

Observations (evidence) of new structure in $J/\psi J/\psi$ ($J/\psi\psi(2S)$) mass spectrum

Speaker:

Muhammad Ahmad

for CMS/ATLAS Collaboration

Tsinghua University, Beijing, China

Workshop on standard model and beyond, CORFU, Greece (Aug 28-Sept. 8)

Aug 29, 2022

New Domain of Exotics: All-Heavy Tetra-quarks

First mention of 4c states at 6.2 GeV (1975): Prog. of Theo. Phys. Vol. 54, No. 2

(Just one year after the discovery of J/ψ)

• First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

L	S	JPC	Mass (GeV)		(0	$(cc)_{\underline{6}} - (cc)_{\underline{6}}$) ₆ *
1	0	$1^{}$	6.55			 	
	$\frac{1}{2}$	$0^{-}, 1^{-}, 2^{-}, 3^{-}$		L	S	$\mathbf{J}^{\mathbf{PC}}$	Mass (GeV)
2	0	2++	$6.78 \bullet (CC)_{2}$	$* - (\overline{cc})_{\alpha} =$	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	1	1 ⁺⁻ , 2 ⁺⁻ , 3 ⁺⁻	(cc) <u>3</u>	$1 - (00)_{3}$	0	1	6.82
	2	$0^{++}, 1^{++}, 2^{++}, 3^{++}, 4^{++}$		2	0	2++	7.15
3	0 1 2	$3^{}$ $2^{-+}, 3^{-+}, 4^{-+}$ $1^{}, 2^{}, 3^{}, 4^{}, 5^{}$	6.98	3	0	3	7.41

- Many recent theoretical studies on $(c\bar{c}c\bar{c})$, $(b\bar{b}b\bar{b})$, $(b\bar{b}c\bar{c})$:
 - controversial on existence of bound states below $\eta_b \eta_b$ threshold;
 - consistent on existence of resonant states above $\eta_b \eta_b$ threshold.

Aug 29, 2022

Introduction

- Exotic hadrons composed of four $(qq\bar{q}\bar{q}\bar{q})$ or five quarks ($qqq\bar{q}\bar{q}\bar{q})$ predicted by theory They provide an unique environment to study the strong interaction and confinement
- A series of states consistent with containing four quarks have been discovered
- The existence of pentaquark states and their interpretation is not well established so far

In this talk

- Observation of di-charmonium excess in the four-muon final state with the ATLAS detector (<u>ATLAS-CONF-2022-040</u>)
- Observation of new structures in the $J/\psi J/\psi$ mass spectrum in PP collisions at
 - $\sqrt{s} = 13 \text{ TeV}$ with CMS detector (CMS-BPH-21-003)

Aug 29, 2022

Tetra-quark in four-muon final state(LHCb)

- Observation of a narrow resonance at 6.9 GeV in $J/\psi J/\psi \rightarrow 4\mu$ mass spectrum
- Near threshold enhancement
 - Mixture of multiple four-charm quarks states
 - Feed-down decays of four-charm states
 - Re-scattering of charmonium final states

No interference model with NRSPS

 $m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\mathrm{MeV}$

Aug 29, 2022

M. Ahmad

arXiv:2006.16957

Interference with NRSPS $m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$

 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \,\mathrm{MeV}$

Observation in J/ ψ J/ ψ (ψ (2S)) \rightarrow 4 μ mass spectrum (ATLAS)

- Full RunII data (139 fb⁻¹) recorded by ATLAS(Blinded signal region)
- Background MC samples (simulated with Pythia8)
- Signal MC samples with JHU (m = 6.9 GeV, width =0.1, spin = 0)
- **Prompt**: Single parton scattering (SPS), Double Parton scattering(DPS)
- Nonprompt: $b\bar{b} \rightarrow J/\psi J/\psi$
- Others: charmonium includes fake muons(data driven)

Signal region	SPS/DPS control region	non-prompt region				
Di-muon or tri-muon triggers, Opposite charged muons from the same J/ψ or $\psi(2S)$ vertex, Loose muon ID, $p_T^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons $m_{J/\psi} \in \{2.94, 3.25\}$ GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ GeV, Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{di-\mu}/N < 100$,						
Vertex $L_{xy}^{4\mu} < 0.2 \text{ mm}$	Vertex $\chi^2_{4\mu}/N > 6$,					
$m_{4\mu} < 7.5$ GeV, $\Delta R < 0.25$ between charmonia	$\begin{vmatrix} 7.5 \text{ GeV} < m_{4\mu} < 12.0 \text{ GeV} \text{ (SPS)} \\ 14.0 \text{ GeV} < m_{4\mu} < 25.0 \text{ GeV} \text{ (DPS)} \end{vmatrix}$	$\left L_{xy}^{\text{di-}\mu} > 0.4 \text{ mm} \right $				

Signal (CR) region and event selection

SPS shape validation

Aug 29, 2022

Observation in J/ ψ J/ $\psi \rightarrow$ 4 μ mass spectrum (ATLAS)

3 resonance fit: 2 out of 4 degenerate solutions

- 70% worse fit quality for 2-resonance fit
- LHCb model II is disfavored due to bad fit quality

significance of 3rd resonance: 10σ

- Feed down from J/ ψ + ψ (2S) included in systematics
- Other higher dicharmonium resonances not included

Fitted masses and widths

(GeV)		m_0	Γ_0	m_1	Γ_1
di- <i>J /w</i>		$6.22 \pm 0.05^{+0.04}_{-0.05}$	$0.31 \pm 0.12^{+0.07}_{-0.08}$	$6.62 \pm 0.03^{+0.02}_{-0.01}$	$0.31 \pm 0.09^{+0.06}_{-0.11}$
	Γ	<i>m</i> ₂	Γ_2	-	_
		$6.87 \pm 0.03^{+0.06}_{-0.01}$	$0.12 \pm 0.04^{+0.02}_{-0.02}$	_	_

Consistent with LHCb model I (no interference with NRSPS)

6.9 GeV confirmed, best fit with 3 interfering resonances, other explanations possible

Aug 29, 2022

Evidence in $J/\psi\psi(2S) \rightarrow 4\mu$ mass spectrum (ATLAS)

Fitted mass in SR (Model A and Model B)

Model A:

- Significance (7.2 GeV) = 3.2σ Model B:
- $J/\psi + \psi(2S)$ $6.78 \pm 0.36^{+0.35}_{-0.54}$ $0.39 \pm 0.11^{+0.11}_{-0.07}$ model B
- Significance (6.9 GeV) = 4.3σ

Evidence of 6.9 GeV, hints for 7.2 GeV. More data is needed to explore further Aug 29, 2022 M. Ahmad

$J/\psi J/\psi$ --Data samples & Event selections (CMS)

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Trigger: 3μ with a J/ ψ mass window, μ p_T from J/ ψ >3.5 GeV for 2017&2018 data
- Blinded signal region: [6.2,7.8] GeV based on preliminary investigation on data collected in 2011-2012
- Main selections:
 - Fire corresponding trigger in each year
 - $p_T(\mu) \ge 2.0 \text{ GeV}; |\eta(\mu)| \le 2.4; p_T(\mu) (J/\psi) \ge 3.5 \text{ GeV} (2017\&2018); \text{ soft muon ID (very loose)}$
 - $p_T(\mu^+\mu^-) >= 3.5 \text{ GeV}; m(\mu^+\mu^-) \text{ in } [2.95, 3.25] \text{ GeV}; \text{ then constrain } m(\mu^+\mu^-) \text{ to } J/\psi \text{ mass}$
 - 4μ vertex probability >0.005
 - Multiple candidates treatment:
 - Select best combination of same 4μ (~0.2%) with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m2}}\right)^2$$

• Keep all candidates arising from >=4 μ (~0.2%)

Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

Aug 29, 2022

CMS background (BW0 + NRSPS + DPS)

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of our NRSPS model at threshold though one floating parameter?
 - BW0 parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Aug 29, 2022

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)

A	A shoulder $\chi^2 prob = 51\%$ [6.2,15] GeV
	CMS Preliminary 135 fb ⁻¹ (13 TeV)
	160 X(6900) J Data — Fit
Exp. Fit $m(BW1)$ Γ(BW1) $m(6900)$ Γ(6900)	
LHCb [15] Model I unrep. unrep. 6905 \pm 11 \pm 7 80 \pm 19 \pm 33	
CMS Model I 6550 ± 10 112 ± 27 6927 ± 10 117 ± 24	
CMC Data sharra a sharrahar hafara DW1	
• CMS Data snows a shoulder before B w I	
 CMS shoulder helps make BW1 distinct 	$\chi^2 prob = 10^{-4}$
• Deag not degenibe well ding	²⁰ [6.2, 7.8] GeV
• Does not describe well dips	
X(6900) parameters are in good agreement	
·1 IICI	\sim 220 \sim
with LHCb	$\gtrsim 200$ E LHCb X(6900) $-$ Total fit
CMS vs LHCb comparisons	≈ 160 $=$ 1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $=$ - Threshold BW2 =
 135/9 ≈ 15X (int. lum.) 	
• $(5/3)4 \approx 8X$ (muon accentance due to	
pseudo-rapidity range)	
• Higher muon p_{\pm} (>3.5 or 2.0 GeV vs.)	
	$\frac{1}{5}$ 20 20 20 20 20 20 20 20 20 20 20 20 20
> 0.6 GeV)	
 Similar number of final events 	6200 7000 <u>8000</u> 9000
	$M_{\rm di-J/\psi}~({\rm MeV}/c^2)$

Aug 29, 2022

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)

						da
Exp.	Fit	<i>m</i> (BW1)	Γ(BW1)	<i>m</i> (6900)	Γ(6900)	andi
LHCb [15]	Model I	unrep.	unrep.	$6905\pm11\pm7$	$80\pm19\pm33$	Ö
CMS	Model I	6550 ± 10	112 ± 27	6927 ± 10	117 ± 24	
LHCb [15]	Model II	6741 ± 6	288 ± 16	$6886 \pm 11 \pm 11$	$168\pm33\pm69$	
CMS	Model II	6736 ± 38	439 ± 65	6918 ± 10	187 ± 40	

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

All CMS fits presented are not very good: ...other interference scenarios are under study in CMS

Aug 29, 2022

Aug 29, 2022

Summary and Outlook

- Significant excess has been in $J/\psi J/\psi$ observed and a resonance at ~6.9 GeV is confirmed by both CMS and ATLAS, consistent with LHCb
- Best description of ATLAS given by a 3-resonance (2 near threshold) model with interference
- Excess observed in the ATLAS data in $J/\psi + \psi(2S)$ channel at 6.9 and 7.2 GeV, more data is needed to explore it further
- A family of structures, candidates for all-charm tetra-quarks!
- CMS found two new structures, provisionally named as X(6600), X(7200)
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand, new window to understand strong interaction

Thanking you for your attentions

Aug 29, 2022