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Outline:
& Part I: Global Kleinian Spacetimes

& Part II: Classical Linearized
Metrics from 3-pt Scattering
Amplitudes

& Part III: Future Directions:
Mapping to the Celestial Torus



Part 1: Global Spacetimes

Lorentzian Taub-NUT in (7, 8, ¢, t) coordinates with parameters M, N
2
A2 1 = —f(r) (dE — 2N cosfdo)? + -

| fu(r)

fu(r) = r _EJ)F(?V; ') = M+ /MP N

+ (r? + N?)(d#? + sin® d¢?)
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Part 1: Global Spacetimes

ADM Mass NUT charge

Lorentzian Taub-NUT in (7, 8, ¢, t) coordinates with parameters M, N
2

ds?rN, L= —fu(r) (dt — 2N cos 8de)” + fir??“)

iy = _EJ)F(?V; =) = M4 /MEE N

+ (r? + N?)(d#? + sin® d¢?)

t — it (Becomes periodic)
Wick rotate: § — 0 (Becomes non-periodic)

N — N
Self-dual (M = N) Kleinian Taub-NUT:

M M
"= 22 (dt — 2M cosh 6de)? +

2 02 NI2N(A02 1 i h2 042
S T_Mdr (r® — M*)(df* + sinh” 6d¢~)

SL(2,R) x U(1) Killing symmetry group

2 _
dsTn =
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Compactify along R, p

,I:/

R const.

Y
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Raclariu, Strominger (2021)]
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Toric Penrose Diagrams

¢ Flat Klein Space
dsii, =dt* 4+ dz° — dz® — dy?
=dR? + R?>dy? — dp? — p?d¢?
Compactify along R, p

,I:/

Each point is It const.
aLorentzian |\N\N\. = = ----- p const
torus in ¢
and - Z  One component
h of null infinity
0 A
0

-
R

[Atanasov, Ball, Melton,
Raclariu, Strominger (2021)]
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Toric Penrose Diagrams

¢ Flat Klein Space & Kleinian Taub-NUT (M = N)
dsiiem =dt° + dz° — dz® — dy? dsty = Z=47 (dt — 2M cosh 0d¢)? + TH5Edr?
=dR® + R*dy* — dp” — p*d¢” — (% — M?)(d6? + sinh® 0dp?)
Compactify along R, p Compactify along r, 8
i/ r=—-M 7 const.
Each point 1s 1t const. , ! N - 0 const
a Lorentzian |\\\ = ~---- p const , ,

torus in ¢ <> One component
and Y . 7  One component of null infinity
h of null infinity TTlT TR AL 7 o
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Toric Penrose Diagrams

¢ Flat Klein Space
dsii, =dt* 4+ dz° — dz® — dy?
=dR? + R?>dy? — dp? — p?d¢?
Compactify along R, p

,I:/

R const.

Each point is
a Lorentzian
torus in ¢

and I .

Z  One component
of null infinity 0=0

Each point 1s

P>
R

[Atanasov, Ball, Melton,
Raclariu, Strominger (2021)]
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& Kleinian Taub-NUT (M = N)
dsty = T=37 (dt — 2M cosh 0d¢)* + “E47dr?
— (r? — M?)(d#* + sinh® 6d¢?)
Compactify along r, 6

r const.

< One component
of null infinity

2
~\o Vo %

< - = N
-~

. e _ - - R\
;0 a Lorentzian K== I - =
torus 0=0
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Wick rotate:
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Large Diffeomorphism to Kerr-Taub-NUT

Take the Lorentzian Kerr-Taub-NUT in (¢, 7,6, ¢) coordinates, with parameters M, N, a

t — 1t N — 1N
0 — 16 a — 1a

Wick rotate:

to obtain Kleinian Kerr-Taub-NUT.

In the self-dual case (M = N), there 1s a large diffeomorphism
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an ( 2 ) atl < 2 ’I“KTN—M—|—CL

relating Kleinian Taub-NUT « Kleinian Kerr-Taub-NUT!

Erin Crawley, Black Holes in Klein Space



Large Diffeomorphism to Kerr-Taub-NUT

Take the Lorentzian Kerr-Taub-NUT in (¢, 7,6, ¢) coordinates, with parameters M, N, a

t — 1t N — 1N
0 — 16 a — 1a

Wick rotate:

to obtain Kleinian Kerr-Taub-NUT.

In the self-dual case (M = N), there 1s a large diffeomorphism

Introduce
rectangular

tanh Or N tanh OxTN \/ rern — M — a coordinates
anh | —— | = tan

rTN = TKTN + CLCOSh(gKTN

relating Kleinian Taub-NUT < Kleinian Kerr-Taub-NUT!
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ZTN = ZKTN T G

t,x,y unchanged



Summary of Part 1
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® The toric Penrose diagram for self-dual TN

has expected black hole features
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Summary of Part 1
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® (2, 2) Signature (Kerr-) Taub-NUT 1s self-
dual when M = N

® The toric Penrose diagram for self-dual TN
has expected black hole features

® There exists a real diffeomorphism mapping
Taub-NUT < - Kerr-Taub-NUT

¢ In (t, x,y, z) coordinates, this takes the form
Z—>Z+a
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(Abridged) background: Our Goals: E.g. Schwarzschild, Kerr Taub-NUT, ...
& Duff (1973) & Show O(G) part of a stationary metric
Off-shell Feynman diagrams - can be obtained directly from on-shell
Schwarzschild solution classical scattering amplitudes
& More recently & Explicitly check that this procedure
On-shell Scattering Amplitudes = Classical reproduces the linearized metric for Kerr-
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Part 2: Kleinian Metrics from 3-pt Amplitudes

(Abridged) background:

& Duff (1973)
Off-shell Feynman diagrams -
Schwarzschild solution

& More recently
On-shell Scattering Amplitudes = Classical

black hole spacetimes
[A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White

(2016); D.A. Kosower, B. Maybee and D. O’Connell (2019); Y.F. Bautista,

A. Guevara, C. Kavanagh and J. Vines (2021); ...]

Black Test
Hole particle
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Our Goals: E.g. Schwarzschild, Kerr Taub-NUT, ...

& Show O(G) part of a stationary metric
can be obtained directly from on-shell
classical scattering amplitudes

& Explicitly check that this procedure
reproduces the linearized metric for Kerr-
Taub-NUT

& Motivate analytic

vate o ol
continuation, P2 =P1 P Emitted
diffeomorphism from / graviton
previous part
p . .
D1 | Massive particle




Set up

In (1, 3): ds* = (Muw + by + O(G?)) da* da”

Since h,, ~ O(G), it can be changed by linearized diffeomorphisms
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Set up

In (1, 3): ds® = (N + hyw + O(G?)) dzt dz”
l(e) (t,z,y,2)
Since h,, ~ O(G), it can be changed by linearized diffeomorphisms
mmm) Move to harmonic gauge, for which
R = hyw — 2000 O*h,, =0
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Set up

In (1, 3): ds® = (N + hyw + O(G?)) dzt dz”
O(G) (t,z,y, 2)
Since h,, ~ O(G), it can be changed by linearized diffeomorphisms

‘ Move to harmonic gauge, for which

h,zu/ = h,uu — %nuuh ) 8'uh,ul/ =0
so that Einstein’s linearized equations simplify to:

0%h,, = —167G T, (2)
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Set up

In (1, 3): ds® = (N + hyw + O(G?)) dzt dz”
O(G) (t,z,y, 2)
Since h,, ~ O(G), it can be changed by linearized diffeomorphisms

‘ Move to harmonic gauge, for which

h,ul/ = h,uu — %nuuh ) 8'uh,ul/ =0
so that Einstein’s linearized equations simplify to:

825“,/ = —167G T, () Conserved source

Solving for h,,, (using a retarded propagator) yields

B d4l€ eik-w
hV=—167TG/ — T,k
8 (2m)4 (KO +1i€)? — k uv (K)
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Set up

In (1, 3): ds® = (N + hyw + O(G?)) dzt dz”
O(G) (t,z,y, 2)
Since h,, ~ O(G), it can be changed by linearized diffeomorphisms

‘ Move to harmonic gauge, for which

h,ul/ = h,uu — %nuuh ) 8Mil,ul/ =0
so that Einstein’s linearized equations simplify to:
82BW/ = —167G T, () Conserved source

Solving for h,,, (using a retarded propagator) yields

d4k " Current
— et Ex. Schwarzschild:

with u* = (1,0,0,0)
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Connecting Amplitudes and Spacetimes 1n (1,3)

In (1, 3): 3
My =€, (R)TH (k) atki—k*>=0 , n>3

[Bautista, Guevara, Kavanaugh, Vines (2021) ;
Monteiro, O’Connell, Veiga, Sergola (2021)]
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Connecting Amplitudes and Spacetimes 1n (1,3)

In (1, 3): 3
M, =€ (R)TE (k) atki—k*=0, n>3

[Bautista, Guevara, Kavanaugh, Vines (2021) ;

Classical limit of n-point Monteiro, O’Connell, Veiga, Sergola (2021)]

graviton emission amplitude
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Connecting Amplitudes and Spacetimes 1n (1,3)

In (1, 3): }
./\/liL = efy(k)ﬂy(k) at ki —k*=0 , n >3

[Bautista, Guevara, Kavanaugh, Vines (2021) ;

Classical limit of n-point Graviton
po Monteiro, O’Connell, Veiga, Sergola (2021)]

graviton emission amplitude polarization
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Connecting Amplitudes and Spacetimes 1n (1,3)

In (1, 3): 3
./\/liL = efy(k)ﬁfw(k) at ki —k*=0 , n >3

[Bautista, Guevara, Kavanaugh, Vines (2021) ;

i imi -DOI raviton On-shell
Classical limit of n-point Gravito Monteiro, O’Connell, Veiga, Sergola (2021)]

graviton emission amplitude polarization  current

What happens for n=37

We want to consider stationary spacetimes, with T, (k) o< d(u - k) = §(k°)
& LHS vanishes because of kinematic constraints

® RHS vanishes since in Lorentzian signature, k? = 0 and k° = 0 cannot be simultaneously
satisfied
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Connecting Amplitudes and Spacetimes 1n (1,3)

In (1, 3): 3
./\/liL = efy(k)ﬁfw(k) at ki —k*=0 , n >3

[Bautista, Guevara, Kavanaugh, Vines (2021) ;

i imi -DOI aviton On-shell
Classical limit of n-point Gravito Monteiro, O’Connell, Veiga, Sergola (2021)]

graviton emission amplitude polarization  current

What happens for n=37

We want to consider stationary spacetimes, with T, (k) o< d(u - k) = §(k°)
& LHS vanishes because of kinematic constraints

® RHS vanishes since in Lorentzian signature, k? = 0 and k° = 0 cannot be simultaneously
satisfied

However, both sides can be nonzero in Klein Space!

Erin Crawley, Black Holes in Klein Space 10



Moving to (2,2) Signature:

Beginning with

zk X,

L

In (1, 3): ﬁ/]jy = —167TG/
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(KO + 4e)?

T (k)

_ 2 M

11



Moving to (2,2) Signature:

Beginning with
zk Xy,
In (1, 3): BLVZ—IGWG/ T (k
Gk A (KO + ie)? o gz )

Insert stationary condition
dk1dkodks et(kizr+koyr+kszr) ’ B T (k) = =2m6 (k") Ty, (k)

hL ) =1 TE (0, k
QTL 67TG/ 3 k%—l—k%‘|‘k§ ,LW( )
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Moving to (2,2) Signature:

Beginning with
zk X7,
In (1, 3): BLVZ—IGWG/ T (k
Gk A (KO + ie)? o gz )

Insert stationary condition

L 0\ L
dkdksdks et(kizr+koyr+kszr) . o Tuk) = —=2m6(k")T,, (k)
hi, () = 167G T (0,k
ajL T / 3 k%—l—k%—l—]{% ,Lw( ) )
t—at

Wick rotate = — ix See [Monteiro, O’Connell, Veiga, Sergola (2021)] for z — iz

In (2, 2) e
dk‘ldk‘Qdk‘S e —(k1z+k2y—ik3z)
— 1 " ) "
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hu(z) = 167G

Erin Crawley, Black Holes in Klein Space

/

dkl dedk?) e_(kliE-Fk’Qy—ikgz)

Ty (K
2m) kI +k3+E; " (F)

Perform k5 integral using contour integration

Reparametrize k, , k, in terms of new variables
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7 dkldedkB e—(k1x+k:2y—ik3z)
h(x)=1 T (k
pv () 67rG_/ (2m)3 k%+k§+k§ v (K)

Perform k5 integral using contour integration

Reparametrize k, , k, in terms of new variables

_ 2G
huy(x) = —

m 2 2

A2 - A2 A2 4 22
/ d?\ e FN e (B(N)) with k#(\) = (o,xm, 1= AT 2)
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7 dkldkzdkg e—(k1x+k2y—ik3z)
h(x)=1 T (k
pv () 67TG/ (2m)3 k%+k§+k§ v (K)

Perform k5 integral using contour integration

Reparametrize k, , k, in terms of new variables

_ 2G AP — A3 A2+ )3

m 2 2

B () = / d?\ e FN e (B(N)) with k#(\) = (O,MAQ,

Schematically

hell
B () o G / (y) == T () with kP, = 0

k space
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7 dkldkzdkg e—(k1x+k2y—ik3z)
h(x)=1 T (k
pv () 67TG/ (2m)3 k%+k§+k§ v (K)

Perform k5 integral using contour integration

Reparametrize k, , k, in terms of new variables

- 2G A2

— A2 N7+ )3

7

B () = / d?\ e FN e (B(N)) with k#(\) = (O,MAQ,

Schematically

hell
B () o G / (y) == T () with kP, = 0

k space

So, 1), (k) is evaluated on on-shell momenta
Equivalently: 8°h,, =0 ,so hy, is free everywhere!
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Connecting to (2, 2) Amplitudes

Since T},, (k) is evaluated on on-shell momenta, we can use

M3 =eb, (k)T (k) at k,k" =0

Erin Crawley, Black Holes in Klein Space
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Connecting to (2, 2) Amplitudes

Since T},, (k) is evaluated on on-shell momenta, we can use

M3 =eb, (k)T (k) at k,k" =0

where [Guevara, Ochirov, Vines (2019); Emond, Huang,

Mgt (k) X (M + N)eiFk-a, Kol, Moynihan, O’Connell (2020); Huang, Kol, D.
O’Connell (2020)]
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Connecting to (2, 2) Amplitudes

Since T},, (k) is evaluated on on-shell momenta, we can use

M3 =eb, (k)T (k) at k,k" =0

where [Guevara, Ochirov, Vines (2019); Emond, Huang,

M?ft (k) X (M + N)esz'a’ Kol, Moynihan, O’Connell (2020); Huang, Kol, D.
O’Connell (2020)]

and + corresponds to a self-dual source, — an anti-self-dual
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Putting Everything Together

We have hy,(x) = h,(x) + by, (2) Emitted
graviton

-shell
where h/jj,/(a:) X G/d((s)tgti%ngry> e_k"’”e/fe,:f M (k)

k space

Massive
particle

p} = (M £ N)(1,0,0,0)

And ME(k) o (M + N)eFka

as obtained from the classical limit of graviton emission amplitudes.

Erin Crawley, Black Holes in Klein Space 14



Putting Everything Together

We have  hyy () = hu, (@) + hyy, (2)

Self-Dual  Anti Self-Dual

Emitted
graviton

k space g

-shell
where h/jj,/(a:) X G/d((s)tgti%ngry> e P Tt M (k)

Massive
particle

p} = (M £ N)(1,0,0,0)

And ME(k) o (M + N)eFka

as obtained from the classical limit of graviton emission amplitudes.
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® In (2, 2) signature, a stationary metric
perturbation 1s free (radiative) everywhere, in
contrast to asymptotically free in (1, 3)
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® The diffeomorphism between Taub-NUT
and Kerr-Taub-NUT zrny = zxrn + @
emerges naturally in the amplitudes picture
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Part 3: Mapping to the Celestial Torus

WIP w/ Guevara, Himwich, Strominger

We can recast our previous result in a slightly nicer form:

h () = / wdw /R2 dwdw €, (w,w)e —wa(w, D) g (4w, D)
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WIP w/ Guevara, Himwich, Strominger

We can recast our previous result in a slightly nicer form:

h(z) / wdw/ dwdw €, (w,w)e —wa(w, D) g (4w, D)
R2

Integral over on-shell graviton phase space, where

¢"(w,w) = (w+ w, 1 + ww,w —w,1 — ww),
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We can recast our previous result in a slightly nicer form:

h(z) / wdw / dwdw €, (w,w)e —w(w. D) () w, W)
R2
Integral over on-shell graviton phase space, where Modes defined as three-point amplitude
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Part 3: Mapping to the Celestial Torus

WIP w/ Guevara, Himwich, Strominger

We can recast our previous result in a slightly nicer form:

h(z) / wdw / dwdw €, (w,w)e —w(w. D) () w, W)
R2
Integral over on-shell graviton phase space, where Modes defined as three-point amplitude
¢*(w, w) = (w+ w,1 4+ wo,w — o, 1 — wo), with stationary condition:

a(w, w,w) o< (M + N)e *26(k°)
This can be written 1n a conformal primary basis

14200
h:[l/ = m/dwdu? as;/,/(w,u_))/]L dA o A (x;w, W) an(w,w) ,

—1200
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Part 3: Mapping to the Celestial Torus

WIP w/ Guevara, Himwich, Strominger

We can recast our previous result in a slightly nicer form:

h(z) / wdw / dwdw €, (w,w)e —w(w. D) () w, W)
R2
Integral over on-shell graviton phase space, where Modes defined as three-point amplitude
¢*(w, w) = (w+ w,1 4+ wo,w — o, 1 — wo), with stationary condition:

a(w, w,w) o< (M + N)e *26(k°)
This can be written 1n a conformal primary basis

14200
h:[l/ = m/dwdu? as;/,/(w,u_))/]L dA po_A(z;w, w) an(w,w) ,

o D(a)
(q-x)”

>0
where @A (T; 2, 2) :f dw w1 emwilz2) T —
0
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Black Hole Construction from the Celestial Torus

Idea:

& Equipped with
14200

h:u = /{/dwdu_) ep_by(w,fu?)/ dA o _a(x;w, W) an(w,w),

1—200
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Black Hole Construction from the Celestial Torus

Idea:

& Equipped with
14200

h:u = /{/dwdw 8;1/(?1),’(1_))/1 dA o _a(x;w,w) aa(w,w) ,

— 1,00

Mode expansion of metric on celestial torus
(in (w, W) coordinates)

¢ Find |¢) such that (¥|h,.|¢) reproduces the classical metric
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Black Hole Construction from the Celestial Torus

Idea:

& Equipped with
1+200

h:,/ = /ﬁ:/dwdu? 8;1/(?1),’(1_))/1 dA o _a(x;w,w) aa(w,w) ,

— 1,00

Mode expansion of metric on celestial torus
(in (w, W) coordinates)

¢ Find [¢) such that (¥|h,.|¢) reproduces the classical metric

Quantum state on the celestial torus
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Thank you!




