Islands and light gravitons in type IIB string theory

Alessandra Gnecchi (she/her) Max Planck Institute For Physics, Munich, Germany

September 9, 2022 - Holography and the Swampland Workshop, Corfu Summer Institute

Based on 2204.03669 and w.i.p. with S. Demulder, I. Lavdas and D. Lüst

- Unitary black hole evaporation a crucial problem in understanding gravitational interactions coupled to quantum fields
- Exploiting holography would require a system in anti de Sitter, which in general is in equilibrium with radiation in the AdS box
- Obtain evaporation by *coupling* the black hole to a bath where gravity is not dynamical
- Quantum corrected formula for holographic entanglement entropy

fig. from EHT (CC)

Entanglement entropy and Page curve

Each subsystem is described by a reduced density matrix $\rho_{A}=\mathrm{Tr}_{B}\rho$

 $S_A = -\mathrm{Tr}\rho_A \log \rho_A$

System *B* is the complement of *A*: $B = A^C$

 $S_A = S_B$

For a pure system: $S = S_{AB} = S_{AA^C} = 0$

Black hole radiation is in a pure state at the end of evaporation: $S_{EE} = 0$

Holographic entanglemente entropy

Can we quantify the EE of radiation and prove it follows a Page curve?

Holographic coordinate

$$S_{EE} = rac{Area(\gamma)}{4G_N}$$

[Ryu, Takayanagi '06][Hubeny, Rangamani, Takayanagi '07]

Quantum corrections lead to *new contributions* to EE \rightarrow A new kind of extremal surfaces *behind* the horizon

$$S_{rad} = \min_{I} \left\{ \text{ext}_{I} \left[\frac{Area(\partial I)}{4G} + S_{QFT}[\Sigma_{rad} \cup I] \right] \right\}$$

[Faulkner, Lewkowicz, Maldacena '13][Engelhardt, Wall '14][Penington '19][Almheiri,Engelhardt,Marolf,Maxfield '19]

Higher dimensional realizations

[Almheiri, Mahajan, Santos, '19][Chen, Myers, Neuenfeld & Reyes, Sandor '20] [Geng, Karch '20] [Geng, Karch, Perez-Pardavila, Raju, Randall '20-'21]

Double holographic setup:

- Gravity in AdS_{d+1} bulk with an EOW brane cutting the boundary in half
- *d*-dim CFT coupled to a d 1-dim conformal defect
- *d*-dim CFT coupled to gravity on AdS_d , with transparent boundary conditions coupled to a *d*-dim CFT on half of $\mathbb{R}^{1,4}$.
 - \rightarrow Geometrization of the islands

Karch-Randall braneworlds

- Transparent boundary conditions induce a graviton mass
- The brane tension is maximal against the boundary of AdS₅
- Critical angle needed to localize gravity on the AdS₄ brane

$$\theta \quad \leftrightarrow \quad m_g$$

■ Maybe a graviton mass is required in higher dimensional islands setups..
 [Geng, Karch, Perez-Pardavila, Raju, Randall '21]
 → Microscopic realization in string theory

Conformal defects and holographic interfaces

[Erdmenger, Guralnik, Kirsch '02]

[Aharony, DeWolfe, Freedman, Karch '03][D'Hocker, Estes, Gutperle '07]

CFT in presence of a (planar) interface or defect, or boundary Dual to N=4 SYM with a defect

 $\textit{AdS}_4 \times \textit{S}^2 \times \textit{S}^2 \times \Sigma$

 Σ is a Riemann surface with a boundary, where the geometry develops AdS_5 throats

- Janus solutions doped with D5 and NS5 branes
- May preserve supersymmetry

Can these models give rise to a small graviton mass?

A.Gnecchi - Holography and the Swampland CSI 2022

Spin 2 spectrum

[Csaki, Erlich, Hollowood, Shirman '00][Bachas, Estes '11]

Study Laplace operator on warped backgrounds

$$ds^2 = e^{2A(y)} ar{g}_{\mu
u}(x) dx^\mu dx^
u + \hat{g}_{ab} dy^a dy^b$$

the spin 2 wave operator is universal in 10d (only depends on the background) $(\hat{g}_{ab} = e^{2A}\bar{g}_{ab})$

$$-rac{e^{-2A}}{\sqrt{\hat{g}}}\left(\partial_a\sqrt{\hat{g}}\hat{g}^{ab}e^{4A}\partial_b
ight)\psi=m^2\psi$$

- General interest also in view of Swampland conjectures
- The lowest eigenvalues are constant on the spheres of $AdS_4 imes S^2 imes S^2 imes \Sigma$
- Mass eigenstates are factorized $\chi_{\mu\nu}\psi(y)$
- Differently from uplifts of Kaluza Klein set-ups, in this case graviton has non-normalizable wave functions

[Aharony, Berdychevsky, Berkooz, Shamir, '11] [Assel, Bachas, Estes, Gomis, '11]

- Linear quivers constructions of D3-D5-NS5 branes dual to 1/4 BPS type IIB solutions of [D'Hocker, Estes, Gutperle '07]
- Holographic dual of 3d N=4 theories

The full solution is specified by two harmonic functions

$$ds_{10}^2 = L_4^2 ds_{\mathsf{AdS}_4}^2 + f_1^2 ds_{S_1^2}^2 + f_2^2 ds_{S_2^2}^2 + 4\rho^2 dz d\bar{z},$$

The background has non-vanishing dilaton and H_3 , F_3 , F_5 fluxes

Moving along the strip takes the internal, 6-dim geometry to S^5 .

• $AdS_5 \times S^5$ asymptotic throats

$$\begin{split} h &= -i\alpha\sinh(z-\beta) - \gamma\log\left[\tanh\left(\frac{i\pi}{4} - \frac{z-\delta}{2}\right)\right] + \text{c.c.}\\ \hat{h} &= \hat{\alpha}\cosh(z-\hat{\beta}) - \hat{\gamma}\log\left[\tanh\left(\frac{z-\hat{\delta}}{2}\right)\right] + \text{c.c.} \end{split}$$

• Global $AdS_5 imes S^5$ for $\beta = \hat{\beta} = 0$, constant dilaton $e^{2\phi} = \hat{\alpha}/\alpha$

A.Gnecchi - Holography and the Swampland CSI 2022

[Aharony, Berdychevsky, Berkooz, Shamir, '11] [Assel, Bachas, Estes, Gomis, '11]

Cap-off only one boundary

$$lpha e^{eta} , \ \hat{lpha} e^{\hat{eta}} o \mathbf{0} \qquad lpha e^{-eta} = \kappa \ , \ \ \hat{lpha} e^{-\hat{eta}} = \hat{\kappa}$$

The solution has three parameters $\kappa, \hat{\kappa}, N$

$$h = -\frac{i\pi}{4}e^{z}\kappa - \frac{N}{4}\log\tanh\left(\frac{i\pi}{4} - \frac{z}{2}\right) + \text{c.c}$$
$$\hat{h} = \frac{\pi}{4}e^{z}\hat{\kappa} - \frac{N}{4}\log\tanh\left(\frac{z}{2}\right) + \text{c.c}$$

N D5 and NS5 branes

The dilaton varies from the bag region $AdS_4 \times M_6$ to the asymptotic $AdS_5 \times S^5$

$$e^{2\delta\phi} = \frac{\hat{\kappa}}{\kappa}$$

- Due to no-scale separation: $L_4 \sim L_{bag}$
- A hierarchy can be realized between the internal geometries by tuning

$$\alpha = \sqrt{\frac{N^2}{\kappa \hat{\kappa}}} \sim \left(\frac{L_4}{L_5}\right)^8$$

 The dilaton is linear in the throat, at infinite dilaton the asymptotic AdS₅ region decouples [Bachas '19]

Realization of models of localized gravity

 \blacksquare EOW brane tension translates in the parameter α

$$\theta^{-1} \qquad \leftrightarrow \qquad \alpha \sim \frac{F_3}{F_4} \sim \frac{\text{dof BCFT}}{\text{dof CFT}}$$

- Bag region as a *composite* Karch-Randall brane
- Transparent boundary conditions correspond to leaking into the AdS₅ region where gravity is non-dynamical: non gravitating bath
- When both regions are capped off, the internal geometry is compact and the graviton is massless

Massive Graviton

Leaking of radiation due to nonconservation of the stress tensor

$$m_g^2 L_4^2 = \Delta (\Delta - 3) \xrightarrow{\Delta = 3 + \varepsilon} m_g^2 L_4^2 \sim \varepsilon$$

Weak dissipation

$$m_g^2 L_4^2 ~\sim~ {{
m bulk~dof}\over{
m bdy~dof}} ~\sim~ lpha^{-1}$$

On these backgrounds the spin-2 eigenstates factorize as $\chi_{\mu\nu}\psi(y)$ with $\chi_{\mu\nu}$ a transverse traceless eigenfunction of the Anti de Sitter wave operator, the eigenvalues equation reduces to

$$\mathcal{M}^2\psi = -rac{L_4^{-2}}{\sqrt{g}}\partial_i(L_4^4\sqrt{g}g^{ij}\partial_j\psi) = (\lambda+2)\psi \;, \qquad \lambda+2 = m_g^2(y)L_4^2(y)$$

[Bachas, Lavdas '18]

Massive graviton

In this approximation $m_g^2 L_4^2 \equiv \bar{m}_g^2 \simeq \frac{3\pi^3}{4} \left(\frac{L_5}{L_{\text{bag}}}\right)^8 \mathcal{J}(\text{ch}(\delta\varphi))$

 \Rightarrow Large dilaton variation lowers the mass of the lightest spin 2. Can we take the limit to a massless graviton? [Bachas '19]

- Analysis of bimetric gravity low energy description, where one spin-2 acquire a mass thanks to gauging of a common isometry.
- Massless limit is at *infinite distance* in moduli space corresponding to the limit where an infinite tower of unprotected spin 2 becomes massless.
- The decoupling of the boundary dof is singular

 \rightarrow Consistent with the non continuous behaviour of the islands surfaces in going from the gravitating to the non-gravitating case

Massive graviton and EFT

[de Rham, Tolley, Zhou '16][Bachas '19]

In the regime where $m^2 L^2_{AdS} \ll 1$, consistency of the massive gravity EFT requires the UV cutoff

$$\Lambda_* = rac{m_{g}^{rac{1}{3}} M_{
m Pl}^{rac{1}{3}}}{L_{(4)}^{rac{1}{3}}}$$

Questions

- Low energy theory from type IIB consistent with the EFT cutoff
- Are QEI surfaces affected by this regime?

Nontrivial chekcs, as the existence of islands is sensitive to the geometric parameters

 \rightarrow In the same way as the existence of islands in AdS in the KR requires a maximum brane tension (minimum angle θ), in this case the islands are sensitive to the ration between bulk and boundary dof. [Uhlemann '20]

Massive graviton and Island surfaces

- The results of Uhlemann, '21 show that at $\delta \phi = 0$ there is a critical value of $\alpha \sim \mathcal{O}(1)$ above which islands cease do exist in empty Anti de Sitter
- Not large enough to be in the $m^2 L^2_{AdS} \ll 1$ regime
- ightarrow Backgrounds with varying dilaton

Islands below the cutoff

$$m_{g\,{
m crit.}} < \Lambda_* \ \ \Rightarrow \ \ K_{
m crit.} < K^{1/3} N^{5/6} \ll N^{7/6}$$

Graviton mass above the critical value

$$m_{g ext{ crit.}} < m_{g} \Rightarrow K_{ ext{crit.}} < K$$

Islands surfaces in type IIB

10d geometry with black hole in AdS_4

$$ds_{10}^2 = L_4^2 ds_{AdS_4}^2 + f_1^2 ds_{S_1^2}^2 + f_2^2 ds_{S_2^2}^2 + 4\rho^2 dz d\bar{z}$$

The black hole radiation reaches a region in the 4d CFT at $x = +\infty$. r(x, y) 8d RT surface in the 10d full metric.

Extends along both S²'s, anchored at r_R at $x = +\infty$ (Dirichelet boundary condition)

Regularity at the boundary of the strip requires Neumann boundary conditions

[Uhlemann '21]

Numerical setup

Surface equation

$$\frac{1}{1+g(\nabla r)^2}\left[2-\nabla(g\nabla r)+\frac{1}{2}g\nabla r\cdot\nabla\ln\left(\frac{1+g(\nabla r)^2}{b(r)f^2}\right)\right]=0$$

- r(x, y) is the surface function
- **b**(r) is the black hole warp factor $b(r) = 1 e^{3(r_h r)}$
- f, g are constructed out of the harmonic functions h, \hat{h} and their derivatives. They are sensitive to the choice of background

 \to The dilaton variation does not affect the boundary conditions. It is constant in the $AdS_5\times S^5$ region.

Finite difference method to reduce the PDE to ODE

Relaxation method

$$\partial_{\tau} r(x, y, \tau) = -\frac{1}{1 + g(\nabla r)^2} \left[2 - \nabla (g \nabla r) + \frac{1}{2} g \nabla r \cdot \nabla \ln \left(\frac{1 + g(\nabla r)^2}{b(r) f^2} \right) \right]$$

A.Gnecchi - Holography and the Swampland CSI 2022

Zero temperature surfaces

Dilaton dependence of the critical parameter

 \Rightarrow A dilaton variation pushes the critical parameter high enough to be able to create a hierarchy betweem the bag and the throat.

 \Rightarrow For larger $\delta\phi,$ intervals of non-convergence at small α arise that need to be studied.

 \Rightarrow No convergence above $\delta\phi\sim$ 4.

Finite temperature

- The point where the surfaces reaches
 x = -∞ is forced to be anchored until the value of Δr reaches the value at zero temperature, then it stays constant
- The dilaton pushes this value higher, keeping the anchoring point fixed longer

- Understanding quantum extremal islands in higher dimensions is of great importance for understanding the principles of black hole evaporation
- Uplifts to Type IIB clarify the role of the graviton mass
- Possible tension between existence of islands and very light spin 2?

Possible extensions:

- Is there a phase transition for islands at finite temperature?
- Possible limits of the quiver diagrams (factorization, 'weak limits')
- Different internal geometries with a neck
- Quantitative results matching bottom up studies [Anous, et al. '22]

Thank you!

