
Multicritical Point Principle 
and 

Electroweak Scale
September 7, 2022

in
the workshop on the standard model and beyond 

Hikaru KAWAI

(National Taiwan University)

Based on collaborations with 
Yuta Hamada, Kiyoharu Kawana, Kin-ya Oda, and Kei Yagyu: 
e-Print: 2202.04221, …



1. Possibility of Desert

2. Naturalness and Self-tuning Mechanisms

3. Generalized MPP

4. Emergence of Electroweak Scale

Plan of the talk



1. Possibility of Desert



Desert

Experimentally  LHC
SM is good at least below a few TeV.

Theoretically      UV region of SM by RG  

SM is good to high energy scales.

Ytop

U(1)
SU(2)
SU(3)
Higgs self coupling

Higgs mass 2

log10Λ[GeV}

All the couplings are small and 
the perturbative picture is very 
good up to the Planck scale.



(1) The three quantities,

become zero around the string scale.

( ), ,B B Bmλλ β λ

Froggatt and Nielsen ’95.
Multiple Point Criticality Principle (MPP)

(2) The Higgs potential becomes flat (or zero) 

around the string scale. 

V

RG analyses indicate



We can make a realistic model of inflation by introducing
non-minimal coupling 𝝃𝝃𝝃𝝃𝒉𝒉𝟐𝟐 with a rather small 𝝃𝝃~𝟏𝟏𝟏𝟏.
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In the Einstein frame the 
effective potential becomes
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Hamada, Oda, Park and HK
Bezrukov,ShaposhnikovHiggs inflation



It is natural to imagine that SM is directly 
connected to the string theory at the Planck scale 
without large modification.

SM+𝜶𝜶

string theory

𝒎𝒎𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏

↑
desert

In short, desert is very probable. 

Then we have to think about the naturalness 
problem seriously.



2. Naturalness and Self-tuning 
mechanisms



Suppose the underlying fundamental theory, 
such as string theory, has the momentum 
scale mS and the coupling constant gS .

The naturalness problem

Then, by dimensional analysis, the 
parameters of the low energy effective 
theory are given as follows:



dimension -2  (Newton constant) 𝐺𝐺𝑁𝑁 =
𝐶𝐶𝐺𝐺𝑁𝑁 𝑔𝑔𝑆𝑆
𝑚𝑚𝑠𝑠
2

dimension  0 
(gauge and Higgs couplings)

𝑔𝑔1,𝑔𝑔2,𝑔𝑔3, 𝜆𝜆𝐻𝐻
= 𝐶𝐶𝑔𝑔1,𝑔𝑔2,𝑔𝑔3,𝜆𝜆𝐻𝐻(𝑔𝑔𝑆𝑆)

dimension 2  (Higgs mass) 𝑚𝑚𝐻𝐻
2 = 𝐶𝐶𝑚𝑚𝐻𝐻 𝑔𝑔𝑠𝑠 𝑚𝑚𝑆𝑆

2

unnatural ! → 𝑚𝑚𝐻𝐻
2~ 100GeV 2 ↔ 𝑚𝑚𝑆𝑆

2~ 1017GeV 2

Λ = 𝐶𝐶Λ 𝑔𝑔𝑆𝑆 𝑚𝑚𝑠𝑠
4dimension 4 (cosmological constant)

unnatural ! !→ Λ~ 2~3 meV 4 ↔ 𝑚𝑚𝑆𝑆
4~ 1017GeV 4



The real values of the cosmological constant 
and Higgs mass are very unnatural.

Therefore, if nature is described by a 
fundamental theory with a definite 
momentum scale such as string theory, 
the theory should do fine tunings by itself.



There are several attempts to extend the 
conventional framework of local field theory in 
order to solve the fine tuning problem.
• asymptotic safety

Weinberg, Kitazawa-Ninomiya-HK, 
Shaposhnikov, …

• multicritcal point principle
Bennett-Froggatt-Nielsen

• classical conformality
Bardeen, Meissner-Nicolai,
Foot-Kobakhidze-McDonald-Volkas,
Iso-Okada-Orikasa, …

• baby universe and multi-local action
Coleman,
Okada-HK, Hamada-Kawana-HK, …

They are related.



Imagine a system that is described by the path 
integral of not the canonical ensemble

MPP of Bennett Froggatt and Nielsen

[ ] [ ]( )exp ,d Sϕ ϕ−∫
but the micro canonical ensemble

[ ] [ ]( ) ,d S Cϕ δ ϕ −∫
or an even more general ensemble  (next slide)

[ ] [ ] [ ]( )1 2, , .d f S Sϕ ϕ ϕ∫ 

Still the system is equivalent to the ordinary field 
theory in the large space-time volume limit.
But the parameters of the corresponding field theory 
are automatically fixed such that the vacuum is at a 
(multi-) critical point.



In fact we can show that the low energy effective 
theory of QG / string theory is expressed as a 
function of local actions:

( )eff 1 2, ,
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Here 𝑶𝑶𝒊𝒊 are local scalar operators such as    
𝟏𝟏 ,𝝃𝝃 ,𝝃𝝃𝝁𝝁𝝁𝝁𝝃𝝃𝝁𝝁𝝁𝝁 ,𝑭𝑭𝝁𝝁𝝁𝝁 𝑭𝑭𝝁𝝁𝝁𝝁,𝝍𝝍𝜸𝜸𝝁𝝁𝑫𝑫𝝁𝝁𝝍𝝍 ,⋯ .

Integrating coupling constants

Coleman ‘89
Tsuchiya-Asano-HK



Because 𝑺𝑺𝐞𝐞𝐞𝐞𝐞𝐞 is a function of 𝑺𝑺𝒊𝒊’s , we can express 
𝐞𝐞𝐞𝐞𝐞𝐞(𝒊𝒊𝑺𝑺𝐞𝐞𝐞𝐞𝐞𝐞) by a Fourier transform as

( )( ) ( )1 2 1 2exp , , , , exp ,eff i i
i

iS S S d w i Sλ λ λ λ 
= 

 
∑∫ 

where 𝝀𝝀𝒊𝒊’s are Fourier conjugate variables to 𝑺𝑺𝒊𝒊’s, 
and 𝒘𝒘 is a function of 𝝀𝝀𝒊𝒊’s .

[ ] ( ) ( ) [ ]effexp exp .i i
i

dZ d iS Sd w iφ λ λ φ λ 
= = 

 
∫ ∫ ∑∫

Then the path integral for 𝑺𝑺𝐞𝐞𝐞𝐞𝐞𝐞 becomes 

Because 𝑶𝑶𝒊𝒊 are local operators, ∑𝒊𝒊 𝝀𝝀𝒊𝒊 𝑺𝑺𝒊𝒊 is an ordinary 
local action where 𝝀𝝀𝒊𝒊 are regarded as the coupling 
constants.

Therefore the system is the ordinary field theory, 
but we have to integrate over the coupling constants
with some weight 𝒘𝒘(𝝀𝝀).



If a small region 𝝀𝝀~𝝀𝝀(𝟏𝟏)dominates the 𝝀𝝀 integral,
it means that the coupling constants are fixed to 𝝀𝝀(𝟏𝟏).      

Nature does fine tunings

[ ] ( ) ( ) [ ]

( )

effexp exp
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∑∫ ∫ ∫

∫ = 𝑍𝑍 𝜆𝜆
Ordinary field theory



3. Generalized MPP



λ

vacE

Cλ

’14 ’15 Hamada, Kawana, HK

Essence:
We can approximate  𝒁𝒁 𝝀𝝀 = 𝐞𝐞𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗 𝝀𝝀 ,
because our universe has been cooled down for long time.

1) extremum
If 𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗 𝝀𝝀 is smooth and has an extremum at 𝝀𝝀𝑪𝑪 , the 

stationary point dominates and we have
𝐞𝐞𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗 𝝀𝝀 ~ 𝟐𝟐𝟐𝟐

𝒊𝒊 𝑽𝑽|𝑽𝑽′′ 𝝀𝝀𝒗𝒗 |
𝜹𝜹 𝝀𝝀 − 𝝀𝝀𝒗𝒗 + 𝑶𝑶(𝟏𝟏

𝑽𝑽
).

Thus 𝝀𝝀 is fixed to 𝝀𝝀𝑪𝑪 in the limit 𝑽𝑽 → ∞ .

space-time volume

Justification of MPP



2)  Kink (need not be an extremum)

If 𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗 𝝀𝝀 has a kink (as in the first order phase transition), 
𝒁𝒁 𝝀𝝀 = 𝐞𝐞𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗 𝝀𝝀

~
𝒊𝒊
𝑽𝑽

𝟏𝟏
𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗′(𝝀𝝀𝒗𝒗 + 𝟏𝟏) −

𝟏𝟏
𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗′(𝝀𝝀𝒗𝒗 − 𝟏𝟏) 𝜹𝜹 𝝀𝝀 − 𝝀𝝀𝒗𝒗 + 𝑶𝑶(

𝟏𝟏
𝑽𝑽𝟐𝟐)

Thus 𝝀𝝀 is fixed to 𝝀𝝀𝑪𝑪 in the limit 𝑽𝑽 → ∞ . 

∫𝑎𝑎
𝑏𝑏 dx exp 𝑖𝑖𝐺𝐺𝑖𝑖 𝜑𝜑 𝑖𝑖

=
1
𝑖𝑖𝐺𝐺 exp 𝑖𝑖𝐺𝐺𝑖𝑖 𝜑𝜑 𝑖𝑖

a

b

+ O(
1

V2)

∫𝑎𝑎
𝑏𝑏 dx exp 𝑖𝑖𝐺𝐺𝑓𝑓(𝑖𝑖) 𝜑𝜑 𝑖𝑖

=
1
𝑖𝑖𝐺𝐺 exp 𝑖𝑖𝐺𝐺𝑓𝑓(𝑖𝑖 )

1
𝑓𝑓′(𝑖𝑖)𝜑𝜑 𝑖𝑖

a

b

+ O(
1

V2)

(𝑓𝑓is monotonic)
λ

vacE

Cλ

monotonic



On the other hand, if we consider the time 
evolution of universe, the definition of 𝒁𝒁(𝝀𝝀) is not 
a priori clear. For example, we need to specify the 
initial and final sates.

Generalization

However, even if we do not know the precise form 
of 𝒁𝒁(𝝀𝝀), we expect that 𝒁𝒁(𝝀𝝀)is determined by the 
late stage of the universe, because most of the 
space-time volume comes from the late stage.

From this we can make some predictions on 𝝀𝝀’s
under some circumstances as follows.



QCDθ

Z

1. It becomes important only after the QCD phase
transition.

2. The masses and life-times of hadrons are 
invariant under

𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 → −𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 .

⇒ We expect that 𝒁𝒁 is even in 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫.
⇒ 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 is tuned to 0 if 𝒁𝒁 behaves like

(1) Symmetry example 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 Nielsen, Ninomiya



Conditions:
1. Physics changes drastically at some 

value of the couplings.
2.  𝒁𝒁 is monotonic elsewhere.

⇒ It is probable that the couplings are 
tuned to that value as in the case of kink.

(2) Edge or drastic change

Hλ

Z

Cλ

Examples:
Cosmological constant,
Higgs inflation,
…

∞finite

V



In this way we may introduce 
the generalized MPP,
“ Coupling constants, which are relevant in low 
energy region, are tuned to values that 
significantly change the history of universe (or 
multiverse) when they are changed.”



Open questions

• Degenerate vacuum or flat potential?
• Origin of the weak scale? 
• Origin of the cosmological constant?
• How many parameters are tuned? 

Too much big fix?

⇒ We need the precise form of 𝒁𝒁(𝝀𝝀).

⇒ We should investigate the wave function 
of multiverse.                          Okada-HK

V



4. Emergence of Electroweak 
Scale



Weak scale as a non-perturbative effect
Basic assumptions:
(1) SM is directly connected to the string theory 

without large modification. 

(2) The fundamental scale is only the Planck/string 
scale, which appears as the cut-off of the field 
theory that we are considering.

Question:
How does the weak scale appear?

SM+

string 

ms

(3) Relevant operators (couplings with positive 
mass dimensions) are tuned by nature itself 
through the generalized MPP.



The simplest guess:
Weak scale appears as a non-perturbative effect.

Then it is related to the Planck scale as
𝒎𝒎𝑯𝑯 = 𝑴𝑴𝑷𝑷 𝒆𝒆−𝐏𝐏𝐜𝐜𝐏𝐏𝐜𝐜𝐜𝐜./𝒈𝒈𝒔𝒔 .

and the large hierarchy is naturally understood.

In order to make a phenomenologically acceptable 
model, we consider a Coleman-Weinberg like 
model in which 
we first make a mass scale independently to SM 
sector, and then transfer it to SM through VEV.



4-1 Multi-criticalities of 
Two Real Scalar Model



Two real scalar model

The simplest model of the Coleman-Weinberg 
like mechanism is the two real scalar model:

𝓛𝓛𝝓𝝓𝑺𝑺 = 𝟏𝟏
𝟐𝟐
𝝏𝝏𝝓𝝓 𝟐𝟐 + 𝟏𝟏

𝟐𝟐
𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝑽𝑽

𝑽𝑽 = 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓𝟑𝟑 + 𝝀𝝀𝝓𝝓
𝟒𝟒!
𝝓𝝓𝟒𝟒

+𝝁𝝁𝑺𝑺𝑺𝑺𝟐𝟐 + 𝝀𝝀𝑺𝑺
𝟒𝟒!
𝑺𝑺𝟒𝟒

+𝝁𝝁𝝓𝝓𝑺𝑺𝝓𝝓𝑺𝑺𝟐𝟐 + 𝝀𝝀𝝓𝝓𝑺𝑺𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐

0
Here we assume the 𝒁𝒁𝟐𝟐 symmetry for 𝑺𝑺:

𝑺𝑺 → −𝑺𝑺.
The 𝝁𝝁𝝓𝝓𝑺𝑺𝝓𝝓𝑺𝑺𝟐𝟐 term is eliminated by the shift of 𝝓𝝓.



The basic assumptions are

𝑽𝑽 = 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓𝟑𝟑 +
𝝀𝝀𝝓𝝓
𝟒𝟒!
𝝓𝝓𝟒𝟒

+𝝁𝝁𝑺𝑺𝑺𝑺𝟐𝟐 + 𝝀𝝀𝑺𝑺
𝟒𝟒!
𝑺𝑺𝟒𝟒 + 𝝀𝝀𝝓𝝓𝑺𝑺

𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐

(1) This action is valid up to the Planck scale 
where the theory is connected to string theory.
⇒ We can treat the theory as a local field 

theory with cutoff momentum  𝜦𝜦~𝑴𝑴𝑷𝑷 .

(2) The coupling constants with positive mass 
dimensions are tuned to one of the critical 
points with maximum criticality.



What kind of criticality? 

According to the generalized MPP, we consider 
the history of the universe.
A critical point is a point in the space of coupling 
constants at which the history of the universe 
changes significantly in its neighborhood..

For simplicity, we consider the critical point of 
the vacuum. That is, in the space of coupling 
constants, we consider the point at which the 
effective potential at zero temperature changes 
significantly.



Criticality for 𝝁𝝁𝑺𝑺
The behavior of 𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 around 𝝓𝝓 = 𝑺𝑺 = 𝟏𝟏 changes 
significantly at 𝝁𝝁𝑺𝑺 = 𝟏𝟏:

𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 𝝓𝝓~𝟏𝟏,𝑺𝑺~𝟏𝟏 ~ 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝑺𝑺𝑺𝑺𝟐𝟐

𝑆𝑆

𝜇𝜇𝑆𝑆 > 0

𝑆𝑆

𝜇𝜇𝑆𝑆 < 0

⇒ 𝝁𝝁𝑺𝑺 = 𝟏𝟏 is a criticality.
In the following, we concentrate on this case: 

𝝁𝝁𝑺𝑺 = 𝟏𝟏 . 



One-loop effective potential

In the following, we also assume that the 𝒁𝒁𝟐𝟐
invariance for 𝑺𝑺 does not spontaneously break down.

𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 𝝓𝝓,𝑺𝑺 = 𝟏𝟏 = 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐
𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝀𝝀𝝓𝝓

𝟒𝟒!
𝝓𝝓𝟒𝟒

+
𝑴𝑴𝝓𝝓
𝟒𝟒

𝟔𝟔𝟒𝟒𝟐𝟐𝟐𝟐
𝐏𝐏𝐜𝐜𝐥𝐥

𝑴𝑴𝝓𝝓
𝟐𝟐

𝝁𝝁𝟐𝟐
+ 𝑴𝑴𝑺𝑺

𝟒𝟒

𝟔𝟔𝟒𝟒𝟐𝟐𝟐𝟐
𝐏𝐏𝐜𝐜𝐥𝐥 𝑴𝑴𝑺𝑺

𝟐𝟐

𝝁𝝁𝟐𝟐

𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 has three parameters with positive mass 
dimensions 𝝁𝝁𝟏𝟏,𝝁𝝁𝟐𝟐,𝝁𝝁𝟑𝟑. 

⇒ Find triple critical points of 𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 .

𝑴𝑴𝝓𝝓
𝟐𝟐 𝝓𝝓 = 𝝁𝝁𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓 + 𝝀𝝀𝝓𝝓

𝟐𝟐
𝝓𝝓𝟐𝟐,

𝑴𝑴𝑺𝑺
𝟐𝟐 𝝓𝝓 = 𝝁𝝁𝑺𝑺 + 𝝀𝝀𝝓𝝓𝑺𝑺

𝟐𝟐
𝝓𝝓𝟐𝟐 .

0



RG analysis

Assumption:  Bare couplings at the Planck scale
𝝀𝝀𝝓𝝓𝟏𝟏 , 𝝀𝝀𝑺𝑺𝟏𝟏 , 𝝀𝝀𝝓𝝓𝑺𝑺𝟏𝟏 > 𝟏𝟏.

Beta functions:

𝜷𝜷𝝀𝝀𝑺𝑺 =
𝟑𝟑

𝟏𝟏𝟔𝟔𝟐𝟐𝟐𝟐
𝝀𝝀𝑺𝑺𝟐𝟐 + 𝝀𝝀𝝓𝝓𝑺𝑺𝟐𝟐

𝜷𝜷𝝀𝝀𝝓𝝓𝑺𝑺 =
𝟏𝟏

𝟏𝟏𝟔𝟔𝟐𝟐𝟐𝟐 𝝀𝝀𝝓𝝓𝝀𝝀𝝓𝝓𝑺𝑺 + 𝝀𝝀𝑺𝑺𝝀𝝀𝝓𝝓𝑺𝑺 + 𝟒𝟒𝝀𝝀𝝓𝝓𝑺𝑺𝟐𝟐

𝜷𝜷𝝀𝝀𝝓𝝓 =
𝟑𝟑

𝟏𝟏𝟔𝟔𝟐𝟐𝟐𝟐
𝝀𝝀𝝓𝝓𝟐𝟐 + 𝝀𝝀𝝓𝝓𝑺𝑺𝟐𝟐

When we decrease the renormalization point, 
one of the couplings becomes zero.  

local field theory string 

𝑴𝑴𝑷𝑷

𝐕𝐕 = 𝝀𝝀𝝓𝝓
𝟒𝟒!
𝝓𝝓𝟒𝟒 + 𝝀𝝀𝝓𝝓𝑺𝑺

𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 + 𝝀𝝀𝑺𝑺

𝟒𝟒!
𝑺𝑺𝟒𝟒+..



We assume 𝝀𝝀𝝓𝝓 becomes zero first at 𝝁𝝁 = 𝝁𝝁∗ .

𝑀𝑀𝑃𝑃
𝜇𝜇∗

𝝀𝝀𝑺𝑺𝟏𝟏

𝜇𝜇

𝝀𝝀𝝓𝝓𝟏𝟏

𝝀𝝀𝝓𝝓𝑺𝑺0

This is possible if  𝝀𝝀𝝓𝝓𝑺𝑺𝟏𝟏 ≫ 𝝀𝝀𝑺𝑺𝟏𝟏 > 𝝀𝝀𝝓𝝓𝟏𝟏.

Then it is expected 

𝝓𝝓 ≠ 𝟏𝟏⇒ 𝑺𝑺 becomes massive through 𝝀𝝀𝝓𝝓𝑺𝑺
𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐

⇒ 𝑺𝑺 = 𝟏𝟏 (consistent)

𝜇𝜇∗~𝑀𝑀𝑃𝑃𝐺𝐺
−
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3𝜆𝜆𝜙𝜙𝑆𝑆0

2



Triple criticality for 𝝁𝝁𝟏𝟏,𝝁𝝁𝟐𝟐,𝝁𝝁𝟑𝟑

Taking the renormalization point to 𝝁𝝁∗, we have

𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞 𝝓𝝓,𝑺𝑺 = 𝟏𝟏 = 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐
𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑

𝟑𝟑!
𝝓𝝓𝟑𝟑

+
𝑴𝑴𝝓𝝓
𝟒𝟒

𝟔𝟔𝟒𝟒𝟐𝟐𝟐𝟐
𝐏𝐏𝐜𝐜𝐥𝐥

𝑴𝑴𝝓𝝓
𝟐𝟐

𝝁𝝁∗𝟐𝟐
+ 𝑴𝑴𝑺𝑺

𝟒𝟒

𝟔𝟔𝟒𝟒𝟐𝟐𝟐𝟐
𝐏𝐏𝐜𝐜𝐥𝐥 𝑴𝑴𝑺𝑺

𝟐𝟐

𝝁𝝁∗𝟐𝟐

𝑴𝑴𝝓𝝓
𝟐𝟐 𝝓𝝓 = 𝝁𝝁𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓,

𝑴𝑴𝑺𝑺
𝟐𝟐 𝝓𝝓 = 𝝀𝝀𝝓𝝓𝑺𝑺

𝟐𝟐
𝝓𝝓𝟐𝟐 .

As we will see, at each critical point, the first 
three terms balance with the last term.
⇒ 𝝁𝝁𝟏𝟏,𝝁𝝁𝟐𝟐,𝝁𝝁𝟑𝟑~𝑶𝑶(𝝀𝝀𝝓𝝓𝑺𝑺𝟐𝟐 )
⇒ the 4th term can be neglected if 𝝀𝝀𝝓𝝓𝑺𝑺 is small.



Thus we have

𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞(𝝓𝝓) = 𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐
𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝒗𝒗

𝟐𝟐⋅𝟒𝟒!
𝝓𝝓𝟒𝟒𝐏𝐏𝐜𝐜𝐥𝐥 𝝓𝝓𝟒𝟒

𝑴𝑴𝟐𝟐 ,

𝒗𝒗 =
𝝀𝝀𝝓𝝓𝑺𝑺
𝟐𝟐

𝟔𝟔𝟐𝟐𝟐𝟐
, 𝑴𝑴 = 𝐏𝐏𝐜𝐜𝐏𝐏𝐜𝐜𝐜𝐜.𝝁𝝁∗ . 

The question is reduced to classifying the triple 
criticalities of this function.

First, it is easy to show that generically 𝑽𝑽𝐞𝐞𝐞𝐞𝐞𝐞(𝝓𝝓)
has five extrema.
We name them 1, 2, 3, 4, and 5 from left to right on 
the 𝝓𝝓 axis. (1,3,5 local minima; 2,4 local maxima.)
Then the triple criticality can be classified as 
follows.



Coleman-Weinberg
𝒗𝒗𝝓𝝓 = 𝐏𝐏𝐜𝐜𝐏𝐏𝐜𝐜𝐜𝐜.𝑴𝑴
𝒎𝒎𝝓𝝓

𝟐𝟐 = 𝐏𝐏𝐜𝐜𝐏𝐏𝐜𝐜𝐜𝐜. 𝒗𝒗𝑴𝑴𝟐𝟐

𝒗𝒗 =
𝝀𝝀𝝓𝝓𝑺𝑺
𝟐𝟐

𝟔𝟔𝟐𝟐𝟐𝟐
, 𝑴𝑴 = 𝐏𝐏𝐜𝐜𝐏𝐏𝐜𝐜𝐜𝐜.𝝁𝝁∗



4-2 Coupling to SM



Coupling the two real scalar model to SM

ℒ = ℒ𝑺𝑺𝑴𝑴 +
𝟏𝟏
𝟐𝟐
𝝏𝝏𝝁𝝁𝝓𝝓𝝏𝝏𝝁𝝁𝝓𝝓 +

𝟏𝟏
𝟐𝟐
𝝏𝝏𝝁𝝁𝑺𝑺𝝏𝝏𝝁𝝁𝑺𝑺 − 𝑽𝑽

ℒ𝑺𝑺𝑴𝑴: SM action without Higgs potential

𝑽𝑽 = 𝝀𝝀𝑯𝑯 𝑯𝑯†𝑯𝑯 𝟐𝟐 + 𝝀𝝀𝝓𝝓𝝓𝝓𝟒𝟒 + 𝝀𝝀𝑺𝑺𝑺𝑺𝟒𝟒
+𝝀𝝀𝝓𝝓𝑺𝑺𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 − 𝝀𝝀𝝓𝝓𝑯𝑯𝝓𝝓𝟐𝟐 𝑯𝑯†𝑯𝑯 + 𝝀𝝀𝑺𝑺𝑯𝑯𝐒𝐒𝟐𝟐 𝑯𝑯†𝑯𝑯
+𝝁𝝁𝑯𝑯 𝑯𝑯†𝑯𝑯 + 𝝁𝝁𝑺𝑺𝑺𝑺𝟐𝟐 + 𝝁𝝁𝝓𝝓𝑯𝑯𝝓𝝓 𝑯𝑯†𝑯𝑯 + 𝝁𝝁𝝓𝝓𝑺𝑺𝝓𝝓𝑺𝑺𝟐𝟐
+𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓𝟑𝟑

Total action:

0 (by the shift of 𝜙𝜙)

We have 6 parameters with positive mass 
dimensions. According to MPP, they should be 
tuned to a sextuple critical point. 



Criticality for 𝝁𝝁𝑯𝑯,𝝁𝝁𝑺𝑺,𝝁𝝁𝝓𝝓𝑺𝑺

In fact, the behavior of 𝑽𝑽 around 𝑯𝑯 = 𝑺𝑺 = 𝝓𝝓 = 𝟏𝟏
changes significantly, when each of 𝝁𝝁𝑯𝑯,𝝁𝝁𝑺𝑺,𝝁𝝁𝝓𝝓𝑺𝑺
changes its sign:

𝑽𝑽~𝝁𝝁𝑯𝑯 𝑯𝑯†𝑯𝑯 + 𝝁𝝁𝑺𝑺𝑺𝑺𝟐𝟐 + 𝝁𝝁𝝓𝝓𝑺𝑺𝝓𝝓𝑺𝑺𝟐𝟐 +𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐𝝓𝝓𝟐𝟐.

In the following, we concentrate on the special 
case:

𝝁𝝁𝑯𝑯 = 𝝁𝝁𝑺𝑺 = 𝝁𝝁𝝓𝝓𝑺𝑺 = 𝟏𝟏.



𝑽𝑽 = 𝝀𝝀𝑯𝑯 𝑯𝑯†𝑯𝑯 𝟐𝟐 + 𝝀𝝀𝑺𝑺𝑺𝑺𝟒𝟒
−𝝀𝝀𝝓𝝓𝑯𝑯𝝓𝝓𝟐𝟐 𝑯𝑯†𝑯𝑯 + 𝝀𝝀𝝓𝝓𝑺𝑺𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 + 𝝀𝝀𝑺𝑺𝑯𝑯𝐒𝐒𝟐𝟐 𝑯𝑯†𝑯𝑯
+𝝁𝝁𝟏𝟏𝝓𝝓 + 𝝁𝝁𝟐𝟐𝝓𝝓𝟐𝟐 + 𝝁𝝁𝟑𝟑𝝓𝝓𝟑𝟑 + 𝝀𝝀𝝓𝝓𝝓𝝓𝟒𝟒

Then the problem is reduced to the two scalar 
case: 

Electroweak scale is generated non-perturbatively
from the Planck scale, as

𝑴𝑴𝐏𝐏 → 𝝓𝝓 ~𝝁𝝁∗ → 𝒎𝒎𝑯𝑯
𝟐𝟐 ~𝝀𝝀𝝓𝝓𝑯𝑯 𝝓𝝓 𝟐𝟐 .

𝑺𝑺 as dark matter
no vev: 𝑺𝑺 = 𝟏𝟏
heavy but not too heavy: 𝒎𝒎𝑺𝑺

𝟐𝟐~𝝀𝝀𝝓𝝓𝑺𝑺 𝝓𝝓 𝟐𝟐

couples to Higgs: 𝝀𝝀𝑺𝑺𝑯𝑯𝑺𝑺𝟐𝟐 𝑯𝑯†𝑯𝑯

𝜇𝜇∗~𝑀𝑀𝑃𝑃𝐺𝐺
−
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2



4-3 Phenomenological analyses
for 1234 criticality model   



Coleman-Weinberg



1234 criticality model

Excluded by XENON1T (green), the LHC data (orange), 
dark matter abundance (gray), no Landau pole below 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐆𝐆𝐞𝐞𝐕𝐕 (cyan).



Gravitational wave from the 1st order phase transition



Desert is probable from experiments and observations.

Summary

It is meaningful to investigate the possible modifications 
under the assumption that theory stays perturbative up 
to the Planck scale. 

QG/string theory seems to have a self-tuning mechanism. 
Although our understanding is not complete, we may use 
MPP as an ad hoc principle to reach the correct low 
energy theory that is valid up to the Planck scale.

It is natural to expect that SM with a small modification 
is directly connected to string theory at the Planck scale.

Naturalness may serve a good clue to such attempts.



Thank you very much.   
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