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• SMEFT offers a systematic framework for describing the effects of heavy 
new physics on “low-energy” observables involving SM particles only


• Assumes the SM gauge group and electroweak symmetry breaking hold 
up to some high scale 


• But what if the SM is extended by a                                                           
light new particle with feeble inter-                                                      
actions with SM fields?

ΛUV ≫ vEWSB

D
ec

re
as

in
g 

co
up

lin
g

Increasing mass

Terra incognita

Previously expected  
region for  

new particles 

Experim
entally exclu

ded

Searches for light  
particles with small 

couplings

Searches for  
heavy particles with  

large couplings



Introduction 
• Are there any implications for SMEFT if the SM is extended by a weakly 

coupled light new particle and nothing else?


• If the new particle is described by a renormalizable Lagrangian (  
operators), the answer is NO: 


‣ for observables involving SM fields only, the effects of the new particle can be 
absorbed into the renormalized parameters of the SM Lagrangian


‣ only trace of its existence lies in its contributions to the β-functions of the SM 
parameters, which are small in the case of weak coupling

D ≤ 4
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Introduction 
• The situation described above is rather generic, but an important 

exception exists


• BSM theories featuring light new particles with only higher-dimensional 
interactions with the SM give rise to different, more interesting effects!


• Most important example:

Axions and axion-like particles
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Axions and axion-like particles (ALPs) are well motivated theoretically:

Motivation for ALPs

‣ Peccei-Quinn solution to strong CP problem:


‣ introduce scalar field                             charged under a new U(1)PQ


‣ field gets a VEV from spontaneous symmetry breaking:

[Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]
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� = |�| eia/fa

shift symmetry:  a → a + const.
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Axions and axion-like particles (ALPs) are well motivated theoretically:

Motivation for ALPs

‣ Peccei-Quinn solution to strong CP problem:


‣ introduce scalar field                             charged under a new U(1)PQ


‣ QCD instantons break the continuous shift symmetry to a discrete subgroup:

[Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]
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modulo 2π 

θ + ⟨a⟩/fa = 0

 generates an ALP mass!⇒
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Axions and axion-like particles (ALPs) are well motivated theoretically:

Motivation for ALPs

‣ Peccei-Quinn solution to strong CP problem


‣ more generally: ALPs as pseudo Nambu-
Goldstone bosons of a spontaneously 
broken global symmetry


‣ light ALPs can be promising Dark Matter 
candidates or mediators to the dark sector


‣ low-energy processes are important in 
constraining the ALP couplings to the SM 
fields

��-�� ��-�� ��-� ��-� ��-� � ���

���

�

��-�
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��-�

[Bauer, MN, Thamm (2017)]
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• Assume the scale of global symmetry breaking   is above the 
weak scale, and consider the most general effective Lagrangian for a 
pseudoscalar boson  coupled to the SM via classically shift-invariant 
interactions, broken only by a soft mass term:

Λ = 4π f

a

2.1 Choice of the operator basis

The most general e↵ective Lagrangian for this particle including operators of up to dimension 5
reads [36]1

L
D5
e↵ =

1

2
(@µa)(@

µ
a)�

m
2
a,0

2
a
2 +

@
µ
a

f

X

F

 ̄F cF �µ F

+ cGG
↵s

4⇡

a

f
G

a
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µ⌫,a + cWW
↵2

4⇡

a

f
W

A
µ⌫ W̃

µ⌫,A + cBB
↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫
.

(1)

Here G
a
µ⌫ , W

A
µ⌫ and Bµ⌫ are the field-strength tensors of SU(3)c, SU(2)L and U(1)Y , and

↵s = g
2
s/(4⇡), ↵2 = g

2
/(4⇡) and ↵1 = g

0 2
/(4⇡) denote the corresponding coupling parameters.

B̃
µ⌫ = 1

2✏
µ⌫↵�

B↵� etc. (with ✏0123 = 1) are the dual field-strength tensors. The sum in the first
line extends over the chiral fermion multiplets F of the SM. The quantities cF are hermitian
matrices in generation space. For the couplings of a to the U(1)Y and SU(2)L gauge fields,
the additional terms arising from a constant shift a ! a+ c of the ALP field can be removed
by field redefinitions. The coupling to QCD gauge fields is not invariant under a continuous
shift transformation because of instanton e↵ects, which however preserve a discrete version
of the shift symmetry, under which a ! a + n⇡f/cGG with integer n [3, 4]. Above we have
indicated the suppression of the dimension-5 operators with the ALP decay constant f , which
is related to the relevant new-physics scale by ⇤ = 4⇡f . This is the characteristic scale of global
symmetry breaking, assumed to be far above the weak scale. It is then a good approximation
to neglect contributions from higher-dimensional operators, which are suppressed by higher
powers of 1/f .2 Since our e↵ective theory only contains the SM particles and the ALP as
degrees of freedom, it would need to be modified in scenarios with a new-physics sector between
the weak scale and the scale of global symmetry breaking (v < MNP < 4⇡f). Even in this
case, the e↵ective Lagrangian (1) o↵ers a model-independent description of the physics below
the intermediate scale MNP.

The physical ALP mass is given by the sum of the explicit soft breaking term m
2
a,0 and the

contribution to the mass generated by non-perturbative QCD dynamics [6, 37, 38], such that
at lowest order in chiral perturbation theory

m
2
a = m

2
a,0


1 +O

✓
f
2
⇡

f 2

◆�
+ c

2
GG

f
2
⇡ m

2
⇡

f 2

2mumd

(mu +md)2
, (2)

where f⇡ ' 130MeV is the pion decay constant. The correction to the first term in this
relation will be discussed in Section 7. Whereas for the classical QCD axion (with m

2
a,0 = 0)

there is a strict relation between the mass and the coupling to gluons, the presence of the
additional contribution m

2
a,0 allows for heavier ALPs, which however are still naturally much

lighter than the scale f as long as the ALP is a pseudo Nambu–Goldstone boson and the shift
symmetry is e↵ective. It is possible to generate this additional contribution dynamically using

1The ALP couplings to fermions and gauge bosons in (1) are related to the analogous couplings introduced
in [22] by f = ⇤/(4⇡), cF = CF /(4⇡) and cV V = 4⇡ CV V with V = G, W, B.

2In the literature on QCD axions f is often eliminated in favor of the axion decay constant fa, defined such
that 1/fa ⌘ �2cGG/f . The parameter 1/fa then determines the strength of the axion–gluon coupling.

3

Effective ALP Lagrangian 

hermitian matrices
[Georgi, Kaplan, Randall (1986)]

• Couplings to Higgs bosons arise in higher orders only:

where cw ⌘ cos ✓w denotes the cosine of the weak mixing angle, and the last expression holds
in unitary gauge. Despite appearance, this operator does not give rise to a tree-level h ! Za

matrix element; the resulting tree-level graphs precisely cancel each other [42]. Indeed, a term
CZhOZh in the Lagrangian is redundant, because it can be reduced to the fermionic operators
in (1) using the equations of motion for the Higgs doublet and the SM fermions [42]. The field
redefinitions

� ! e
i⇠a

� , uR ! e
i⇠a

uR , dR ! e
�i⇠a

dR , eR ! e
�i⇠a

eR , (3)

with ⇠ = CZh/⇤, eliminate OZh and shift the flavor matrices CF of the SU(2)L singlet fermions
by1

Cu ! Cu � CZh 1 , Cd ! Cd + CZh 1 , Ce ! Ce + CZh 1 , (4)

while the matrices CQ and CL of the SU(2)L doublets remain unchanged. There are no addi-
tional contributions to the operators in (1) involving the gauge fields, because the combination
of axial-vector currents induced by the shifts in (4) is anomaly free.

In this work we will be agnostic about the values of the Wilson coe�cients. We will
show that ALP searches at high-energy colliders are sensitive to couplings Ci/⇤ ranging from
(1TeV)�1 to (100TeV)�1. In weakly-coupled UV completions one expects that the operators
describing ALP couplings to SM bosons have loop-suppressed couplings (see e.g. [48] for a
recent discussion). This is in line with estimates based on naive dimensional analysis, which
we briefly discuss in Appendix A. Departures from these estimates can arise in models involving
e.g. large multiplicities of new particles in loops. It is common practice in the ALP literature
to absorb potential loop factors that may arise into the Wilson coe�cients Ci. As we will
discuss in Section 4, the puzzle of the anomalous magnetic moment of the muon can be
resolved within our framework if C��/⇤ = O(1/TeV). Probing this region at colliders is thus
a particularly well motivated target [41]. We emphasize, though, that by using the search
strategies developed here it will be possible to probe even loop-suppressed couplings as long
as the new-physics scale ⇤ is in the TeV range.

The ALP can receive a mass by means of either an explicit soft breaking of the shift
symmetry or through non-perturbative dynamics, like in the case of the QCD axion [3, 4]. In
the absence of an explicit breaking, QCD dynamics generates a mass term given by [49–51]

ma,dyn ⇡ 5.7µeV


1012 GeV

fa

�
⇡ 1.8MeV |CGG|


1TeV

⇤

�
. (5)

When an explicit symmetry-breaking mass term ma,0 is included in the e↵ective Lagrangian
(1), the resulting mass squared m

2

a = m
2

a,0+m
2

a,dyn becomes a free parameter. We will assume
that ma ⌧ v. At dimension-6 order and higher, several additional operators can arise. The
ALP couplings to the Higgs field are those most relevant to our analysis. They are

L
D�6

e↵
=

Cah

f 2
(@µa)(@

µ
a)�†

�+
C

0
ah

f 2
m

2

a,0 a
2
�
†
�+

CZh

f 3
(@µ

a)
�
�
†
iDµ �+ h.c.

�
�
†
�+ . . . . (6)

The first two terms are the leading Higgs portal interactions, which give rise to the decay
h ! aa. Note that the second term, which explicitly violates the shift symmetry, is allowed

1In addition, the coe�cient Cah of the Higgs-portal operator in (6) is shifted by Cah ! Cah � (CZh)2.

5

[Dobrescu, Landsberg, Matchev (2000);

Bauer, MN, Thamm (2017)]
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A useful alternative form of the Lagrangian involves non-derivative couplings:


where:

Effective ALP Lagrangian

The first three relations in (5) ensure that the SM Yukawa interactions are invariant under the
field redefinitions. The fourth relation guarantees that the combination of fermion currents
induced by the field redefinitions is anomaly free, and hence no additional contributions to
the coe�cients of the operators in (1) involving the gauge fields are generated.

The conditions (5) define a one-parameter class of field redefinitions, which one can use to
eliminate the operatorO� from the e↵ective Lagrangian. One particular solution is given by the
choice �u = �1, �d = �e = 1 and �Q = �L = 0, which was adopted in [66, 67] and eliminates
O� in favor of a linear combination of operators involving right-handed quark currents. A
di↵erent solution consists of the choice �F = �2YF , where YF denotes the hypercharge of the
fermion multiplet F [36, 58]. In general, the derivative couplings of the ALP are only defined
modulo generators of exact global symmetries of the SM, which include baryon and lepton
number. We will see later that physical quantities are independent of the particular choice of
�F values as long as the conditions (5) are satisfied.

It follows from this discussion that the redundant operator O� can be re-expressed in the
form

O� = O� +
X

F

�F OF , with OF =
@
µ
a

f
 ̄

i
F �µ 

i
F , (7)

where a sum over the generation index i is implied, and the new operator O� vanishes by the
equations of motion. It is a well-known fact that such operators do not need to be included
in the renormalization of the basis operators in an e↵ective field theory [68, 69]. Hence, it is
consistent to leave out the operator O� from the e↵ective Lagrangian (1). As we will see in
Section 3, the original operator O� is needed as a counterterm to absorb some UV divergences
of loop diagrams involving the fermionic operators OF . The correct treatment then consists
of projecting O� back onto our basis using the replacement rule [70–72]

O� !

X

F

�F OF . (8)

2.3 Equivalent forms of the e↵ective Lagrangian

Another important freedom in writing down the e↵ective Lagrangian concerns the structure
of the ALP couplings to fermions. One can integrate by parts in the third term in (1) and use
the SM equations of motion along with the well-known equation for the axial anomaly to put
the e↵ective Lagrangian in the alternative form

L
D5
e↵ =

1

2
(@µa)(@

µ
a)�

m
2
a,0

2
a
2
�

a

f

⇣
Q̄�Ỹd dR + Q̄�̃ỸuuR + L̄�ỸeeR + h.c.

⌘

+ c̃GG
↵s

4⇡

a

f
G

a
µ⌫ G̃

µ⌫,a + c̃WW
↵2

4⇡

a

f
W

A
µ⌫ W̃

µ⌫,A + c̃BB
↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫
,

(9)

where

Ỹd = i
�
Yd cd � cQYd

�
, Ỹu = i

�
Yu cu � cQYu

�
, Ỹe = i

�
Ye ce � cLYe

�
, (10)

5

[Bauer, MN, Renner, Schnubel, Thamm (2020)] 

Since our e↵ective theory respects the SM gauge invariance and only contains the SM
particles and the ALP as degrees of freedom, it would need to be modified in scenarios with a
new-physics sector between the electroweak scale and the scale of global symmetry breaking
(v < MNP < 4⇡f). Even in this case, the e↵ective Lagrangian (3) o↵ers a model-independent
description of the physics below the intermediate scale MNP.

Note the important fact that the e↵ective Lagrangian (3) does not contain a coupling of the
ALP to the Higgs field. The renormalizable portal interaction a

2
H

†
H is forbidden by the shift

symmetry, while a possible shift-symmetric dimension-5 coupling of @
µ
a to the Higgs current

is redundant and can be removed by field redefinitions [49]. The free parameters of the model
are the ALP mass ma, the three ALP couplings cV V to gauge fields (with V = G, W, B), and
the 5 times 9 parameters of the hermitian matrices cF .3 It is well known that the derivative
ALP couplings to fermions are only defined modulo the generators of exact global symmetries
of the SM [49], which are baryon number B and the lepton numbers Le, Lµ and L⌧ for each
flavor (since the neutrinos are massless in the SM). It follows that four model parameters are
redundant and can be chosen at will. For example, one can choose (cL)ii = 0 for i = 1, 2, 3 and
Tr(cQ) = 0, or one can arrange that either cWW = 0 or cBB = 0 (but not both) in addition
with three constraints imposed on the ALP–fermion couplings. The model thus contains
1 + 3 + 45� 4 = 45 free parameters, most of them related to the flavor sector.

The form of the e↵ective Lagrangian (3) is the one in which the shift symmetry is most
explicit. However, for our purposes it will be useful to consider an alternative but equivalent
form, in which the ALP couplings to fermions are of a non-derivative type [42]. Integrating
by parts in the last term in (3) and using the SM equations of motion (EOMs) along with the
equation for the axial anomaly leads to (with H̃i = ✏ijH

⇤
j
)

L
D=5 0
SM+ALP = CGG

a

f
G

a

µ⌫
G̃

µ⌫,a + CWW

a

f
W

I

µ⌫
W̃

µ⌫,I + CBB

a

f
Bµ⌫ B̃

µ⌫

�
a

f

⇣
Q̄H̃ eYuuR + Q̄H eYd dR + L̄H eYeeR + h.c.

⌘
,

(4)

where the three Yukawa-type matrices eYf (with f = u, d, e) are related to the SM Yukawa
matrices and the five hermitian matrices cF by

eYu = i
�
Yu cu � cQYu

�
, eYd = i

�
Yd cd � cQYd

�
, eYe = i

�
Ye ce � cLYe

�
. (5)

Note the important fact that the ALP–boson couplings in (3) are also a↵ected by the field
redefinitions. One finds

CGG =
↵s

4⇡


cGG +

1

2
Tr (cd + cu � 2cQ)

�
⌘

↵s

4⇡
c̃GG ,

CWW =
↵2

4⇡


cWW �

1

2
Tr (NccQ + cL)

�
⌘

↵2

4⇡
c̃WW ,

CBB =
↵1

4⇡


cBB + Tr

h
Nc

�
Y

2
d
cd + Y

2
u
cu � 2Y2

Q
cQ

�
+ Y

2
e
ce � 2Y2

L
cL

i�
⌘

↵1

4⇡
c̃BB ,

(6)

3The scale f can be absorbed into the ALP couplings and hence does not add a new parameter.

5

The first three relations in (5) ensure that the SM Yukawa interactions are invariant under the
field redefinitions. The fourth relation guarantees that the combination of fermion currents
induced by the field redefinitions is anomaly free, and hence no additional contributions to
the coe�cients of the operators in (1) involving the gauge fields are generated.

The conditions (5) define a one-parameter class of field redefinitions, which one can use to
eliminate the operatorO� from the e↵ective Lagrangian. One particular solution is given by the
choice �u = �1, �d = �e = 1 and �Q = �L = 0, which was adopted in [66, 67] and eliminates
O� in favor of a linear combination of operators involving right-handed quark currents. A
di↵erent solution consists of the choice �F = �2YF , where YF denotes the hypercharge of the
fermion multiplet F [36, 58]. In general, the derivative couplings of the ALP are only defined
modulo generators of exact global symmetries of the SM, which include baryon and lepton
number. We will see later that physical quantities are independent of the particular choice of
�F values as long as the conditions (5) are satisfied.

It follows from this discussion that the redundant operator O� can be re-expressed in the
form

O� = O� +
X

F

�F OF , with OF =
@
µ
a

f
 ̄

i
F �µ 

i
F , (7)

where a sum over the generation index i is implied, and the new operator O� vanishes by the
equations of motion. It is a well-known fact that such operators do not need to be included
in the renormalization of the basis operators in an e↵ective field theory [68, 69]. Hence, it is
consistent to leave out the operator O� from the e↵ective Lagrangian (1). As we will see in
Section 3, the original operator O� is needed as a counterterm to absorb some UV divergences
of loop diagrams involving the fermionic operators OF . The correct treatment then consists
of projecting O� back onto our basis using the replacement rule [70–72]

O� !

X

F

�F OF . (8)

2.3 Equivalent forms of the e↵ective Lagrangian

Another important freedom in writing down the e↵ective Lagrangian concerns the structure
of the ALP couplings to fermions. One can integrate by parts in the third term in (1) and use
the SM equations of motion along with the well-known equation for the axial anomaly to put
the e↵ective Lagrangian in the alternative form
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1

2
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µ
a)�

m
2
a,0

2
a
2
�

a

f

⇣
Q̄�Ỹd dR + Q̄�̃ỸuuR + L̄�ỸeeR + h.c.

⌘

+ c̃GG
↵s

4⇡

a

f
G

a
µ⌫ G̃

µ⌫,a + c̃WW
↵2

4⇡

a

f
W

A
µ⌫ W̃

µ⌫,A + c̃BB
↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫
,

(9)

where

Ỹd = i
�
Yd cd � cQYd

�
, Ỹu = i

�
Yu cu � cQYu

�
, Ỹe = i

�
Ye ce � cLYe

�
, (10)
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Since our e↵ective theory respects the SM gauge invariance and only contains the SM
particles and the ALP as degrees of freedom, it would need to be modified in scenarios with a
new-physics sector between the electroweak scale and the scale of global symmetry breaking
(v < MNP < 4⇡f). Even in this case, the e↵ective Lagrangian (3) o↵ers a model-independent
description of the physics below the intermediate scale MNP.

Note the important fact that the e↵ective Lagrangian (3) does not contain a coupling of the
ALP to the Higgs field. The renormalizable portal interaction a

2
H

†
H is forbidden by the shift

symmetry, while a possible shift-symmetric dimension-5 coupling of @
µ
a to the Higgs current

is redundant and can be removed by field redefinitions [49]. The free parameters of the model
are the ALP mass ma, the three ALP couplings cV V to gauge fields (with V = G, W, B), and
the 5 times 9 parameters of the hermitian matrices cF .3 It is well known that the derivative
ALP couplings to fermions are only defined modulo the generators of exact global symmetries
of the SM [49], which are baryon number B and the lepton numbers Le, Lµ and L⌧ for each
flavor (since the neutrinos are massless in the SM). It follows that four model parameters are
redundant and can be chosen at will. For example, one can choose (cL)ii = 0 for i = 1, 2, 3 and
Tr(cQ) = 0, or one can arrange that either cWW = 0 or cBB = 0 (but not both) in addition
with three constraints imposed on the ALP–fermion couplings. The model thus contains
1 + 3 + 45� 4 = 45 free parameters, most of them related to the flavor sector.

The form of the e↵ective Lagrangian (3) is the one in which the shift symmetry is most
explicit. However, for our purposes it will be useful to consider an alternative but equivalent
form, in which the ALP couplings to fermions are of a non-derivative type [42]. Integrating
by parts in the last term in (3) and using the SM equations of motion (EOMs) along with the
equation for the axial anomaly leads to (with H̃i = ✏ijH

⇤
j
)

L
D=5 0
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a
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G

a

µ⌫
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a

f
W
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a

f
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µ⌫

�
a

f

⇣
Q̄H̃ eYuuR + Q̄H eYd dR + L̄H eYeeR + h.c.

⌘
,

(4)

where the three Yukawa-type matrices eYf (with f = u, d, e) are related to the SM Yukawa
matrices and the five hermitian matrices cF by

eYu = i
�
Yu cu � cQYu

�
, eYd = i

�
Yd cd � cQYd

�
, eYe = i

�
Ye ce � cLYe

�
. (5)

Note the important fact that the ALP–boson couplings in (3) are also a↵ected by the field
redefinitions. One finds
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4⇡
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1

2
Tr (cd + cu � 2cQ)

�
⌘

↵s

4⇡
c̃GG ,
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4⇡
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1

2
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�
⌘

↵2

4⇡
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4⇡
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h
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�
Y

2
d
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2
u
cu � 2Y2

Q
cQ

�
+ Y

2
e
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L
cL

i�
⌘

↵1

4⇡
c̃BB ,

(6)

3The scale f can be absorbed into the ALP couplings and hence does not add a new parameter.
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Direct searches for ALPs are strongly model dependent:

Effective ALP Lagrangian 

‣ sensitivity to many different ALP couplings entering the production, decay and 
lifetime of the ALP


‣ searches probe high-dimensional parameter spaces  need for strong model 
assumptions, e.g. existence of a single non-zero ALP coupling (strong biases) 


‣ long-lived ALPs and ALPs decaying into hadrons or heavy fermions can escape 
detection


Indirect searches (effects of virtual ALPs) offer a promising alternative!

⇒
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Figure 6: Regions in ALP coupling space where the experimental value of (g � 2)µ is reproduced
at 68% (red), 95% (orange) and 99% (yellow) confidence level (CL), for di↵erent values of ma. We
assume Kaµ(⇤) = 0 at ⇤ = 1TeV and neglect the tiny contribution proportional to C�Z . For
ma > 2mµ, the gray regions are excluded by a dark-photon search in the e+e� ! µ+µ� + µ+µ�

channel performed by BaBar [84].

is of order ⇤/TeV, while the other one can be of similar order or larger. Since cµµ enters
observables always in combination with mµ, it is less constrained by perturbativity than C��.

An important constraint on the ALP–photon and ALP–muon couplings, C�� and cµµ,
can be derived from a search for light Z

0 bosons performed by BaBar, which constrains the
resonant production of muon pairs in the process e

+
e
�

! µ
+
µ
� + Z

0
! µ

+
µ
� + µ

+
µ
� [84].

The Feynman diagrams contributing to this process at tree level (and for me = 0) are shown
in Figure 7. Neglecting the electron mass and averaging over the initial-state polarizations,

20

ALP—SMEFT interference
It is well-known that one-loop diagrams with virtual ALP exchange can be 
UV divergent. This was first studied in the context of (g-2)μ :

µ µ µ

� �

µ

aZ/�µµ

µ a

Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.

They are positive and satisfy h1,2(0) = 1 as well as h1(x) ⇡ (2/x)(ln x �
11

6
) and h2(x) ⇡

(ln x+ 3

2
) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)

L
D=6

e↵
3 �Kaµ

emµ

4⇤2
µ̄ �µ⌫F

µ⌫
µ . (39)

In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by

�aµ

��
LbL

⇡
m

2

µ

⇤2

12↵3

⇡
C

2

�� ln2
µ
2

m2
µ

. (40)

For µ = ⇤ = 1TeV this evaluates to �aµ|LbL ⇡ 5.6 · 10�12
C

2

��. In the region of parameter
space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m

2

a � m
2

µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients
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Figure 6: Regions in ALP coupling space where the experimental value of (g � 2)µ is reproduced
at 68% (red), 95% (orange) and 99% (yellow) confidence level (CL), for di↵erent values of ma. We
assume Kaµ(⇤) = 0 at ⇤ = 1TeV and neglect the tiny contribution proportional to C�Z . For
ma > 2mµ, the gray regions are excluded by a dark-photon search in the e+e� ! µ+µ� + µ+µ�

channel performed by BaBar [84].

is of order ⇤/TeV, while the other one can be of similar order or larger. Since cµµ enters
observables always in combination with mµ, it is less constrained by perturbativity than C��.

An important constraint on the ALP–photon and ALP–muon couplings, C�� and cµµ,
can be derived from a search for light Z

0 bosons performed by BaBar, which constrains the
resonant production of muon pairs in the process e

+
e
�

! µ
+
µ
� + Z

0
! µ

+
µ
� + µ

+
µ
� [84].

The Feynman diagrams contributing to this process at tree level (and for me = 0) are shown
in Figure 7. Neglecting the electron mass and averaging over the initial-state polarizations,
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[Marciano, Masiero, Paradisi, Passera (2016); Bauer, MN, Thamm (2017)]

excluded by 

BaBar γ’ 

search

needs a D=6 counterterm not 

contained in the ALP effective Lagrangian

UV divergentUV finite

ing minimum energies are su�ciently long-lived to travel from the Sun to the Earth before
decaying. We also note that limits on the ALP–electron coupling in the mass range between
20MeV and 10GeV can be derived from dark-photon searches performed at MAMI [81] and
BaBar [82]. While a proper conversion of these limits is non-trivial [83] and beyond the scope
of this work, the bounds one obtains are typically rather weak, of order |c

e↵

ee |/⇤ & 103 TeV�1.
Assuming the approximate universality of the ALP–lepton couplings shown in (32), a stronger
constraint can be derived from a dark-photon search in the channel e+e� ! µ

+
µ
�
Z

0 performed
by BaBar [84], which we will reanalyze in the context of our model in the next section. For
C�� = 0, this gives rise to the bound shaded in gray in Figure 4.

Of the one-loop contributions to the e↵ective ALP–electron coupling in (24), only the
photon term shows a sizable sensitivity to the ALP mass, and only in the region where ma &
me. We find (with µ = ⇤ = 1TeV in the argument of the logarithms)

c
e↵

ee (ma = 1GeV) ⇡ cee

⇥
1 + O

�
↵
�⇤

� 0.8 · 10�2
CWW + (0.7 � 1.1 i) · 10�2

C�� ,

c
e↵

ee (ma = 1keV) ⇡ cee

⇥
1 + O

�
↵
�⇤

� 0.8 · 10�2
CWW � 1.4 · 10�2

C�� .

(36)

To satisfy the model-independent bound |c
e↵

ee |/⇤ < 10�6 TeV�1 in the mass range ma < 10 keV
would require that |C��| and |CWW | (and hence both |CWW | and |CBB|) must be smaller than
approximately 10�4 (⇤/TeV) in this low-mass region.

4 Anomalous magnetic moment of the muon

The persistent deviation of the measured value of the muon anomalous magnetic moment
aµ = (g � 2)µ/2 [85] from its SM value provides one of the most compelling hints for new
physics. The di↵erence a

exp

µ � a
SM

µ = (29.3 ± 7.6) · 10�10, where we have taken an average
of two recent determinations [86, 87], di↵ers from zero by about 4 standard deviations. It
has been emphasized recently that this discrepancy can be accounted for by an ALP with an
enhanced coupling to photons [11]. At one-loop order, the e↵ective Lagrangian gives rise to
the contributions to aµ shown in Figure 5. The first graph, in which the ALP couples to the
muon line, gives a contribution of the wrong sign [88, 89]; however, its e↵ect may be overcome
by the second diagram, which involves the ALP coupling to photons (or to �Z), if the Wilson
coe�cient C�� in (1) is su�ciently large [10, 11]. Performing a complete one-loop analysis, we
find that the e↵ective ALP Lagrangian gives rise to the new-physics contribution

�aµ =
m

2

µ
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⇢
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(cµµ)2
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(37)

The loop functions read (with x = m
2

a/m
2

µ + i0)

h1(x) = 1 + 2x+ x(1 � x) ln x � 2x(3 � x)

r
x

4 � x
arccos

p
x

2
,

h2(x) = 1 �
x

3
+

x
2

6
ln x+

2 + x

3

p
x(4 � x) arccos

p
x

2
.

(38)
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ALP—SMEFT interference
Schematically:


Consistent effective field theory:

µ µ µ
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Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.

They are positive and satisfy h1,2(0) = 1 as well as h1(x) ⇡ (2/x)(ln x �
11

6
) and h2(x) ⇡

(ln x+ 3

2
) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)

L
D=6

e↵
3 �Kaµ

emµ

4⇤2
µ̄ �µ⌫F

µ⌫
µ . (39)

In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by

�aµ
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LbL

⇡
m

2
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⇤2

12↵3

⇡
C

2

�� ln2
µ
2

m2
µ

. (40)

For µ = ⇤ = 1TeV this evaluates to �aµ|LbL ⇡ 5.6 · 10�12
C

2

��. In the region of parameter
space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m

2

a � m
2

µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients

19

(g � 2)µ
<latexit sha1_base64="ffHk5KQeo7znsykjVtNnTFcrU+0=">AAAB8HicdVDLSgMxFM34rPVVdekmWIS6cMhMC7a7ghuXFexD2qFk0kwbmmSGJCOUoV/hxoUibv0cd/6N6QtU9MCFwzn3cu89YcKZNgh9OmvrG5tb27md/O7e/sFh4ei4peNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vp757QeqNIvlnZkkNBB4KFnECDZWui8NL/2Lfk+k/UIRuahWReUaXJCKvyIIei6aowiWaPQLH71BTFJBpSEca931UGKCDCvDCKfTfC/VNMFkjIe0a6nEguogmx88hedWGcAoVrakgXP1+0SGhdYTEdpOgc1I//Zm4l9eNzVRNciYTFJDJVksilIOTQxn38MBU5QYPrEEE8XsrZCMsMLE2IzyNoTVp/B/0vJdr+z6t5Vivb6MIwdOwRkoAQ9cgTq4AQ3QBAQI8AiewYujnCfn1XlbtK45y5kT8APO+xfkdo/T</latexit>

1

f
<latexit sha1_base64="C+65TvPEZKFSkz+d/9vejURs7Og=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GibtSHVXcOOygn1AO5RMmmlDM8mQZIQyzGe4caGIW7/GnX9j2o6gogcuHM65l3vvCRPOtPG8D6e0tr6xuVXeruzs7u0fVA+PulqmitAOkVyqfog15UzQjmGG036iKI5DTnvh7Hrh9+6p0kyKOzNPaBDjiWARI9hYaTCMFCYZyrMoH1Vrntv0m/5VA3qut4Ql6MJHdQRRodRAgfao+j4cS5LGVBjCsdYD5CUmyLAyjHCaV4appgkmMzyhA0sFjqkOsuXJOTyzyhhGUtkSBi7V7xMZjrWex6HtjLGZ6t/eQvzLG6QmugwyJpLUUEFWi6KUQyPh4n84ZooSw+eWYKKYvRWSKbYpGJtSxYbw9Sn8n3TrLmq49Vu/1moVcZTBCTgF5wCBJmiBG9AGHUCABA/gCTw7xnl0XpzXVWvJKWaOwQ84b5/PLpGZ</latexit>

1

f
<latexit sha1_base64="C+65TvPEZKFSkz+d/9vejURs7Og=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GibtSHVXcOOygn1AO5RMmmlDM8mQZIQyzGe4caGIW7/GnX9j2o6gogcuHM65l3vvCRPOtPG8D6e0tr6xuVXeruzs7u0fVA+PulqmitAOkVyqfog15UzQjmGG036iKI5DTnvh7Hrh9+6p0kyKOzNPaBDjiWARI9hYaTCMFCYZyrMoH1Vrntv0m/5VA3qut4Ql6MJHdQRRodRAgfao+j4cS5LGVBjCsdYD5CUmyLAyjHCaV4appgkmMzyhA0sFjqkOsuXJOTyzyhhGUtkSBi7V7xMZjrWex6HtjLGZ6t/eQvzLG6QmugwyJpLUUEFWi6KUQyPh4n84ZooSw+eWYKKYvRWSKbYpGJtSxYbw9Sn8n3TrLmq49Vu/1moVcZTBCTgF5wCBJmiBG9AGHUCABA/gCTw7xnl0XpzXVWvJKWaOwQ84b5/PLpGZ</latexit>

µ µ µ

� �

µ

aZ/�µµ

µ a

Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.
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) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)
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In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by
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space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m
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µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients
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Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.

They are positive and satisfy h1,2(0) = 1 as well as h1(x) ⇡ (2/x)(ln x �
11

6
) and h2(x) ⇡

(ln x+ 3

2
) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)

L
D=6

e↵
3 �Kaµ

emµ

4⇤2
µ̄ �µ⌫F

µ⌫
µ . (39)

In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by

�aµ

��
LbL

⇡
m

2

µ

⇤2

12↵3

⇡
C

2

�� ln2
µ
2

m2
µ

. (40)

For µ = ⇤ = 1TeV this evaluates to �aµ|LbL ⇡ 5.6 · 10�12
C

2

��. In the region of parameter
space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m

2

a � m
2

µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients
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ALP—SMEFT interference
Irrespective of the existence of other new physics, the presence of a light  
ALP provides source terms  for the D=6 SMEFT Wilson coefficients:Si

[Galda, MN, Renner: 2105.01078]

Examples are heavy vector-like fermions with di↵erent Peccei–Quinn charges, by which
the ALP interacts with SM gauge bosons. These matching contributions are model
dependent, and they can only be calculated within a specific UV completion.

• Loop diagrams involving virtual exchange of the ALP are generally divergent and induce
inhomogeneous source terms in the RG equations for the Wilson coe�cients of the
SMEFT operators.

• At low energies, the time-ordered product with two insertions of the ALP e↵ective La-
grangian LSM+ALP yields non-zero contributions to scattering amplitudes describing pro-
cesses involving SM particles only. These contributions can be systematically calculated
in the e↵ective theory described by (1) as long as the ALP mass or the characteristic
scale of the observable are in the realm of perturbative QCD.

Of these three contributions, the second one is parametrically enhanced by large logarithms
arising from the evolution from the high scale ⇤ to low energies.2 For example, a contribution
of this sort underlies ALP explanations for the deviation of the muon anomalous magnetic
moment from its SM prediction [21, 31, 33], for which divergent diagrams involving the ALP–
photon coupling induce large logarithms in the coe�cients of SMEFT dipole operators.

In this work, we calculate for the first time the full set of ALP-induced terms in the RG
equations for the Wilson coe�cients of the dimension-6 SMEFT operators in (1) above the
electroweak scale. Irrespective of its mass, which can even be much smaller than the weak
scale, the presence of an ALP generates inhomogeneous source terms in the RG equations,
which we write in the form

d

d lnµ
C

SMEFT
i

� �
SMEFT
ji

C
SMEFT
j

=
Si

(4⇡f)2
(for µ < 4⇡f) . (2)

Here �SMEFT is the anomalous-dimension matrix of the dimension-6 SMEFT operators in the
Warsaw basis [44] (the transpose matrix governs the evolution of the Wilson coe�cients),
which has been calculated at one-loop order in [45–48]. The ALP source terms are denoted by
Si, and the overall suppression scale is set by the “ALP decay constant” f . The presence of
these source terms generates non-zero SMEFT Wilson coe�cients irrespective of the existence
of any other source of new physics. We find that almost the entire set of Wilson coe�cients
is sourced by ALP e↵ects at one-loop order. As an important application of our results, we
present a study of the chromo-magnetic moment of the top quark and briefly comment on
constraints from electroweak precision observables.

In our calculations we adopt the notations and conventions introduced in [44], with one
exception: we define the covariant derivative in the fundamental representation of the gauge
group as Dµ = @µ � igsG

a

µ
T

a
� ig2W

I

µ

�
I

2 � ig1YBµ, where T
a are the Gell-Mann matrices, �

I

the Pauli matrices and Y the hypercharge generator. While this agrees with most textbooks
on quantum field theory, it corresponds to a di↵erent sign convention for the three gauge
couplings compared with [44, 48]. While the Warsaw basis defines the standard choice of the

2It is important to keep in mind that the other two contributions must also exist, if only to cancel the
renormalization-scheme dependence of the second contribution.

3

2499 x 2499 entries ALP source terms

• Global new-physics searches using SMEFT can serve as indirect probes 
of the ALP couplings


• Exciting prospect: constrain all ALP couplings in a model-independent 
way, insensitive to the ALP lifetime and branching fractions!
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ALP—SMEFT interference
Systematic study of divergent Green’s functions with ALP exchange

Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.

9

Figure 2: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class X2

H
2 as counterterms. Higgs doublets are represented by thick dotted

lines, with the arrow indicating the hypercharge flow.

The vertices connecting Higgs and gauge bosons exist only for SU(2)L and U(1)Y gauge fields.
We find that the UV divergences of the corresponding amplitudes (with all particles incoming)
can be written in the form

A(WWH
⇤
H) =

C
2
WW

✏
g
2
2 hQHW i+ finite ,

A(BBH
⇤
H) =

C
2
BB

✏
g
2
1 hQHBi+ finite ,

A(WBH
⇤
H) =

CWW CBB

✏
2g1g2 hQHWBi+ finite .

(12)

Operators in the class XH
2
D

2 are not generated by ALP exchange at one-loop order.

Classes H
6
, H

4
D

2
and H

2
D

4
. The operators in the classes H

6 and H
4
D

2 are not gener-
ated directly via one-loop diagrams involving ALP exchange, but they are generated indirectly
when the redundant operators are eliminated using the EOMs. The relevant relations are de-
rived in Section 3.4. Operators in the class H

2
D

4 are not generated by ALP exchange at
one-loop order.

3.2 Operators containing a single fermion current

Classes  
2
XD and  

2
D

3
. These operators are not generated by ALP exchange at one-

loop order.

Class  
2
XH. The operators in this class are generated by the one-loop Feynman graphs

shown in Figure 3. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erWH) =

ig2

2✏

� eYe

�
pr

CWW

⇥
hQeW i

⇤
pr
+ finite ,

A(L⇤
p
erBH) =

ig1

✏
(YL + Ye)

� eYe

�
pr

CBB

⇥
hQeBi

⇤
pr
+ finite ,

A(Q⇤
p
ur gH

⇤) =
2igs
✏

� eYu

�
pr

CGG

⇥
hQuGi

⇤
pr
+ finite ,

A(Q⇤
p
urWH

⇤) =
ig2

2✏

� eYu

�
pr

CWW

⇥
hQuW i

⇤
pr
+ finite ,

10

Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.

A(Q⇤
p
urBH

⇤) =
ig1

✏
(YQ + Yu)

� eYu

�
pr

CBB

⇥
hQuBi

⇤
pr
+ finite , (13)

A(Q⇤
p
dr gH) =

2igs
✏

� eYd

�
pr

CGG

⇥
hQdGi

⇤
pr
+ finite ,

A(Q⇤
p
drWH) =

ig2

2✏

� eYd

�
pr

CWW

⇥
hQdW i

⇤
pr
+ finite ,

A(Q⇤
p
drBH) =

ig1

✏
(YQ + Yd)

� eYd

�
pr

CBB

⇥
hQdBi

⇤
pr
+ finite ,

where p, r = 1, 2, 3 are generation indices.

uQ Qddd Q Q uQ Qu

Figure 4: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
3 as counterterms. Graphs involving both eYu and eYd, such as the

third one, vanish after summing over the permutations of the Higgs fields.

Classes  
2
H

3
,  

2
H

2
D and  

2
HD

2
. Operators in the class  2

H
3 are generated by the

one-loop Feynman graphs shown in Figure 4. We do not show a diagram analogous to the first
one involving leptons. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erH

⇤
HH) =

1

✏

� eYeY
†
e
eYe

�
pr

⇥
hQeHi

⇤
pr
+ finite ,

A(Q⇤
p
urH

⇤
H

⇤
H) =

1

✏

� eYuY
†
u
eYu

�
pr

⇥
hQuHi

⇤
pr
+ finite , (14)

A(Q⇤
p
drH

⇤
HH) =

1

✏

� eYdY
†
d
eYd

�
pr

⇥
hQdHi

⇤
pr
+ finite .
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.

A(Q⇤
p
urBH

⇤) =
ig1

✏
(YQ + Yu)

� eYu

�
pr

CBB

⇥
hQuBi

⇤
pr
+ finite , (13)

A(Q⇤
p
dr gH) =

2igs
✏

� eYd

�
pr

CGG

⇥
hQdGi

⇤
pr
+ finite ,

A(Q⇤
p
drWH) =

ig2

2✏

� eYd

�
pr

CWW

⇥
hQdW i

⇤
pr
+ finite ,

A(Q⇤
p
drBH) =

ig1

✏
(YQ + Yd)

� eYd

�
pr

CBB

⇥
hQdBi

⇤
pr
+ finite ,

where p, r = 1, 2, 3 are generation indices.

uQ Qddd Q Q uQ Qu

Figure 4: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
3 as counterterms. Graphs involving both eYu and eYd, such as the

third one, vanish after summing over the permutations of the Higgs fields.

Classes  
2
H

3
,  

2
H

2
D and  

2
HD

2
. Operators in the class  2

H
3 are generated by the

one-loop Feynman graphs shown in Figure 4. We do not show a diagram analogous to the first
one involving leptons. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erH

⇤
HH) =

1

✏

� eYeY
†
e
eYe

�
pr

⇥
hQeHi

⇤
pr
+ finite ,

A(Q⇤
p
urH

⇤
H

⇤
H) =

1

✏

� eYuY
†
u
eYu

�
pr

⇥
hQuHi

⇤
pr
+ finite , (14)

A(Q⇤
p
drH

⇤
HH) =

1

✏

� eYdY
†
d
eYd

�
pr

⇥
hQdHi

⇤
pr
+ finite .
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Q

Q Q

Q

Q Q

d

d

u

d u Q

u u

d

Figure 5: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
2
D as counterterms. Analogous graphs exist in the lepton sector.

There exist diagrams such as the third one shown in the figure, which are proportional to
structures like ( eYuY

†
u
eYd

�
pr
. However, we find that such graphs give vanishing contributions

after summing over the permutations of the two incoming (or outgoing) Higgs bosons.
For the operators in the class  2

H
2
D, which are generated by the one-loop Feynman graphs

shown in Figure 5, it is necessary to define the redundant operators
⇥ bQ(1)

Hl

⇤
pr

= H
†
H

�
L̄p i
 !
/D Lr

�
,

⇥ bQ(3)
Hl

⇤
pr

= H
†
�
I
H

�
L̄p i
 !
/D �

I
Lr

�
,

⇥ bQHe

⇤
pr

= H
†
H

�
ēp i
 !
/D er

�
,

⇥ bQ(1)
Hq

⇤
pr

= H
†
H

�
Q̄p i
 !
/D Qr

�
,

⇥ bQ(3)
Hq

⇤
pr

= H
†
�
I
H

�
Q̄p i
 !
/D �

I
Qr

�
,

⇥ bQHu

⇤
pr

= H
†
H

�
ūp i
 !
/D ur

�
,

⇥ bQHd

⇤
pr

= H
†
H

�
d̄p i
 !
/D dr

�
,

(15)

which are not part of the Warsaw basis. They will later be eliminated using the EOMs. We
find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
LrH

⇤
H) =

1

8✏

� eYe
eY †
e

�
pr

⇣⇥
h bQ(1)

Hl
i
⇤
pr
+
⇥
h bQ(3)

Hl
i
⇤
pr
�
⇥
hQ

(1)
Hl
i
⇤
pr
�
⇥
hQ

(3)
Hl
i
⇤
pr

⌘
+ finite ,

A(e⇤
p
erH

⇤
H) =

1

4✏

� eY †
e
eYe

�
pr

⇣⇥
h bQHei

⇤
pr
+
⇥
hQHei

⇤
pr

⌘
+ finite ,

A(Q⇤
p
QrH

⇤
H) =

1

8✏

� eYu
eY †
u

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
�
⇥
h bQ(3)

Hq
i
⇤
pr
+
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
+ finite ,

+
1

8✏

� eYd
eY †
d

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
+
⇥
h bQ(3)

Hq
i
⇤
pr
�
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
(16)

A(u⇤
p
urH

⇤
H) =

1

4✏

� eY †
u
eYu

�
pr

⇣⇥
h bQHui

⇤
pr
�
⇥
hQHui

⇤
pr

⌘
+ finite ,

A(d⇤
p
drH

⇤
H) =

1

4✏

� eY †
d
eYd

�
pr

⇣⇥
h bQHdi

⇤
pr
+
⇥
hQHdi

⇤
pr

⌘
+ finite ,

A(u⇤
p
drHH) =

1

2✏

� eY †
u
eYd

�
pr

⇥
hQHudi

⇤
pr
+ finite .
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Figure 6: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  4 as counterterms. Analogous graphs exist in the lepton sector.

Operators in class  2
HD

2 are not generated by ALP exchange at one-loop order.

3.3 Four-fermion operators

At one-loop order, ALP exchange between four fermions gives rise to the diagrams shown in
Figure 6. Since the ALP coupling to fermions changes chirality, each diagram contains two left-
handed and two right-handed fermions. Four-fermion operators containing only left-handed
or only right-handed fields are therefore not generated directly in our model at one-loop order.
Nevertheless, as we will show later, almost all four-fermion operators in the Warsaw basis are
generated at one-loop order when the contributions from the EOMs are taken into account.

Using Fierz identities for some of the operators and color structures, we find that the
amplitudes corresponding to the diagrams shown in Figure 6 can be written as

A(L⇤
p
ere

⇤
s
Lt) = �

1

2✏

� eYe

�
pr

� eY †
e

�
st

⇥
hQlei

⇤
ptsr

+ finite ,

A(Q⇤
p
uru

⇤
s
Qt) = �

1

✏

� eYu

�
pr

� eY †
u

�
st

✓⇥
hQ

(8)
qu
i
⇤
ptsr

+
1

2Nc

⇥
hQ

(1)
qu
i
⇤
ptsr

◆
+ finite ,

A(Q⇤
p
drd

⇤
s
Qt) = �

1

✏

� eYd

�
pr

� eY †
d

�
st

✓⇥
hQ

(8)
qd
i
⇤
ptsr

+
1

2Nc

⇥
hQ

(1)
qd
i
⇤
ptsr

◆
+ finite ,

A(L⇤
p
erd

⇤
s
Qt) =

1

✏

� eYe

�
pr

� eY †
d

�
st

⇥
hQledqi

⇤
prst

+ finite ,

A(Q⇤
p
drQ

⇤
s
ut) =

1

✏

� eYu

�
pr

� eYd

�
st

⇥
hQ

(1)
quqd

i
⇤
prst

+ finite ,

A(L⇤
p
erQ

⇤
s
ut) = �

1

✏

� eYe

�
pr

� eYu

�
st

⇥
hQ

(1)
lequ

i
⇤
prst

+ finite .

(17)

3.4 Elimination of redundant operators

In the next step, we must decompose the redundant operators bQi into SMEFT operators in
the Warsaw basis, using the EOMs for the SM fields. We find that the relevant relations for
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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ALP—SMEFT interference
Systematic study of divergent Green’s functions with ALP exchange


Sample calculation: UV divergences of the three-gluon amplitude

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]

Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.
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Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.
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the purely bosonic operators defined in (9) are

bQG,2
⇠= g

2
s

�
Q̄�µT

a
Q + ū�µT

a
u + d̄�µT

a
d
�2

= g
2
s


1

4

⇣⇥
Q

(1)
qq

⇤
prrp

+
⇥
Q

(3)
qq

⇤
prrp

⌘
�

1

2Nc

⇥
Q

(1)
qq

⇤
pprr

+
1

2

⇥
Quu

⇤
prrp
�

1

2Nc

⇥
Quu

⇤
pprr

+
1

2

⇥
Qdd

⇤
prrp
�

1

2Nc

⇥
Qdd

⇤
pprr

+ 2
⇥
Q

(8)
qu

⇤
pprr

+ 2
⇥
Q

(8)
qd

⇤
pprr

+ 2
⇥
Q

(8)
ud

⇤
pprr

�
,

(18)

bQW,2
⇠=

g
2
2

4

⇣
H

†
i
 !
Dµ

I
H + Q̄�µ�

I
Q + L̄�µ�

I
L

⌘2

=
g
2
2

4


� 4m2

H

�
H

†
H
�2

+ 4�QH + 3QH⇤ + 2
⇣⇥

Q
(3)
Hl

⇤
pp
+
⇥
Q

(3)
Hq

⇤
pp

⌘

+ 2
h�

Yu

�
pr

⇥
QuH

⇤
pr
+
�
Yd

�
pr

⇥
QdH

⇤
pr
+
�
Ye

�
pr

⇥
QeH

⇤
pr
+ h.c.

i

+ 2
⇥
Q

(3)
lq

⇤
pprr

+ 2
⇥
Qll

⇤
prrp
�
⇥
Qll

⇤
pprr

+
⇥
Q

(3)
qq

⇤
pprr

�
,

(19)

and

bQB,2
⇠= g

2
1

✓
YHH

†
i
 !
DµH +

X

F

YF  ̄F �µ F

◆2

= g
2
1


Y

2
H

�
4QHD + QH⇤

�

+ 2YH

⇣
YL

⇥
Q

(1)
Hl

⇤
pp
+ YQ

⇥
Q

(1)
Hq

⇤
pp
+ Ye

⇥
QHe

⇤
pp
+ Yu

⇥
QHu

⇤
pp
+ Yd

⇥
QHd

⇤
pp

⌘

+ Y
2
L

⇥
Qll

⇤
pprr

+ Y
2
Q

⇥
Q

(1)
qq

⇤
pprr

+ Y
2
e

⇥
Qee

⇤
pprr

+ Y
2
u

⇥
Quu

⇤
pprr

+ Y
2
d

⇥
Qdd

⇤
pprr

+ 2YLYQ

⇥
Q

(1)
lq

⇤
pprr

+ 2YLYe

⇥
Qle

⇤
pprr

+ 2YLYu

⇥
Qlu

⇤
pprr

+ 2YLYd

⇥
Qld

⇤
pprr

+ 2YQYe

⇥
Qqe

⇤
pprr

+ 2YQYu

⇥
Q

(1)
qu

⇤
pprr

+ 2YQYd

⇥
Q

(1)
qd

⇤
pprr

+ 2YeYu

⇥
Qeu

⇤
pprr

+ 2YeYd

⇥
Qed

⇤
pprr

+ 2YuYd

⇥
Q

(1)
ud

⇤
pprr

�
. (20)

They are in agreement with corresponding relations derived in [56]. In relation (19), m
2
H

is
the Higgs mass parameter and � the scalar self-coupling as defined via the scalar potential
[44]

V =
�

2

�
H

†
H
�2
�m

2
H

H
†
H . (21)
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Source term for Weinberg operator:

Eliminate redundant operator 
using the EOMs:

Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.

9

must contain divergent contributions, which cancel the 1/✏ poles of the ALP contributions.
Consider the contribution proportional to the Weinberg operator QG in the 3-gluon amplitude
(10) as an example. In order to cancel the corresponding 1/✏ pole, the bare Wilson coe�cient
CG,0 must contain the contribution

CG,0 3
4gs

(4⇡f)2
C

2
GG

✓
1

✏
+ ln

µ
2

M2
+ . . .

◆
, (29)

where M
2 is a characteristic mass scale in the UV theory, and the combination of 1/✏ and lnµ

2

is generic for one-loop integrals in dimensional regularization. When the Wilson coe�cient is
renormalized, the 1/✏ pole term is removed, but the scale-dependent term remains. It follows
that

d

d lnµ
CG(µ) 3

8gs

(4⇡f)2
C

2
GG

. (30)

In this way, the ALP source terms for the various Wilson coe�cients can be derived from
the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
3:

From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
2
GG

, S eG = 0 ,

SW = 8g2C
2
WW

, SfW = 0 .

(31)

Class X
2
H

2:

From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
2
2 C

2
WW

, S
HfW = 0 ,

SHB = �2g
2
1 C

2
BB

, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.

Classes H
6 and H

4
D

2:

The operators in these classes do not receive any direct contributions from one-loop diagrams
with ALP exchange, but they are generated via contributions from the EOMs due to the

17

→ generates further source terms
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

must contain divergent contributions, which cancel the 1/✏ poles of the ALP contributions.
Consider the contribution proportional to the Weinberg operator QG in the 3-gluon amplitude
(10) as an example. In order to cancel the corresponding 1/✏ pole, the bare Wilson coe�cient
CG,0 must contain the contribution

CG,0 3
4gs

(4⇡f)2
C

2
GG

✓
1

✏
+ ln

µ
2

M2
+ . . .

◆
, (29)

where M
2 is a characteristic mass scale in the UV theory, and the combination of 1/✏ and lnµ

2

is generic for one-loop integrals in dimensional regularization. When the Wilson coe�cient is
renormalized, the 1/✏ pole term is removed, but the scale-dependent term remains. It follows
that

d

d lnµ
CG(µ) 3

8gs

(4⇡f)2
C

2
GG

. (30)

In this way, the ALP source terms for the various Wilson coe�cients can be derived from
the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
3:

From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
2
GG

, S eG = 0 ,

SW = 8g2C
2
WW

, SfW = 0 .

(31)

Class X
2
H

2:

From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
2
2 C

2
WW

, S
HfW = 0 ,

SHB = �2g
2
1 C

2
BB

, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.

Classes H
6 and H

4
D

2:

The operators in these classes do not receive any direct contributions from one-loop diagrams
with ALP exchange, but they are generated via contributions from the EOMs due to the

17

must contain divergent contributions, which cancel the 1/✏ poles of the ALP contributions.
Consider the contribution proportional to the Weinberg operator QG in the 3-gluon amplitude
(10) as an example. In order to cancel the corresponding 1/✏ pole, the bare Wilson coe�cient
CG,0 must contain the contribution

CG,0 3
4gs

(4⇡f)2
C

2
GG

✓
1

✏
+ ln

µ
2

M2
+ . . .

◆
, (29)

where M
2 is a characteristic mass scale in the UV theory, and the combination of 1/✏ and lnµ

2

is generic for one-loop integrals in dimensional regularization. When the Wilson coe�cient is
renormalized, the 1/✏ pole term is removed, but the scale-dependent term remains. It follows
that

d

d lnµ
CG(µ) 3

8gs

(4⇡f)2
C

2
GG

. (30)

In this way, the ALP source terms for the various Wilson coe�cients can be derived from
the coe�cients of the 1/✏ poles in the expressions for the various divergent Green’s functions
considered in Section 3.

Class X
3:

From the results for the 1/✏ poles in the two- and three-point gauge-boson amplitudes shown
in (10) and (11), we obtain the ALP source terms

SG = 8gsC
2
GG

, S eG = 0 ,

SW = 8g2C
2
WW

, SfW = 0 .

(31)

Class X
2
H

2:

From the results for the 1/✏ poles in the amplitudes connecting two Higgs bosons and two
gauge fields shown in (12), we obtain the ALP source terms

SHG = 0 , S
H eG = 0 ,

SHW = �2g
2
2 C

2
WW

, S
HfW = 0 ,

SHB = �2g
2
1 C

2
BB

, S
H eB = 0 ,

SHWB = �4g1g2 CWW CBB , S
HfWB

= 0 .

(32)

Here and in (31), the source terms for the CP-odd operators (marked with a tilde) vanish at
one-loop order, because the ALP does not have any CP-violating couplings to gauge bosons.

Classes H
6 and H

4
D

2:

The operators in these classes do not receive any direct contributions from one-loop diagrams
with ALP exchange, but they are generated via contributions from the EOMs due to the

17

operators bQW,2 and bQB,2, see relations (19) and (20). We find

SH =
8

3
�g

2
2 C

2
WW

,

SH⇤ = 2g
2
2 C

2
WW

+
8

3
g
2
1 Y

2
H

C
2
BB

,

SHD =
32

3
g
2
1 Y

2
H

C
2
BB

.

(33)

4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms

SeW = �ig2
eYe CWW ,

SeB = �2ig1 (YL + Ye) eYe CBB ,

SuG = �4igs eYu CGG ,

SuW = �ig2
eYu CWW ,

SuB = �2ig1 (YQ + Yu) eYu CBB ,

SdG = �4igs eYd CGG ,

SdW = �ig2
eYd CWW ,

SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find

SeH = �2 eYeY
†
e
eYe �

1

2
eYe

eY †
e
Ye �

1

2
Ye

eY †
e
eYe +

4

3
g
2
2 C

2
WW

Ye ,

SuH = �2 eYuY
†
u
eYu �

1

2
eYu

eY †
u
Yu �

1

2
Yu

eY †
u
eYu +

4

3
g
2
2 C

2
WW

Yu ,

SdH = �2 eYdY
†
d
eYd �

1

2
eYd

eY †
d
Yd �

1

2
Yd

eY †
d
eYd +

4

3
g
2
2 C

2
WW

Yd .

(35)
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Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.

8

Figure 1: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the classes X

3 and X
2
D

2 as counterterms. The 2-point functions (first graph)
exist for all three types of gauge bosons, while the 3-point functions (last two graphs) require non-
abelian vertices involving three gauge bosons.

which can be used to eliminate bQG,1 from the extended basis. We are thus left with the
operators

bQG,2 = (D⇢
G⇢µ)

a (D!G
!µ)a ,

bQW,2 = (D⇢
W⇢µ)

I (D!W
!µ)I ,

bQB,2 = (D⇢
B⇢µ) (D!B

!µ) .

(9)

Analogous operators, in which one of the two field-strength tensors is replaced by a dual
tensor, are not needed as counterterms in our analysis.

At one-loop order, the 1PI Feynman diagrams with a virtual ALP exchange, which require
operators in the classes X

3 and X
2
D

2 as counterterms, are shown in Figure 1. Here and below,
a red dashed line represents an ALP propagator, while red dots mark the 1/f -suppressed
ALP–SM vertices. In order to determine the coe�cients of the counterterms we study both
the three-boson and two-boson Green’s functions with o↵-shell external momenta. The three-
boson amplitudes only exist for the non-abelian gauge fields. Starting with the gluon case, we
find that both the 3-gluon and the 2-gluon amplitude can be written in the form

A
�
gg(g)

�
= �

C
2
GG

✏


4gshQGi+

4

3
h bQG,2i � 2m2

a
hG

a

µ⌫
G

µ⌫,a
i

�
+ finite , (10)

where the matrix element of QG requires three external gluons to be non-zero. In a completely
analogous way, we find that

A
�
WW (W )

�
= �

C
2
WW

✏


4g2hQW i+

4

3
h bQW,2i � 2m2

a
hW

I

µ⌫
W

µ⌫,I
i

�
+ finite ,

A(BB) = �
C

2
BB

✏


4

3
h bQB,2i � 2m2

a
hBµ⌫B

µ⌫
i

�
+ finite .

(11)

In all three cases, the presence of the contributions proportional to the ALP mass parameter m
2
a

leads to a wave-function renormalization of the gauge fields, which a↵ects the scale evolution
of the running couplings ↵s(µ), ↵2(µ) and ↵1(µ). This will be discussed in detail in Section 4.1.

Classes X
2
H

2
and XH

2
D

2
. At one-loop order, the 1PI Feynman diagrams with a virtual

ALP exchange, which require operators in class X
2
H

2 as counterterms, are shown in Figure 2.

9

Figure 2: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class X2

H
2 as counterterms. Higgs doublets are represented by thick dotted

lines, with the arrow indicating the hypercharge flow.

The vertices connecting Higgs and gauge bosons exist only for SU(2)L and U(1)Y gauge fields.
We find that the UV divergences of the corresponding amplitudes (with all particles incoming)
can be written in the form

A(WWH
⇤
H) =

C
2
WW

✏
g
2
2 hQHW i+ finite ,

A(BBH
⇤
H) =

C
2
BB

✏
g
2
1 hQHBi+ finite ,

A(WBH
⇤
H) =

CWW CBB

✏
2g1g2 hQHWBi+ finite .

(12)

Operators in the class XH
2
D

2 are not generated by ALP exchange at one-loop order.

Classes H
6
, H

4
D

2
and H

2
D

4
. The operators in the classes H

6 and H
4
D

2 are not gener-
ated directly via one-loop diagrams involving ALP exchange, but they are generated indirectly
when the redundant operators are eliminated using the EOMs. The relevant relations are de-
rived in Section 3.4. Operators in the class H

2
D

4 are not generated by ALP exchange at
one-loop order.

3.2 Operators containing a single fermion current

Classes  
2
XD and  

2
D

3
. These operators are not generated by ALP exchange at one-

loop order.

Class  
2
XH. The operators in this class are generated by the one-loop Feynman graphs

shown in Figure 3. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erWH) =

ig2

2✏

� eYe

�
pr

CWW

⇥
hQeW i

⇤
pr
+ finite ,

A(L⇤
p
erBH) =

ig1

✏
(YL + Ye)

� eYe

�
pr

CBB

⇥
hQeBi

⇤
pr
+ finite ,

A(Q⇤
p
ur gH

⇤) =
2igs
✏

� eYu

�
pr

CGG

⇥
hQuGi

⇤
pr
+ finite ,

A(Q⇤
p
urWH

⇤) =
ig2

2✏

� eYu

�
pr

CWW

⇥
hQuW i

⇤
pr
+ finite ,
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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number refers to the figure showing the direct contributions.

8

operators bQW,2 and bQB,2, see relations (19) and (20). We find

SH =
8

3
�g

2
2 C

2
WW

,

SH⇤ = 2g
2
2 C

2
WW

+
8

3
g
2
1 Y

2
H

C
2
BB

,

SHD =
32

3
g
2
1 Y

2
H

C
2
BB

.

(33)

4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms

SeW = �ig2
eYe CWW ,

SeB = �2ig1 (YL + Ye) eYe CBB ,

SuG = �4igs eYu CGG ,

SuW = �ig2
eYu CWW ,

SuB = �2ig1 (YQ + Yu) eYu CBB ,

SdG = �4igs eYd CGG ,

SdW = �ig2
eYd CWW ,

SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find

SeH = �2 eYeY
†
e
eYe �

1

2
eYe

eY †
e
Ye �

1

2
Ye

eY †
e
eYe +

4

3
g
2
2 C

2
WW

Ye ,

SuH = �2 eYuY
†
u
eYu �

1

2
eYu

eY †
u
Yu �

1

2
Yu

eY †
u
eYu +

4

3
g
2
2 C

2
WW

Yu ,

SdH = �2 eYdY
†
d
eYd �

1

2
eYd

eY †
d
Yd �

1

2
Yd

eY †
d
eYd +

4

3
g
2
2 C

2
WW

Yd .

(35)
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.

A(Q⇤
p
urBH

⇤) =
ig1

✏
(YQ + Yu)

� eYu

�
pr

CBB

⇥
hQuBi

⇤
pr
+ finite , (13)

A(Q⇤
p
dr gH) =

2igs
✏

� eYd

�
pr

CGG

⇥
hQdGi

⇤
pr
+ finite ,

A(Q⇤
p
drWH) =

ig2

2✏

� eYd

�
pr

CWW

⇥
hQdW i

⇤
pr
+ finite ,

A(Q⇤
p
drBH) =

ig1

✏
(YQ + Yd)

� eYd

�
pr

CBB

⇥
hQdBi

⇤
pr
+ finite ,

where p, r = 1, 2, 3 are generation indices.

uQ Qddd Q Q uQ Qu

Figure 4: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
3 as counterterms. Graphs involving both eYu and eYd, such as the

third one, vanish after summing over the permutations of the Higgs fields.

Classes  
2
H

3
,  

2
H

2
D and  

2
HD

2
. Operators in the class  2

H
3 are generated by the

one-loop Feynman graphs shown in Figure 4. We do not show a diagram analogous to the first
one involving leptons. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erH

⇤
HH) =

1

✏

� eYeY
†
e
eYe

�
pr

⇥
hQeHi

⇤
pr
+ finite ,

A(Q⇤
p
urH

⇤
H

⇤
H) =

1

✏

� eYuY
†
u
eYu

�
pr

⇥
hQuHi

⇤
pr
+ finite , (14)

A(Q⇤
p
drH

⇤
HH) =

1

✏

� eYdY
†
d
eYd

�
pr

⇥
hQdHi

⇤
pr
+ finite .
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ig1
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�
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CBB
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⇤
pr
+ finite , (13)

A(Q⇤
p
dr gH) =

2igs
✏

� eYd

�
pr

CGG

⇥
hQdGi

⇤
pr
+ finite ,

A(Q⇤
p
drWH) =

ig2

2✏

� eYd

�
pr

CWW

⇥
hQdW i

⇤
pr
+ finite ,

A(Q⇤
p
drBH) =

ig1

✏
(YQ + Yd)

� eYd

�
pr

CBB

⇥
hQdBi

⇤
pr
+ finite ,

where p, r = 1, 2, 3 are generation indices.
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Classes  
2
H

3
,  

2
H

2
D and  

2
HD

2
. Operators in the class  2

H
3 are generated by the

one-loop Feynman graphs shown in Figure 4. We do not show a diagram analogous to the first
one involving leptons. We find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
erH

⇤
HH) =

1

✏

� eYeY
†
e
eYe

�
pr

⇥
hQeHi

⇤
pr
+ finite ,

A(Q⇤
p
urH

⇤
H

⇤
H) =

1

✏

� eYuY
†
u
eYu

�
pr

⇥
hQuHi

⇤
pr
+ finite , (14)

A(Q⇤
p
drH

⇤
HH) =

1

✏

� eYdY
†
d
eYd

�
pr

⇥
hQdHi

⇤
pr
+ finite .
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Q

Q Q

Q

Q Q

d

d

u

d u Q

u u

d

Figure 5: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

H
2
D as counterterms. Analogous graphs exist in the lepton sector.

There exist diagrams such as the third one shown in the figure, which are proportional to
structures like ( eYuY

†
u
eYd

�
pr
. However, we find that such graphs give vanishing contributions

after summing over the permutations of the two incoming (or outgoing) Higgs bosons.
For the operators in the class  2

H
2
D, which are generated by the one-loop Feynman graphs

shown in Figure 5, it is necessary to define the redundant operators
⇥ bQ(1)

Hl

⇤
pr

= H
†
H

�
L̄p i
 !
/D Lr

�
,

⇥ bQ(3)
Hl

⇤
pr

= H
†
�
I
H

�
L̄p i
 !
/D �

I
Lr

�
,

⇥ bQHe

⇤
pr

= H
†
H

�
ēp i
 !
/D er

�
,

⇥ bQ(1)
Hq

⇤
pr

= H
†
H

�
Q̄p i
 !
/D Qr

�
,

⇥ bQ(3)
Hq

⇤
pr

= H
†
�
I
H

�
Q̄p i
 !
/D �

I
Qr

�
,

⇥ bQHu

⇤
pr

= H
†
H

�
ūp i
 !
/D ur

�
,

⇥ bQHd

⇤
pr

= H
†
H

�
d̄p i
 !
/D dr

�
,

(15)

which are not part of the Warsaw basis. They will later be eliminated using the EOMs. We
find that the UV divergences of these diagrams can be expressed as

A(L⇤
p
LrH

⇤
H) =

1

8✏

� eYe
eY †
e

�
pr

⇣⇥
h bQ(1)

Hl
i
⇤
pr
+
⇥
h bQ(3)

Hl
i
⇤
pr
�
⇥
hQ

(1)
Hl
i
⇤
pr
�
⇥
hQ

(3)
Hl
i
⇤
pr

⌘
+ finite ,

A(e⇤
p
erH

⇤
H) =

1

4✏

� eY †
e
eYe

�
pr

⇣⇥
h bQHei

⇤
pr
+
⇥
hQHei

⇤
pr

⌘
+ finite ,

A(Q⇤
p
QrH

⇤
H) =

1

8✏

� eYu
eY †
u

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
�
⇥
h bQ(3)

Hq
i
⇤
pr
+
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
+ finite ,

+
1

8✏

� eYd
eY †
d

�
pr

⇣⇥
h bQ(1)

Hq
i
⇤
pr
+
⇥
h bQ(3)

Hq
i
⇤
pr
�
⇥
hQ

(1)
Hq
i
⇤
pr
�
⇥
hQ

(3)
Hq
i
⇤
pr

⌘
(16)

A(u⇤
p
urH

⇤
H) =

1

4✏

� eY †
u
eYu

�
pr

⇣⇥
h bQHui

⇤
pr
�
⇥
hQHui

⇤
pr

⌘
+ finite ,

A(d⇤
p
drH

⇤
H) =

1

4✏

� eY †
d
eYd

�
pr

⇣⇥
h bQHdi

⇤
pr
+
⇥
hQHdi

⇤
pr

⌘
+ finite ,

A(u⇤
p
drHH) =

1

2✏

� eY †
u
eYd

�
pr

⇥
hQHudi

⇤
pr
+ finite .
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Class  2
H

2
D:

The source terms for the operators in this class receive direct contributions, as shown in (16),
as well as contributions from EOMs, from the relations given in (19) and (20). We find

S
(1)
Hl

=
1

4
eYe

eY †
e
+

16

3
g
2
1 YHYL C

2
BB

1 ,

S
(3)
Hl

=
1

4
eYe

eY †
e
+

4

3
g
2
2 C

2
WW

1 ,

SHe = �
1

2
eY †
e
eYe +

16

3
g
2
1 YHYe C

2
BB

1 ,

S
(1)
Hq

=
1

4

⇣
eYd

eY †
d
� eYu

eY †
u

⌘
+

16

3
g
2
1 YHYQ C

2
BB

1 ,

S
(3)
Hq

=
1

4

⇣
eYd

eY †
d
+ eYu

eY †
u

⌘
+

4

3
g
2
2 C

2
WW

1 ,

SHu =
1

2
eY †
u
eYu +

16

3
g
2
1 YHYu C

2
BB

1 ,

SHd = �
1

2
eY †
d
eYd +

16

3
g
2
1 YHYd C

2
BB

1 ,

SHud = � eY †
u
eYd .

(36)

4.4 Source terms of four-fermion operators

The Wilson coe�cients of these operators are 4-index tensors in generation space, and we
therefore present our results for the corresponding source term in component notation. The
direct contributions to the source terms are derived form the four-fermion amplitudes collected
in (17). In addition, there are several indirect contributions from the EOM relations in (18),
(19) and (20). The source terms for operators in the classes (L̄L)(L̄L) and (R̄R)(R̄R) are
entirely due to these EOM relations.

Class (L̄L)(L̄L):

For the source terms of the purely left-handed four-fermion operators we obtain

⇥
Sll

⇤
prst

=
2

3
g
2
2 C

2
WW

(2�pt�sr � �pr �st) +
8

3
g
2
1 Y

2
L

C
2
BB

�pr �st ,

⇥
S
(1)
qq

⇤
prst

=
2

3
g
2
s
C

2
GG

✓
�pt�sr �

2

Nc

�pr �st

◆
+

8

3
g
2
1 Y

2
Q

C
2
BB

�pr �st ,

⇥
S
(3)
qq

⇤
prst

=
2

3
g
2
s
C

2
GG

�pt�sr +
2

3
g
2
2 C

2
WW

�pr �st ,

⇥
S
(1)
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.
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which are not part of the Warsaw basis. They will later be eliminated using the EOMs. We
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ALP—SMEFT interference
One-loop results for the ALP source terms in the Warsaw basis:

Operator class Warsaw basis Way of generation Feynman graphs

Purely bosonic

X
3 yes direct — Figure 1

X
2
D

2 no direct Figure 1

X
2
H

2 yes direct — Figure 2

XH
2
D

2 no —

H
6 yes — EOM Figure 1

H
4
D

2 yes — EOM Figure 1

H
2
D

4 no —

Single fermion current

 
2
XD no —

 
2
D

3 no —

 
2
XH yes direct — Figure 3

 
2
H

3 yes direct EOM Figs. 4, 1, 5

 
2
H

2
D yes direct EOM Figs. 5, 1

 
2
HD

2 no —

4-fermion operators

(L̄L)(L̄L) yes — EOM Figure 1

(R̄R)(R̄R) yes — EOM Figure 1

(L̄L)(R̄R) yes direct EOM Figs. 6, 1

(L̄R)(R̄L) yes direct — Figure 6

(L̄R)(L̄R) yes direct — Figure 6

B-violating yes — —

Table 1: Summary of the di↵erent classes of dimension-6 operators in the extended SMEFT basis.
X represents a field-strength tensor (normal or dual), H a Higgs field,  a chiral fermion, and D a
covariant derivative. Operators contained in the Warsaw basis are shown on white background, while
redundant operators are highlighted in blue. The third and fourth columns show which operators
are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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operators bQW,2 and bQB,2, see relations (19) and (20). We find
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4.3 Source terms of single fermion-current operators

The Wilson coe�cients of these operators are matrices in generation space. We present our
results for the corresponding source term using a matrix notation with boldface symbols.

Class  2
XH:

From the results for the 1/✏ poles in the amplitudes connecting two fermions to a Higgs field
and a gauge field shown in (13), we obtain the ALP source terms
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SdB = �2ig1 (YQ + Yd) eYd CBB .

(34)

Class  2
H

3:

The source terms for the operators in this class receive direct contributions, as shown in (14),
as well as contributions from EOMs, from the relations given in (19) and (22). We find
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Figure 3: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  2

XH as counterterms. Thick (thin) solid lines represent left-handed
fermion doublets (right-handed fermion singlets). If the right-handed fermion is an up-type quark,
the arrows on the Higgs lines need to be reversed.
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Class  2
H

2
D:

The source terms for the operators in this class receive direct contributions, as shown in (16),
as well as contributions from EOMs, from the relations given in (19) and (20). We find
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4.4 Source terms of four-fermion operators

The Wilson coe�cients of these operators are 4-index tensors in generation space, and we
therefore present our results for the corresponding source term in component notation. The
direct contributions to the source terms are derived form the four-fermion amplitudes collected
in (17). In addition, there are several indirect contributions from the EOM relations in (18),
(19) and (20). The source terms for operators in the classes (L̄L)(L̄L) and (R̄R)(R̄R) are
entirely due to these EOM relations.
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For the source terms of the purely left-handed four-fermion operators we obtain
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are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Class (R̄R)(R̄R):

For the source terms of the purely right-handed four-fermion operators we obtain
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Class (L̄L)(R̄R):

For the source terms of the mixed-chirality four-fermion operators in this class we obtain
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are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Class (R̄R)(R̄R):

For the source terms of the purely right-handed four-fermion operators we obtain
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Class (L̄L)(R̄R):

For the source terms of the mixed-chirality four-fermion operators in this class we obtain
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Figure 6: Representative one-loop Feynman diagrams with ALP exchange (red dashed line), which
require operators in the class  4 as counterterms. Analogous graphs exist in the lepton sector.

Operators in class  2
HD

2 are not generated by ALP exchange at one-loop order.

3.3 Four-fermion operators

At one-loop order, ALP exchange between four fermions gives rise to the diagrams shown in
Figure 6. Since the ALP coupling to fermions changes chirality, each diagram contains two left-
handed and two right-handed fermions. Four-fermion operators containing only left-handed
or only right-handed fields are therefore not generated directly in our model at one-loop order.
Nevertheless, as we will show later, almost all four-fermion operators in the Warsaw basis are
generated at one-loop order when the contributions from the EOMs are taken into account.

Using Fierz identities for some of the operators and color structures, we find that the
amplitudes corresponding to the diagrams shown in Figure 6 can be written as
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3.4 Elimination of redundant operators

In the next step, we must decompose the redundant operators bQi into SMEFT operators in
the Warsaw basis, using the EOMs for the SM fields. We find that the relevant relations for
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are generated by one-loop ALP exchange, either directly or via the EOMs. The last column refers to
the figures showing the relevant Feynman diagrams. When more than one figure is listed, the first
number refers to the figure showing the direct contributions.
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Classes (L̄R)(R̄L) and (L̄R)(L̄R):

For the source terms of the mixed-chirality four-fermion operators in these classes we obtain
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Class B-violating:

The B-violating operators Qduq, Qqqu, Qqqq and Qduu are not generated in the ALP model,
because the model does not contain any B-violating interactions.

4.5 Structure of the source terms

It is instructive to study the structure of the various ALP source terms in more detail. For the
bosonic ALP couplings CV V with V = G, W, B, we have presented in (6) the relations which
link them with the couplings in the underlying shift-symmetric ALP Lagrangian (3). Note
that, besides the three original ALP–boson couplings cV V , also the diagonal elements of all
ALP–fermion couplings enter in these relations. In other words, even in so-called gauge-phobic
models, in which some or all of the original ALP–boson couplings are assumed to vanish, the
couplings CV V in the ALP source terms are nevertheless non-zero as soon as the ALP has at
least some couplings to the SM fermions.

The fermionic ALP couplings in the source terms are encoded in the complex matrices eYf

with f = u, d, e defined in (5). They inherit the hierarchies of the SM Yukawa matrices Yf ,
which multiply the hermitian matrices cF in the original Lagrangian (3). We can simplify the
structure of the matrices eYf by choosing a convenient basis of the fermion fields. Without
loss of generality, we work in the basis where the up-sector and lepton-sector Yukawa matrices
are diagonal, while the down-sector Yukawa matrix is given by Yd = V Y

diag
d

with Y
diag
d

=
diag(yd, ys, yb), where V denotes the CKM matrix. Following [21, 42], we denote the ALP–
fermion couplings in this basis by kU = cQ, kE = cL, and kf = cf for f = u, d, e. Moreover,
we define kD = V

†
cQV . With these definitions, the matrices ki specify the ALP–fermion

couplings in the mass basis of the SM fermions. From (5), it the follows that
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(41)
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(starts at 2 loops)

(starts at 2 loops)

With very few exceptions, all operators in the Warsaw basis are generated at 
one-loop order in the ALP model!
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Top chromo-magnetic moment
Sample application: chromo-magnetic dipole moment of the top quark


with:


ALP-induced contribution follows from the solution of:

electroweak precision observables and of the properties of the Higgs boson, the top quark and
the gauge bosons at the LHC (see [58] for a comprehensive global analysis and an exhaustive
list of references to earlier SMEFT fits). This implies that areas of the ALP parameter space
which may still be unconstrained by direct searches can be probed indirectly, using constraints
on dimension-6 SMEFT operators implied by precision studies. We now briefly illustrate the
usefulness of our approach with two examples, leaving a more comprehensive analysis to future
work. For the purposes of this discussion we assume that the ALP mass is light, of order the
electroweak scale or lighter. In this first exploration we neglect the matching contributions to
the SMEFT Wilson coe�cients from heavy new states at the UV scale ⇤ = 4⇡f , which can
only be assessed within a concrete UV completion of the e↵ective Lagrangian (1). We also
omit one-loop contributions to the observables arising from the low-energy matrix elements in
the e↵ective theory. As explained earlier, the e↵ects from RG evolution which we calculate are
enhanced over these two contributions by a large logarithm. Our calculations have shown that
the same ALP couplings appear in the source terms for many di↵erent dimension-6 operators,
so it is likely that more powerful constraints than the ones we discuss below can be derived
from a global analysis of precision observables.

5.1 Chromo-magnetic moment of the top quark

The chromo-magnetic and chromo-electric dipole moments of the top quark, µ̂t and d̂t, are
two important precision observables probing new physics above the electroweak scale [59–61].
They can be defined in terms of the e↵ective Lagrangian [60]
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The overall sign on the right-hand side has been chosen so as to be consistent with our
definition of the covariant derivative. Matching this expression with the dimension-6 SMEFT
Lagrangian at lowest order, we find

µ̂t =
ytv

2

gs
<eC

33
uG

, d̂t =
ytv

2

gs
=mC

33
uG

, (47)

where all quantities are evaluated at the scale µ = mt. The Wilson coe�cient C
33
uG

⌘ [CuG]33 is
defined in the up-quark mass basis (see Section 4.5). Neglecting contributions proportional to
electroweak gauge couplings and light-quark Yukawa couplings, one finds that this coe�cient
obeys the RG equation [47, 48]
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where S
33
uG

⌘ [SuG]33, and ↵t = y
2
t
/(4⇡). In the same approximation, the RG equations for

the other Wilson coe�cients entering this relation read
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The relevant ALP source terms,

S
33
uG

= 4gsyt ctt CGG , SG = 8gs C
2
GG

, (50)

obtained from (31), (34) and (42), are both real-valued. It follows that C eG, C
H eG and =mC

33
uG

vanish in the ALP model, and the RG equations simply to
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(51)

Solving these coupled equations would provide solutions for the Wilson coe�cients in which
the large logarithms of the ratio 4⇡f/mt are resummed in leading logarithmic approximation.
For our purposes, however, it will be su�cient to obtain a rough approximation by keeping
only the lowest-order logarithmic term for each ALP coupling and neglecting contributions
proportional to extra factors of ↵i ln(4⇡f/mt). In this way, we find

µ̂t ⇡ �
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2
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(52)

as well as d̂t ⇡ 0. Note that the term proportional to C
2
GG

contains an extra factor of
↵s ln(4⇡f/mt) compared with the first one, since it arises via the mixing of C

33
uG

with the
coe�cient CG. The numerical result shown in the second line has been obtained using mt ⌘

mt(mt) = 163.4GeV and ↵s(mt) = 0.1084, and taking f = 1TeV in the argument of the
logarithms. Which one of the two contributions dominates depends on the relative size of
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Top chromo-magnetic moment
At leading logarithmic order, one finds:


Combined with experimental bounds from CMS (2019), we obtain:


Comparable to strongest bounds following from collider and flavor physics!

where S
33
uG

⌘ [SuG]33, and ↵t = y
2
t
/(4⇡). In the same approximation, the RG equations for

the other Wilson coe�cients entering this relation read

d

d lnµ
CG =

SG

(4⇡f)2
+

15↵s

4⇡
CG ,

d

d lnµ
C eG =

15↵s

4⇡
C eG ,

d

d lnµ
CHG =

✓
3↵t

2⇡
�

7↵s

2⇡

◆
CHG +

gsyt

4⇡2
<eC

33
uG

,

d

d lnµ
C

H eG =

✓
3↵t

2⇡
�

7↵s

2⇡

◆
C

H eG +
gsyt

4⇡2
=mC

33
uG

.

(49)

The relevant ALP source terms,

S
33
uG

= 4gsyt ctt CGG , SG = 8gs C
2
GG

, (50)

obtained from (31), (34) and (42), are both real-valued. It follows that C eG, C
H eG and =mC

33
uG

vanish in the ALP model, and the RG equations simply to

d

d lnµ
<eC

33
uG

=
S
33
uG

(4⇡f)2
+

✓
15↵t

8⇡
�

17↵s

12⇡

◆
<eC

33
uG

+
9↵s

4⇡
yt CG +

gsyt

4⇡2
CHG ,

d

d lnµ
CG =

SG

(4⇡f)2
+

15↵s

4⇡
CG ,

d

d lnµ
CHG =

✓
3↵t

2⇡
�

7↵s

2⇡

◆
CHG +

gsyt

4⇡2
<eC

33
uG

.

(51)

Solving these coupled equations would provide solutions for the Wilson coe�cients in which
the large logarithms of the ratio 4⇡f/mt are resummed in leading logarithmic approximation.
For our purposes, however, it will be su�cient to obtain a rough approximation by keeping
only the lowest-order logarithmic term for each ALP coupling and neglecting contributions
proportional to extra factors of ↵i ln(4⇡f/mt). In this way, we find

µ̂t ⇡ �
8m

2
t

(4⇡f)2


ctt CGG ln

4⇡f

mt

�
9↵s

4⇡
C

2
GG

ln2 4⇡f

mt

�

⇡ �
�
5.87ctt CGG � 1.98C

2
GG

�
· 10�3

⇥


1TeV

f

�2
,

(52)

as well as d̂t ⇡ 0. Note that the term proportional to C
2
GG

contains an extra factor of
↵s ln(4⇡f/mt) compared with the first one, since it arises via the mixing of C

33
uG

with the
coe�cient CG. The numerical result shown in the second line has been obtained using mt ⌘

mt(mt) = 163.4GeV and ↵s(mt) = 0.1084, and taking f = 1TeV in the argument of the
logarithms. Which one of the two contributions dominates depends on the relative size of

24

the coe�cients ctt and CGG. The CMS collaboration has recently performed two independent
measurements of the chromo-magnetic dipole moment of the top quark, finding �0.014 < µ̂t <

0.004 at 95% confidence level [62], and µ̂t = �0.024+0.013
�0.009

+0.016
�0.011 [63]. Applying the (stronger)

first bound to the ALP model, we find under the approximations described above

� 0.68 <
�
ctt CGG � 0.34C

2
GG

�
⇥


1TeV

f

�2
< 2.38 (95% CL) . (53)

The ALP couplings ctt and CGG are defined at the scale µ = mt. With the current sensitivity,
the measurements of the top-quark chromo-magnetic moment probe the ALP couplings ctt/f

and CGG/f at the level of roughly O(TeV�1).

5.2 Example of a Z-pole constraint

As a second example, we consider the constraint on the flavor-conserving part of the Wilson
coe�cient of the dimension-6 SMEFT operator Q

(3)
Hq

. Focussing on light quark flavors, and
assuming flavor universality in the first two generations, one defines
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The coe�cient C
(3)
Hq

is tightly constrained by Z-pole measurements [64–68]. When marginal-
izing over all the other SMEFT coe�cients in order to obtain the most conservative bound,
the global analysis presented in [58] yields

� 0.11TeV�2
< C

(3)
Hq

< 0.012 TeV�2 (95% CL) . (55)

Neglecting again contributions proportional to electroweak gauge couplings and light-quark
Yukawa couplings, the RG equations for the coe�cients
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with i 6= 3 are found to be

[47, 48]
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From (36), we find for the relevant ALP source terms
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where again we have set the light-quark Yukawa couplings to zero. The source terms for the
remaining operators in (56) are obtained from (37) and read (for i = 1, 2)
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• Axions and axion-like particles belong to a class of BSM particles which 
interact via higher-dimensional operators with the SM


• They are an interesting target for searches in high-energy physics, using 
flavor, collider and precision probes; however direct searches are strongly 
model dependent


• Even a light ALP provides source terms for (almost) all D=6 SMEFT 
operators: ALP-SMEFT interference 

• Indirect searches thus provide a complementary way to constrain ALP 
couplings using a global fit to precision data: electroweak precision test, 
top and Higgs physics, flavor physics, , …(g − 2)μ

Summary
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