) \\ \end{array} \\ \begin{array}{ll} \mathsf{NEM, Sola + Basilakos} \\ \mathsf{Stamou, Spanos, gr-qc...} \end{array} \\ \begin{array}{ll} \mathsf{NEM, Sola + Basilakos} \\ \mathsf{Stamou, Spanos, gr-qc...} \end{array} \\ \end{array} \\ \end{array}$$

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

b-field + condensate drive inflation, **a-axion ends inflation**

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$V(a, b) = \Lambda_1^4 \left(1 + f_a^{-1} \tilde{\xi}_1 a(x) \right) \cos(f_a^{-1} a(x)) + \frac{1}{f_a} \left(f_b \Lambda_0^3 + \Lambda_2^4 \right) a(x) + \Lambda_0^3 b(x)$$

$$\text{Case II} \qquad \Lambda_0 \ll \Big(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\Big)^{1/3} \Lambda_0 < \Lambda_1$$

Zhou, Jiang, Cai, Sasaki, Pi, Phys. Rev. D 102 (2020) no.10, 103527

Stamou, Spanos, gr-qc...

Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$V(a, b) = \Lambda_1^4 \left(1 + f_a^{-1} \tilde{\xi}_1 a(x) \right) \cos(f_a^{-1} a(x)) + \frac{1}{f_a} \left(f_b \Lambda_0^3 + \Lambda_2^4 \right) a(x) + \Lambda_0^3 b(x)$$

Stamou, Spanos, gr-qc...

specific set of parameters

enhancement due to **inflection points** in the potential → different enhancement mechanism than in

Zhou, Jiang, Cai, Sasaki, Pi, Phys. Rev. D 102 (2020) no.10, 103527 Anomaly condensate \rightarrow linear axion potential $V_{\text{eff}} \ni \langle R_{\mu\nu\rho\sigma} \widetilde{R}^{\mu\nu\rho\sigma} \rangle b(x)$

world-sheet (non-perturbative) instantons \rightarrow periodic potential perturbations

$$\begin{split} V(a, b) &= \Lambda_1^4 \left(1 + f_a^{-1} \tilde{\xi}_1 a(x) \right) \cos(f_a^{-1} a(x)) + \frac{1}{f_a} \left(f_b \Lambda_0^3 + \Lambda_2^4 \right) a(x) + \Lambda_0^3 b(x) \\ \Lambda_0 &= 8.4 \times 10^{-4} M_{\rm Pl}, \quad g_1 = 110, \quad g_2 = 1.779 \times 10^4, \quad \xi = -0.09, \quad f = 0.09 \; M_{\rm Pl}. \\ \textbf{SET 3} \quad (a_{ic}, b_{ic}) = 7.5622, 0.522 \end{split}$$

Hence in both hierarchies of scales :

1:
$$\left(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\right)^{1/3} \Lambda_0 < \Lambda_1 \ll \Lambda_0$$
 , 2: $\Lambda_0 \ll \left(\frac{f_b}{f_a} + \frac{\Lambda_2^4}{f_a \Lambda_0^3}\right)^{1/3} \Lambda_0 < \Lambda_1$

one may get **significant enhancement** of cosmic perturbations, ands PBH production, and thus a **significant portion** of PBH could play **the role of DM**, also, as a result, **profiles of GW** could **change** during radiation, in principle **falsifiable predictions** at **interferometers**.

Cancellation of Gravitational Anomalies in Radiation Era

by:

Chiral Fermionic Matter generation @ end of Inflation

Basilakos, NEM, Sola (2019-20)

Required by consistency of quantum theory of matter and radiation (**diffeomorphism invariance**)

$$S^{\text{eff}} = \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \partial^\mu b + \frac{\alpha'}{\kappa} b(x) \nabla_\mu \Big(\sqrt{\frac{2}{3}} \frac{1}{96} \mathscr{K}^\mu - \sqrt{\frac{3}{8}} J^{5\mu} \Big) \Big] + \dots,$$
$$J^{5\mu} = \sum_j \bar{\psi}_j \gamma^\mu \gamma^5 \psi_j, \quad \text{Chiral current, including RHN}$$

Cancellation of Gravitational Anomalies in Radiation Era

by:

Chiral Fermionic Matter generation @ end of Inflation

Basilakos, NEM, Sola (2019-20)

Required by consistency of quantum theory of matter and radiation (**diffeomorphism invariance**)

$$S^{\text{eff}} = \int d^4 x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \,\partial^\mu b + \frac{\alpha'}{\kappa} b(x) \nabla_\mu \Big(\sqrt{\frac{2}{3}} \frac{1}{96} \mathscr{K}^\mu - \sqrt{\frac{3}{8}} J^{5\mu} \Big) \Big] + \dots$$

$$J^{5\mu} = \sum_j \bar{\psi}_j \gamma^\mu \gamma^5 \psi_j, \quad \text{Chiral current, including RHN}$$

$$\partial_\mu \Big[\sqrt{-g} \Big(\sqrt{\frac{3}{8}} \frac{\alpha'}{\kappa} J^{5\mu} - \frac{\alpha'}{\kappa} \sqrt{\frac{2}{3}} \frac{1}{96} \mathcal{K}^\mu \Big) \Big] = \sqrt{\frac{3}{8}} \frac{\alpha'}{\kappa} \Big(\frac{\alpha_{\text{EM}}}{2\pi} \sqrt{-g} F^{\mu\nu} \widetilde{F}_{\mu\nu} + \frac{\alpha_s}{8\pi} \sqrt{-g} G^a_{\mu\nu} \widetilde{G}^{a\mu\nu} \Big)$$

chiral U(1) Gluon QCD

Cancellation of Gravitational Anomalies in Radiation Era

by:

Chiral Fermionic Matter generation @ end of Inflation

Basilakos, NEM, Sola (2019-20)

Required by consistency of quantum theory of matter and radiation (**diffeomorphism invariance**)

$$S^{\text{eff}} = \int d^4x \sqrt{-g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{2} \partial_\mu b \partial^\mu b + \frac{\alpha'}{\kappa} b(x) \nabla_\mu \Big(\sqrt{\frac{2}{3}} \frac{1}{96} \mathscr{K}^\mu - \sqrt{\frac{3}{8}} J^{5\mu} \Big) \Big] + \dots$$
$$J^{5\mu} = \sum_j \bar{\psi}_j \gamma^\mu \gamma^5 \psi_j, \quad \text{Chiral current, including RHN}$$

$$\partial_{\mu} \left[\sqrt{-g} \left(\sqrt{\frac{3}{8}} \frac{\alpha'}{\kappa} J^{5\mu} - \frac{\alpha'}{\kappa} \sqrt{\frac{2}{3}} \frac{1}{96} \mathcal{K}^{\mu} \right) \right] = \sqrt{\frac{3}{8}} \frac{\alpha'}{\kappa} \left(\frac{\alpha_{\rm EM}}{2\pi} \sqrt{-g} F^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{\alpha_s}{8\pi} \sqrt{-g} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \right)$$

chiral U(1)
Gluon QCD
instanton generated potential for KR axion b-field
during matter dominance \rightarrow axion Dark Matter

sufficiently slowly varying during leptogenesis (brief) epoch \rightarrow qualitatively similar to approximately const. background

Bossingham, NEM, Sarkar

de Cesare, NEM, Sarkar Eur.Phys.J. C75, 514 (2015)

Early Universe T >> T_{EW}

$$\mathcal{L} = i\overline{N}\partial \!\!\!/ N - \frac{m}{2}(\overline{N^c}N + \overline{N}N^c) + \overline{N}B \gamma^5 N - Y_k \overline{L}_k \tilde{\phi}N + h.c.$$

Heavy Right-Handed-Neutrinos (N) interact with axial (approx.)

Ν

 \mathbf{k}

 $B_0 \neq 0$

constant background with only temporal component $B_0 \propto \dot{b} \neq 0$

Produce Lepton asymmetry

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N \rightarrow l^+ \phi_{\rm s}$$

 $\Gamma_1 = \sum_k \frac{|Y_k|^2}{32\pi^2} \frac{m^2}{\Omega} \frac{\Omega + B_0}{\Omega - B_0}$

$$N \rightarrow l^{-}\overline{\phi}$$

$$\neq \Gamma_{2} = \sum \frac{|Y_{k}|^{2}}{32\pi^{2}} \frac{m^{2}}{\Omega} \frac{\Omega - B_{0}}{\Omega + B_{0}} \qquad \text{LV}$$

$$\Omega = \sqrt{B_0^2 + \ \mathbf{m^2}}$$

