ALP-SMEFT Interference

Matthias Neubert
MITP, Johannes Gutenberg University, Mainz

based on work with Anne Galda \& Sophie Renner
JHEP 06 (2021) 135 [arXiv:2105.01078]
Workshop on the Standard Model and Beyond
Corfu, Greece, 28 August-8 September 2022

remembering Graham Ross

Introduction

- SMEFT offers a systematic framework for describing the effects of heavy new physics on "low-energy" observables involving SM particles only
- Assumes the SM gauge group and electroweak symmetry breaking hold up to some high scale $\Lambda_{\mathrm{UV}} \gg v_{\text {EWSB }}$
- But what if the SM is extended by a light new particle with feeble interactions with SM fields?

Introduction

- Are there any implications for SMEFT if the SM is extended by a weakly coupled light new particle and nothing else?
- If the new particle is described by a renormalizable Lagrangian ($D \leq 4$ operators), the answer is NO:
- for observables involving SM fields only, the effects of the new particle can be absorbed into the renormalized parameters of the SM Lagrangian
- only trace of its existence lies in its contributions to the β-functions of the SM parameters, which are small in the case of weak coupling

Introduction

- The situation described above is rather generic, but an important exception exists
- BSM theories featuring light new particles with only higher-dimensional interactions with the SM give rise to different, more interesting effects!
- Most important example:

Axions and axion-like particles

Motivation for ALPs

Axions and axion-like particles (ALPs) are well motivated theoretically:

- Peccei-Quinn solution to strong CP problem: [Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]

$$
\mathcal{L}=\frac{\theta \alpha_{s}}{8 \pi} G_{\mu \nu}^{a} \widetilde{G}^{a, \mu \nu}+\frac{a}{f_{a}} \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} \widetilde{G}^{a, \mu \nu}+\ldots
$$

- introduce scalar field $\Phi=|\Phi| e^{i a / f_{a}}$ charged under a new $U(1)_{\mathrm{PQ}}$
- field gets a VEV from spontaneous symmetry breaking:

shift symmetry: $a \rightarrow a+$ const.

Motivation for ALPs

Axions and axion-like particles (ALPs) are well motivated theoretically:

- Peccei-Quinn solution to strong CP problem: [Peccei, Quinn (1977); Weinberg (1978); Wilczek (1978)]

$$
\mathcal{L}=\frac{\theta \alpha_{s}}{8 \pi} G_{\mu \nu}^{a} \widetilde{G}^{a, \mu \nu}+\frac{a}{f_{a}} \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} \widetilde{G}^{a, \mu \nu}+\ldots
$$

- introduce scalar field $\Phi=|\Phi| e^{i a / f_{a}}$ charged under a new $\mathrm{U}(1)_{\mathrm{PQ}}$
- QCD instantons break the continuous shift symmetry to a discrete subgroup:

minimum has $\theta+\langle a\rangle / f_{a}=0$ modulo 2π \Rightarrow generates an ALP mass!

Motivation for ALPs

Axions and axion-like particles (ALPs) are well motivated theoretically:

- Peccei-Quinn solution to strong CP problem
- more generally: ALPs as pseudo NambuGoldstone bosons of a spontaneously broken global symmetry
- light ALPs can be promising Dark Matter candidates or mediators to the dark sector
- low-energy processes are important in constraining the ALP couplings to the SM fields

[Bauer, MN, Thamm (2017)]

Effective ALP Lagrangian

- Assume the scale of global symmetry breaking $\Lambda=4 \pi f$ is above the weak scale, and consider the most general effective Lagrangian for a pseudoscalar boson a coupled to the SM via classically shift-invariant interactions, broken only by a soft mass term: [Georgi, Kaplan, Randall (1986)]

$$
\begin{aligned}
\mathcal{L}_{\text {eff }}^{D \leq 5}= & \frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{m_{a, 0}^{2}}{2} a^{2}+\frac{\partial^{\mu} a}{f} \sum_{F} \bar{\psi}_{F} \check{c}_{F} \gamma_{\mu} \gamma_{\mu} \psi_{F} \\
& +c_{G G} \frac{\alpha_{s}}{4 \pi} \frac{a}{f} G_{\mu \nu}^{a} \tilde{G}^{\mu \nu, a}+c_{W W} \frac{\alpha_{2}}{4 \pi} \frac{a}{f} W_{\mu \nu}^{A} \tilde{W}^{\mu \nu, A}+c_{B B} \frac{\alpha_{1}}{4 \pi} \frac{a}{f} B_{\mu \nu} \tilde{B}^{\mu \nu}
\end{aligned}
$$

- Couplings to Higgs bosons arise in higher orders only: [Dobrescu, Landsberg, Matchev (2000);

$$
\mathcal{L}_{\text {eff }}^{D \geq 6}=\frac{C_{a h}}{f^{2}}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right) \phi^{\dagger} \phi+\frac{C_{a h}^{\prime}}{f^{2}} m_{a, 0}^{2} a^{2} \phi^{\dagger} \phi+\frac{C_{Z h}}{f^{3}}\left(\partial^{\mu} a\right)\left(\phi^{\dagger} i D_{\mu} \phi+\text { h.c. }\right) \phi^{\dagger} \phi+\ldots
$$

Effective ALP Lagrangian

A useful alternative form of the Lagrangian involves non-derivative couplings:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{D \leq 5}= & \frac{1}{2}\left(\partial_{\mu} a\right)\left(\partial^{\mu} a\right)-\frac{m_{a, 0}^{2}}{2} a^{2}-\frac{a}{f}\left(\bar{Q} \phi \tilde{\boldsymbol{Y}}_{d} d_{R}+\bar{Q} \tilde{\phi} \tilde{\boldsymbol{Y}}_{u} u_{R}+\bar{L} \phi \tilde{\boldsymbol{Y}}_{e} e_{R}+\text { h.c. }\right) \\
& +C_{G G} \frac{a}{f} G_{\mu \nu}^{a} \tilde{G}^{\mu \nu, a}+C_{W W} \frac{a}{f} W_{\mu \nu}^{I} \tilde{W}^{\mu \nu, I}+C_{B B} \frac{a}{f} B_{\mu \nu} \tilde{B}^{\mu \nu}
\end{aligned}
$$

where:
[Bauer, MN, Renner, Schnubel, Thamm (2020)]

$$
\begin{aligned}
\tilde{\boldsymbol{Y}}_{d} & =i\left(\boldsymbol{Y}_{d} \boldsymbol{c}_{d}-\boldsymbol{c}_{Q} \boldsymbol{Y}_{d}\right), \quad \tilde{\boldsymbol{Y}}_{u}=i\left(\boldsymbol{Y}_{u} \boldsymbol{c}_{u}-\boldsymbol{c}_{Q} \boldsymbol{Y}_{u}\right), \quad \tilde{\boldsymbol{Y}}_{e}=i\left(\boldsymbol{Y}_{e} \boldsymbol{c}_{e}-\boldsymbol{c}_{L} \boldsymbol{Y}_{e}\right) \\
C_{G G} & =\frac{\alpha_{s}}{4 \pi}\left[c_{G G}+\frac{1}{2} \operatorname{Tr}\left(\boldsymbol{c}_{d}+\boldsymbol{c}_{u}-2 \boldsymbol{c}_{Q}\right)\right] \\
C_{W W} & =\frac{\alpha_{2}}{4 \pi}\left[c_{W W}-\frac{1}{2} \operatorname{Tr}\left(N_{c} \boldsymbol{c}_{Q}+\boldsymbol{c}_{L}\right)\right] \\
C_{B B} & =\frac{\alpha_{1}}{4 \pi}\left[c_{B B}+\operatorname{Tr}\left[N_{c}\left(\mathcal{Y}_{d}^{2} \boldsymbol{c}_{d}+\mathcal{Y}_{u}^{2} \boldsymbol{c}_{u}-2 \mathcal{Y}_{Q}^{2} \boldsymbol{c}_{Q}\right)+\mathcal{Y}_{e}^{2} \boldsymbol{c}_{e}-2 \mathcal{Y}_{L}^{2} \boldsymbol{c}_{L}\right]\right]
\end{aligned}
$$

Effective ALP Lagrangian

Direct searches for ALPs are strongly model dependent:

- sensitivity to many different ALP couplings entering the production, decay and lifetime of the ALP
- searches probe high-dimensional parameter spaces \Rightarrow need for strong model assumptions, e.g. existence of a single non-zero ALP coupling (strong biases)
- long-lived ALPs and ALPs decaying into hadrons or heavy fermions can escape detection

Indirect searches (effects of virtual ALPs) offer a promising alternative!

ALP-SMEFT interference

It is well-known that one-loop diagrams with virtual ALP exchange can be UV divergent. This was first studied in the context of $(g-2) \mu$:
[Marciano, Masiero, Paradisi, Passera (2016); Bauer, MN, Thamm (2017)]

$\delta a_{\mu}=\frac{m_{\mu}^{2}}{\Lambda^{2}}\left\{K_{a_{\mu}}(\mu)-\frac{\left(c_{\mu \mu}\right)^{2}}{16 \pi^{2}} h_{1}\left(\frac{m_{a}^{2}}{m_{\mu}^{2}}\right)-\frac{2 \alpha}{\pi} c_{\mu \mu} C_{\gamma \gamma}\left[\ln \frac{\mu^{2}}{m_{\mu}^{2}}+\delta_{2}+3-h_{2}\left(\frac{m_{a}^{2}}{m_{\mu}^{2}}\right)\right]\right.$
$\left.-\frac{\alpha}{2 \pi} \frac{1-4 s_{w}^{2}}{s_{w} c_{w}} c_{\mu \mu} C_{\gamma Z}\left(\ln \frac{\mu^{2}}{m_{Z}^{2}}+\delta_{2}+\frac{3}{2}\right)\right\}$
needs a $D=6$ counterterm not contained in the ALP effective Lagrangian

$$
(\Lambda=4 \pi f)
$$

ALP—SMEFT interference

Schematically:

Consistent effective field theory:

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{f} \mathcal{L}_{\mathrm{ALP}}^{(D \geq 5)}+\frac{1}{f^{2}} \underset{\mathrm{SMEFT}}{\mathcal{L}_{\mathrm{SMEP}}^{(D \geq 6)}} \underset{\text { direct searches }}{\text { indirect searches }}
$$

ALP-SMEFT interference

Irrespective of the existence of other new physics, the presence of a light ALP provides source terms S_{i} for the D=6 SMEFT Wilson coefficients:

[Galda, MN, Renner: 2105.01078]
2499×2499 entries
ALP source terms

- Global new-physics searches using SMEFT can serve as indirect probes of the ALP couplings
- Exciting prospect: constrain all ALP couplings in a model-independent way, insensitive to the ALP lifetime and branching fractions!

ALP-SMEFT interference

Systematic study of divergent Green's functions with ALP exchange

Operator class	Warsaw basis	Way of generation	
Purely bosonic			
X^{3}	yes	direct	-
$X^{2} D^{2}$	no	direct	
$X^{2} H^{2}$	yes	direct	-
$X H^{2} D^{2}$	no	-	
H^{6}	yes	-	EOM
$H^{4} D^{2}$	yes	-	EOM
$H^{2} D^{4}$	no	-	
Single fermion current			
$\psi^{2} X D$	no	-	
$\psi^{2} D^{3}$	no	-	
$\psi^{2} X H$	yes	direct	-
$\psi^{2} H^{3}$	yes	direct	EOM
$\psi^{2} H^{2} D$	yes	direct	EOM
$\psi^{2} H D^{2}$	no	-	
4 -fermion operators			
$(\bar{L} L)(\bar{L} L)$	yes	-	EOM
$(\bar{R} R)(\bar{R} R)$	yes	-	EOM
$(\bar{L} L)(\bar{R} R)$	yes	direct	EOM
$(\bar{L} R)(\bar{R} L)$	yes	direct	-
$(\bar{L} R)(\bar{L} R)$	yes	direct	-
$B-$ violating	yes	-	-

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]

ALP-SMEFT interference

Systematic study of divergent Green's functions with ALP exchange

[Galda, MN, Renner: 2105.01078]

Sample calculation: UV divergences of the three-gluon amplitude

Source term for Weinberg operator:

$$
S_{G}=8 g_{s} C_{G G}^{2}
$$

Eliminate redundant operator $\widehat{Q}_{G, 2}=\left(D^{\rho} G_{\rho \mu}\right)^{a}\left(D_{\omega} G^{\omega \mu}\right)^{a}$ using the EOMs:

$$
\begin{aligned}
\widehat{Q}_{G, 2} \cong g_{s}^{2} & \left(\bar{Q} \gamma_{\mu} T^{a} Q+\bar{u} \gamma_{\mu} T^{a} u+\bar{d} \gamma_{\mu} T^{a} d\right)^{2} \\
=g_{s}^{2} & {\left[\frac{1}{4}\left(\left[Q_{q q}^{(1)}\right]_{p r r p}+\left[Q_{q q}^{(3)}\right]_{p r r p}\right)-\frac{1}{2 N_{c}}\left[Q_{q q}^{(1)}\right]_{p p r r}+\frac{1}{2}\left[Q_{u u}\right]_{p r r p}-\frac{1}{2 N_{c}}\left[Q_{u u}\right]_{p p r r}\right.} \\
& \left.+\frac{1}{2}\left[Q_{d d}\right]_{p r r p}-\frac{1}{2 N_{c}}\left[Q_{d d}\right]_{p p r r}+2\left[Q_{q u}^{(8)}\right]_{p p r r}+2\left[Q_{q d}^{(8)}\right]_{p p r r}+2\left[Q_{u d}^{(8)}\right]_{p p r r}\right]
\end{aligned}
$$

[Grzadkowski, Iskrzynski, Misiak, Rosiek (2010)]
\rightarrow generates further source terms

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
Single fermion current			
$\psi^{2} X D$	no	-	
$\psi^{2} D^{3}$	no	-	
$\psi^{2} X H$	yes	direct	-
$\psi^{2} H^{3}$	yes	direct	EOM
$\psi^{2} H^{2} D$	yes	direct	EOM
$\psi^{2} H D^{2}$	no	-	

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
Single fermion current			
$\psi^{2} X D$	no	-	
$\psi^{2} D^{3}$	no	-	
$\psi^{2} X H$	yes	direct	-
$\psi^{2} H^{3}$	yes	direct	EOM
$\psi^{2} H^{2} D$	yes	direct	EOM
$\psi^{2} H D^{2}$	no	-	

$$
\begin{aligned}
\boldsymbol{S}_{H l}^{(1)} & =\frac{1}{4} \widetilde{\boldsymbol{Y}}_{e} \widetilde{\boldsymbol{Y}}_{e}^{\dagger}+\frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{L} C_{B B}^{2} \mathbf{1} \\
\boldsymbol{S}_{H l}^{(3)} & =\frac{1}{4} \widetilde{\boldsymbol{Y}}_{e} \widetilde{\boldsymbol{Y}}_{e}^{\dagger}+\frac{4}{3} g_{2}^{2} C_{W W}^{2} \mathbf{1} \\
\boldsymbol{S}_{H e} & =-\frac{1}{2} \widetilde{\boldsymbol{Y}}_{e}^{\dagger} \widetilde{\boldsymbol{Y}}_{e}+\frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{e} C_{B B}^{2} \mathbf{1} \\
\boldsymbol{S}_{H q}^{(1)} & =\frac{1}{4}\left(\widetilde{\boldsymbol{Y}}_{d} \widetilde{\boldsymbol{Y}}_{d}^{\dagger}-\widetilde{\boldsymbol{Y}}_{u} \widetilde{\boldsymbol{Y}}_{u}^{\dagger}\right)+\frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{Q} C_{B B}^{2} \mathbf{1} \\
\boldsymbol{S}_{H q}^{(3)} & =\frac{1}{4}\left(\widetilde{\boldsymbol{Y}}_{d} \widetilde{\boldsymbol{Y}}_{d}^{\dagger}+\widetilde{\boldsymbol{Y}}_{u} \widetilde{\boldsymbol{Y}}_{u}^{\dagger}\right)+\frac{4}{3} g_{2}^{2} C_{W W}^{2} \mathbf{1} \\
\boldsymbol{S}_{H u} & =\frac{1}{2} \widetilde{\boldsymbol{Y}}_{u}^{\dagger} \widetilde{\boldsymbol{Y}}_{u}+\frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{u} C_{B B}^{2} \mathbf{1} \\
\boldsymbol{S}_{H d} & =-\frac{1}{2} \widetilde{\boldsymbol{Y}}_{d}^{\dagger} \widetilde{\boldsymbol{Y}}_{d}+\frac{16}{3} g_{1}^{2} \mathcal{Y}_{H} \mathcal{Y}_{d} C_{B B}^{2} \mathbf{1} \\
\boldsymbol{S}_{H u d} & =-\widetilde{\boldsymbol{Y}}_{u}^{\dagger} \widetilde{\boldsymbol{Y}}_{d}
\end{aligned}
$$

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
Single fermion current			
$\psi^{2} X D$	no	-	
$\psi^{2} D^{3}$	no	-	
$\psi^{2} X H$	yes	direct	-
$\psi^{2} H^{3}$	yes	direct	EOM
$\psi^{2} H^{2} D$	yes	direct	EOM
$\psi^{2} H D^{2}$	no	-	

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
4-fermion operators			
$(\bar{L} L)(\bar{L} L)$	yes	-	EOM
$(\bar{R} R)(\bar{R} R)$	yes	-	EOM
$(\bar{L} L)(\bar{R} R)$	yes	direct	EOM
$(\bar{L} R)(\bar{R} L)$	yes	direct	-
$(\bar{L} R)(\bar{L} R)$	yes	direct	-
B-violating	yes	-	-

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
4-fermion operators			
$(\bar{L} L)(\bar{L} L)$	yes	-	EOM
$(\bar{R} R)(\bar{R} R)$	yes	-	EOM
$(\bar{L} L)(\bar{R} R)$	yes	direct	EOM
$(\bar{L} R)(\bar{R} L)$	yes	direct	-
$(\bar{L} R)(\bar{L} R)$	yes	direct	-
B-violating	yes	-	-

ALP-SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
4-fermion operators			
$(\bar{L} L)(\bar{L} L)$	yes	-	EOM
$(\bar{R} R)(\bar{R} R)$	yes	-	EOM
$(\bar{L} L)(\bar{R} R)$	yes	direct	EOM
$(\bar{L} R)(\bar{R} L)$	yes	direct	-
$(\bar{L} R)(\bar{L} R)$	yes	direct	-
B-violating	yes	-	-

ALP—SMEFT interference

One-loop results for the ALP source terms in the Warsaw basis:

Operator class	Warsaw basis	Way of generation	
4-fermion operators			
$(\bar{L} L)(\bar{L} L)$	yes	-	EOM
$(\bar{R} R)(\bar{R} R)$	yes	-	EOM
$(\bar{L} L)(\bar{R} R)$	yes	direct	EOM
$(\bar{L} R)(\bar{R} L)$	yes	direct	-
$(\bar{L} R)(\bar{L} R)$	yes	direct	-
B-violating	yes	-	-

With very few exceptions, all operators in the Warsaw basis are generated at one-loop order in the ALP model!

Top chromo-magnetic moment

Sample application: chromo-magnetic dipole moment of the top quark

$$
\mathcal{L}_{t \bar{t} g}=g_{s}\left(\bar{t} \gamma^{\mu} T^{a} t G_{\mu}^{a}+\frac{\hat{\mu}_{t}}{2 m_{t}} \bar{t} \sigma^{\mu \nu} T^{a} t G_{\mu \nu}^{a}+\frac{i \hat{d}_{t}}{2 m_{t}} \bar{t} \sigma^{\mu \nu} \gamma_{5} T^{a} t G_{\mu \nu}^{a}\right)
$$

with:

$$
\hat{\mu}_{t}=\frac{y_{t} v^{2}}{g_{s}} \Re e C_{u G}^{33}, \quad \hat{d}_{t}=\frac{y_{t} v^{2}}{g_{s}} \Im m C_{u G}^{33}
$$

ALP-induced contribution follows from the solution of:

$$
\begin{aligned}
\frac{d}{d \ln \mu} \Re e C_{u G}^{33} & =\frac{S_{u G}^{33}}{(4 \pi f)^{2}}+\left(\frac{15 \alpha_{t}}{8 \pi}-\frac{17 \alpha_{s}}{12 \pi}\right) \Re e C_{u G}^{33}+\frac{9 \alpha_{s}}{4 \pi} y_{t} C_{G}+\frac{g_{s} y_{t}}{4 \pi^{2}} C_{H G} \\
\frac{d}{d \ln \mu} C_{G} & =\frac{S_{G}}{(4 \pi f)^{2}}+\frac{15 \alpha_{s}}{4 \pi} C_{G} \\
\frac{d}{d \ln \mu} C_{H G} & =\left(\frac{3 \alpha_{t}}{2 \pi}-\frac{7 \alpha_{s}}{2 \pi}\right) C_{H G}+\frac{g_{s} y_{t}}{4 \pi^{2}} \Re e C_{u G}^{33}
\end{aligned}
$$

Top chromo-magnetic moment

At leading logarithmic order, one finds: [Galda, MN, Remner: 2105.01078]

$$
\begin{aligned}
\hat{\mu}_{t} & \approx-\frac{8 m_{t}^{2}}{(4 \pi f)^{2}}\left[c_{t t} C_{G G} \ln \frac{4 \pi f}{m_{t}}-\frac{9 \alpha_{s}}{4 \pi} C_{G G}^{2} \ln ^{2} \frac{4 \pi f}{m_{t}}\right] \\
& \approx-\left(5.87 c_{t t} C_{G G}-1.98 C_{G G}^{2}\right) \cdot 10^{-3} \times\left[\frac{1 \mathrm{TeV}}{f}\right]^{2}
\end{aligned}
$$

Combined with experimental bounds from CMS (2019), we obtain:

$$
\begin{array}{cc}
-0.68<\left(c_{t t} C_{G G}-0.34 C_{G G}^{2}\right) \times\left[\frac{1 \mathrm{TeV}}{f}\right]^{2}<2.38 \quad(95 \% \mathrm{CL}) \\
\begin{array}{c}
\text { color dipole } \\
\text { operator }
\end{array} & \begin{array}{c}
\text { Weinberg 3-gluon } \\
\text { operator }
\end{array}
\end{array}
$$

Comparable to strongest bounds following from collider and flavor physics!

Summary

- Axions and axion-like particles belong to a class of BSM particles which interact via higher-dimensional operators with the SM
- They are an interesting target for searches in high-energy physics, using flavor, collider and precision probes; however direct searches are strongly model dependent
- Even a light ALP provides source terms for (almost) all D=6 SMEFT operators: ALP-SMEFT interference
- Indirect searches thus provide a complementary way to constrain ALP couplings using a global fit to precision data: electroweak precision test, top and Higgs physics, flavor physics, $(g-2)_{\mu}, \ldots$

