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Quantum Geometry

Physics vs Mathematics

Hopf algebras, C* algebras, K-theory, quantum gravity,
quantum space-time, deformation quantization, quantum
Poincaré algebra, κ-deformation, Moyal deformation...
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Questions
What is space - how to describe it allowing for all different
approaches - how to get numbers.



Spectral Geometry

Can one hear the shape of a drum?

An eminent spectral scheme that generates geometric objects
on manifolds such as volume, scalar curvature, and other
scalar combinations of curvature tensors and their derivatives
prima facie is the small-time asymptotic expansion of the
(localised) trace of heat kernel.

Tr e−t∆ =
∞∑

n=0

t
n−d
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Spectral Geometry

Geometry from residues

Using the Mellin transform, the coefficients of this expansion
can be transmuted into certain values or residues of the
(localised) zeta function of the Laplacian. In turn, they can be
expressed using the Wodzicki residue W(also known as
noncommutative residue),

W(P) :=

∫
M

(∫
|ξ|=1

tr σ−n(P)(x , ξ) Vξ

)
dnx ,
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Spectral Geometry

The Weyl’s law

In this case, for a Riemannian manifold M (of dimension 2m)
equipped with a metric tensor g and the (scalar) Laplacian ∆
one has,

W(∆−m) = vn−1 vol(M),

and a localized form, a functional of f ∈ C∞(M),

v(f ) := W(f ∆−m) = vn−1

∫
M

f volg ,

vn−1 := vol(Sn−1) =
2πm

Γ(m)
,

is the volume of the unit sphere Sn−1 in Rn.
THIS IS RELATED TO THE ASYMPTOTIC BEHAVIOR OF

EIGENVALUES OF THE LAPLACE OPERATOR.



Spectral Geometry

The scalar curvature
A startling result regarding a higher power of the Laplacian was
divulged by Connes in the early 1990s and explicitly confirmed
independently by Kastler and Kalau-Walze.

W(∆−m+1) =
n − 2

12
vn−1

∫
M

R(g) volg ,

Here R = R(g) is the scalar curvature, that is the g-trace
R =g jkRjk of the Ricci tensor with components Rjk in local
coordinates, where g jk are the raised components of the metric
g. A localised form of this functional for n > 2 is a functional in
C∞(M),

R(f ) := W(f ∆−m+1) =
n − 2

12
vn−1

∫
M

f R(g)volg .



The metric and Einstein functionals

Spectral functional over vectors fields

Let V ,W be a pair of vector fields on a compact Riemannian
manifold M, of dimension n = 2m. Using the Laplace operator,
we define two functionals g∆(V ,W ) and G∆(V ,W ).

Theorem
The functional:

g∆(V ,W ) := W
(

VW ∆−m−1
)
,

is a bilinear, symmetric map, whose density is proportional to
the metric evaluated on the vector fields:

g∆(V ,W ) = −vn−1

n

∫
M

g(V ,W ) volg .



The metric and Einstein functionals
Next:

Theorem
The functional:

G∆(V ,W ) := W
(
VW ∆−m) ,

is a bilinear, symmetric map, whose density is proportional to
the Einstein tensor G evaluated on the two vector fields:

G∆(V ,W ) =
vn−1

6

∫
M

G(V ,W ) volg .

where:

G(V ,W ) = Ric(V ,W )− 1
2

R(g) g(V ,W ),

is the Einstein tensor.



The proof

Pseudodifferential calculus
Suppose that P and Q are two pseudodifferential operators
with symbols,

σ(P)(x , ξ) =
∑
α

σ(P)α(x)ξα, σ(Q)(x , ξ) =
∑
β

σ(Q)β(x)ξβ,

respectively, where α, β are multiindices. The composition rule
for the symbols of their product takes the form:

σ(PQ)(x , ξ) =
∑
β

(−i)|β|

|β|!
∂ξβσ(P)(x , ξ)∂βσ(Q)(x , ξ),

where ∂ξa denotes the partial derivative with respect to the
coordinate of the cotangent bundle.



Normal coordinates

Expanding the metric

In the normal coordinates the metric has a Taylor expansion:

gab = δab −
1
3

Racbdxcxd + o(x2),

and √
det(g) = 1− 1

6
Ricabxaxb + o(x2),

where Racbd and Ricab are the components of the Riemann and
Ricci tensor, respectively, at the point with x = 0 and we use
the notation o(xk) to denote that we expand a function up to the
polynomial of order k in the normal coordinates. The inverse
metric is

gab = δab +
1
3

Racbdxcxd + o(x2),



Normal coordinates

The Laplace and its inverse

Consequently, the symbols of the Laplace operator in normal
coordinates are

a2 =
(
δab +

1
3

Racbdxcxd)ξaξb + o(x2),

a1 =
2i
3

Ricabxaξb + o(x2).

The first three leading symbols of the operator ∆−k , k > 0

σ(∆−k ) = c2k + c2k+1 + c2k+2 + . . . ,

are..



Normal coordinates

The symbols of the inverse of Laplace operator

c2k = ||ξ||−2k−2
(
δab −

k
3

Racbcxcxd
)
ξaξb + o(x2),

c2k+1 =
−2ki

3||ξ||2k+2 Ricabxbξa + o(x),

c2k+2 =
k(k + 1)

3||ξ||2k+4 Ricabξaξb + o(1).



Laplace-type operators

Theorem: Laplace operator on a vector bundle

We assume that there is a connection ∇ on the vector bundle
V , i.e. for any vector field X on M, we have a covariant
derivative ∇X on the module of smooth sections of V . The
functional

G∆∇(V ,W ) := W(∇V∇W ∆−n
∇ )

is equal to

G∆T (V ,W ) =
vn−1

6
rk(V )

∫
M

G(V ,W ) volg+
vn−1

2

∫
M

F (V ,W ) volg ,

where
F (V ,W ) = Tr V aW bFab,

and Fab is the curvature tensor of the connection ∇.



Spinors and differential forms

Differential forms as operators

In differential geometry besides functionals on vector fields, one
can consider functionals over the dual bimodule of one-forms.
To investigate whether the Einstein tensor (or, more precisely,
its contravariant version) can be obtained from such functional
using the spectral methods we need to represent differential
forms as differential operators, and a suitable way is to employ
Clifford modules. We assume thus that M is a n = 2m
dimensional spinc manifold and use the Clifford representation
of one-forms as 0-order differential operators, that is,
endomorphisms of a rank 2m spinor bundle.

Why spin?

We want to represent differential forms using the Dirac
operator, not using the Laplace operator (or spinor Laplacian).



Spectral functionals over forms

Theorem
The following spectral functionals of one-forms on a spin-c
manifold M of dimension n

gD(v ,w) := W
(
v̂ ŵD−n),

GD(v ,w) := W
(
v̂(Dŵ + ŵD)D−n+1)

= W
(
(Dv̂ + v̂D)ŵD−n+1),

read
gD(v ,w) = 2mvn−1

∫
M

g(v ,w) volg ,

GD(v ,w) = 2m vn−1

6

∫
M

G(v ,w) volg ,

where g(v ,w) = gabvawb and G(v ,w) =
(
Ricab − 1

2Rgab)vawb,
using the expression in any local coordinates.



Generalizations
Noncommutative toric manifolds
The noncommutative tori are prominent examples of
noncommutative manifolds. In particular, there are external
derivations that act on the smooth algebra A= C∞(Tn

θ) that
can be interpreted as noncommutative vector fields. It is then
straightforward to identify a noncommutative counterpart of the
flat-metric Laplace operator, which can also be generalised to
the case of conformally rescaled geometry.

Spectral triples

The spectral metric functional on differential forms is

gD(v ,w) = W(vw |D|−n),

where v ,w ∈ Ω1
D(A), and the Einstein functional is

GD(v ,w) = W(v{D,w}D|D|−n).
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Noncommutative 2-torus: vector fields

We take
∆h = h−1∆ h−1

Proposition

For the conformally rescaled Laplace operator on a
noncommutative 2-torus the metric functional reads

g∆h (Vh,Wh) = W
(

VhWh∆−2
h

)
= πτ(h4)V aW bδab,

whereas the spectral Einstein functional and its density vanish
identically

G∆h (Vh,Wh) = W
(

VhWh∆−1
h

)
= 0.



Noncommutative 2-torus: differential forms

We take a spectral triple is given by (A,Dk = kDk ,H⊗ C2)

Proposition

For the conformally rescaled spectral triple over the
noncommutative 2-torus the metric functional for v = k2V aσa

and w = k2W aσa, V a,W a ∈ A, reads

gDk (v ,w) = τ(V aW a),

whereas the spectral Einstein functional vanishes identically,

GDk (v ,w) = 0.



Noncommutative 4-torus
Differential forms
The metric and the Einstein functionals for the conformally
rescaled spectral triple over the noncommutative 4-torus are,

gDk (v ,w) = τ
(
W aV bk−4) ,

GDk (v ,w) = τ

(
V aW b

(
1
3

k−4(δak)k2(δbk) +
2
3

k−3(δak)k1(δbk)

+ k−2(δak)(δbk) +
2
3

k−1(δak)k−1(δbk)

− 4
3

k(δak)k−3(δbk)− 2
3

k2(δak)k−4(δbk)

+
2
3

k−1(δaδbk) + δab

(
1
3

k−1(δck)k−1(δck)

+
1
3

k2(δck)k−4(δck) +
2
3

k1(δck)k−3(δck)

−2
3

k−1(∆k)

))
.



Outlook

The concept that various geometric objects like tensors (metric,
torsion and curvature tensors) can be expressed using spectral
methods provides an invaluable possibility to study them
globally both for the manifolds as well as for different
extensions of geometries like noncommutative geometry.

Applications

study torsion and Levi-Civita connection
quantum metric spaces
orbifolds and manifolds with singularities
flat manifolds and noncommutative flat manifolds



Outlook

Noncommutative Einstein manifolds
This opens a possibility to study spectral Einstein manifolds:

Definition
A spectral triple is called an Einstein spectral triple if the
spectral Einstein functional is proportional to the metric
functional.

A particularly interesting case is of 2-dimensional geometries:

Conjecture

A suitably regular spectral triple of dimension 2 has a vanishing
Einstein spectral functional.

Of course, we expect that regularity alone will not be the only
condition, yet such a result will show the robustness of the
noncommutative generalisation of manifolds.
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