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Motivation

Unified description of Nature

e Extra Gauge Symmetry (i.e. GUTs)
o Supersymmetry

e Extra Dimensions
— Unify gauge and Higgs sectors
— Also unify fermion interactions with the above sectors
— SUSY can unify all the above in one vector supermultiplet
— Less free parameters
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Coset Space Dimensional Reduction

1. Compactification o af
B - compact space M — X B
dmB=D—4=d | [
D dims — 4 dims Mooxt Yo
2. Dimensional Reduction L independent of the exira coordinates y°:

@ "Naive" way: Discard the field dependence on y° coordinates

e Elegant way: Allow field dependence on y“
— compensated by a symmetry of the Lagrangian — Gauge Symmetry

3. Coset Space Dimensional Reduction

— B=S/R
— Allow a non-tfrivial dependence on y°

— impose the condition that a symmetry transformation by an element of
the isometry group S of B is compensated by a gauge transformation

— Gauge invariant £ — L independent of y |
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Reduction of a D-dimensional Yang-Mills Lagrangian

Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MP — M* x S/R,D =4+ d

1
S:/dAdeY\/—Q[—4Tr(FMNFK/\) MK NA+ wFMDW

Demand: any transformation by an element of S acting on S/R
is compensated by gauge transformations.

— Constraints on the fields of the theory Agand )

Solution of constraints:
e Remaining gauge invariance
e 4-dimensional fields
e Potential
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1) The 4D gauge group

= Cs(Rs)
ie. GDRsxXH

2) Scalar fields

SOR
odjs = adiR+ » s
GDRsxH
adiG O (adiR, 1) + (1,adjH) + > (n, 1)
foreach s; = r; = h; survives in 4D.

(The 4D gauge fields are independent
of the extra dimensions)

3) Fermions
SO(d) DR
Oqg = Z o
G DRe X H

F :Z(fi: )

for each f; = o; = h; survives in 4D.

D = 4n + 2 Weyl + Majorana fermions
in vector-like rep — 4D chiral theory.
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The 4D Theory

Integrate out the extra coordinates ( + take into account constraints):

S = c/d“xtr [—;FN,,F"” — %(Dma)(D%")
+V(6) + LT D — SO0y

— Dy = 0u — igAu — C: coset space volume
— Dg = 04 — 0 — igha — ¢a=Aq

V(9) = —%QGCQDGTF {(fé';,¢c — ig[bas Do) (Foypp — ig[e, ¢d])}

V(@) still only formal since ¢o must satisfy one more constraint,

elf G D S = Hbreaksto K = Cg(S):

G D S X K < gauge group after SSB
U N
G D R X H < gauge group in 4 dims

nclusions
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Reduction of 10D, N = 1 Eg over S/R = SU(3)/U(1) x U(1)

The non-symmetric (nearly-Kahler) coset space SU(3)/U(1) x U(1):
@ admits torsion and may have different radii
e naturally produces soft supersymmetry breaking terms
@ preserves the supersymmetric multiplets

We use the decomposition
Es D Ey X SU(S) D Ey X U(])A X U(])B
and choose R = U(1)a x U(1)s
— H = CEg(U(])A X U(])B) = E, X U(])A X U(])B
Since S C G, H breaks to
K = Ce(S) = Es x [U(1) x U(1)]goba
N =1, Es x U(1)a x U(1)s gauge group
Three chiral supermultiplets A" : 27(3 1 /2y, B': 27(_31/2), C': 27(0, 1)

Three chiral supermultiplets A @ T3 1/2), B T(_3,1/2), C: 1(0,—1)
RIHR+RS

8/ RERERE

Gaugino mass M = (1 + 37)
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V-9 LRI DR VANIVANTRY:
=T\ =2 T/ = F D
5 R14 R24 R;l soft
VAL PN P LRV )
2 o= 507D + 3 DiDy + Doy QQVF_Z:|FS|  R=
2., _ (a8 Lo A L w8 L
gvsoﬂ*<l?§l?§*?1) (Qar+aa)+(R12R§*%> (ﬂﬁl+ﬁﬁ)+(l?-‘zl?227§2 (’Y'Y:+’Y’Y)

Ry R R3 il Kk
/280 (— BT (ar g h.c.
+ T + RR + R ko' B 4 afy + h.c.)

where

D% = —= ({6 + (G + /()

e
oy = Y0 (/58 + () + B39 + B-5)9)

3
W = V/40dyA'B'C* 4 \/40ABC
Singlets cv and /3 are chosen to acquire vevs — E, X U(1)a X U(1)g — Eo
— U(1)a x U(1)p remain as global symmetries

V0 (oo + a(a+ HCas+ BRI+ (16 +3(-1h)
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The Wilson Flux Breaking

M*x By — M*xB,  B=B/FIF
— FS/R is a freely acting discrete symmetry of By.

B becomes multiply connected — breaking of H to K = Cy(T")
TH is the image of the homomorphism of F¥/R into H

In our case
o FS/R =75 — B=5U(3)/U(1) x U(1) x Zs
o H=Es x U(1)a x U(1)p
o K'=35U(3). x SU(3), x SU(3)p x U(1)a x U(1)s . still N =1

Matter fields invariant under FS/R @ TH survive

— 3 = diag(L,wl,w?1), w=e?"/%¢c Z,
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The surviving gauge fields satisfy the condition:
o [Av, 1] =0 = Ay =13Au7; |
The matter counterpart of the above equation is:

0 A= wyA, B =w? B, C'=wyC, A=wA, B=w?B, C=

wiC

E D SU(3)e x SU(3), x SU(3)r 27 =(1,3,3)®(3,3,1) @ (3,1,3)

Surviving matter content of the projected theory:

0o A=V, =qg°~ (3, 1.3)s1), B=V:=Q~ (3,3, 1)(=3,1):

C=Vs=L1~(1,33)0-1), C=0~(1,1,1)0_1

Non-trivial monopole charges in R — three generations: \UEI), v

dg Uz Df —d - -
= d? us? DS , Q= ul u? ul , L=
o o o o o

v,

Hy
HO

u
C
er

c

VL
eL
S

)
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For one generation:

DA = %w,\eﬂw,)

Dy = 3\/?(<\U1|\U1> — (W2|W2))
D, = \/];aj«% [W1) + (Wa|Wo) — 2(Ws|W3) — 2|0|%)

~ctac

2
— Ve = 360tr(§° §
g

R] R2 RS b
80v/2 Ao VTV, W5 + h.
+ W(R2R3+R1R3+R]R2)(m TWV5 + h.c)

= mi (W |Wy) + m3{(Wo| W) + m§(<w3\w3> + \9|2) + (Qabe WSWEVS + h.c)

Note: Supersymmetry is broken by D- and F-terms, in addition o the soft breaking.
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Further Gauge Breaking of SU(3)?

Two generations of L acquire vevs that break the GUT:

000 0 00
=100 o0 |, (D=0 o0 o
00 V V. oo

each one alone is not enough to produce the (MS)SM gauge group:
SU(3)e x SU(3). x SU(3)r — SU(3). x SU(2), x SU(2)r x U(1)
SU(3). x SU(3), x SU(3)r — SU(3)c x SU(2), x SU(2); x U(T)
Their combination gives the desired breaking:
SU(3)c x SU(3), x SU(3)r — SU(3)e x SU(2), x U(1)y
electroweak breaking then proceeds by:

Vg 0 0
Bh=1 0 v, 0
0 0 0
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Choice of Radii

- 1
— Soft trilinear terms ~~ R
1l
1
— Soft scalar masses ~ 2
i
Two main possible directions:

e Large R; — calculation of the Kaluza-Klein contributions of the 4D theory
x Eigenvalues of the Dirac and Laplace operators unknown.

@ Small Ry — high scale SUSY breaking

e Small R ~ @ with R slightly different in a specific configuration

- m~—=0(TeV?), m,~—-0(My), aae 2 Meur

— supermassive squarks
— TeV-scale sleptons
— TeV-scale soft Higgs squared masses

Reminder: in this scenario Mc = Mgyr
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0Oe00000
Lepton Yukawas and ji terms
After the GUT breaking, the potential at the minimum becomes
2 our 6 (1 1 1 %
Zyeur — IERTINL NNV I
92 scalar 5(R$+R§+R§)+9
20
+ 5[+ 607 + (v + 7)) + (6]
AR5 8 24 1902 1 9@ 4 g2
+ (R]zRg 7@3) (2v2 + 1687 + 1612 + 16§1?)
= (09) ~ O(Tev), (80)) ~ O(Meur)
e The two global U(1)s forbid Yukawa terms for leptons
N3
— intfroduce higher-dimensional operators: LeHy (ﬁ)

e (1, terms for each generation of Higgs doublets are absent

— solution through higher-dimensional operators:

POy
— K is the vev of the conjugate scalar component of either S("), l/(i) or ()

or any combination of them

nclusions
000



Phenomenological Analysis
00®0000

Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GuUr)
squark masses O(Gur)
slepton masses O(TeV)
soft Higgs masses O(TeV)
e O(TeV)
((12) o(eur)
unified gaugino mass My | O(TeV)
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Gauge Unification

Since many SUSY parameters are comparable to Mgyr, we consider them to
decouple at an infermediate scale M.

The 1-loop gauge B-functions are: Scale b b bs
) Mew-Mrev % -3 | =7
27Tﬁf = bjq Mrev-Mint % —% -5
Mint-Mour | 2 3] -3
— b; depends on the particle content
@ «; o are used as input to determine Mgyr
e 0.3% uncertainty at the unification boundary
— g is predicted within 20 of the experimental value
Scale GeV
as(Mz) =0.1218 Mgur | ~ 1.7 x 107
Mint ~9x 10"
af®(Mz) = 0.1187 4+ 0.0016 Mrey ~ 1500

No proton decay problem: U( 1 )A = — %B
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Higgs Potential

The analysis is restricted to the third generation
Viigos = (31D + m8 ) (IHGJ2 + I 12) + (3l +m? ) (1KEI + H{2)
+ 6 [(HF Hy — HoHB) + c.c.]
10 _
5 0 [IHBI° + g 14+ I+ T
20 PIHg 12 + 2lHg P12 + 2AHEI2IHS I + 2IHE RIS ]
+ §g2 [|H0|2|H0|2 + \H‘|2|H+|2] — 20g° [WH_EH'*' +e c]
3 al 1Py d u g | Falg Hufy -C
— Comparison with standard 2 Higgs doublet potential gives:
) )\]:)\2:)\3:%}92
° N\ = 2057
(] )\5 - )\() - )\7 =0

— Xs6,7 = 01in a (even broken) SUSY theory
— These relations are boundary conditions at Mgyr
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Boundary Conditions and Uncertainties

At the unification scale we have the following boundary conditions and their
respective uncertainties due fo threshold corrections (such uncertainties also
appear at the TeV boundary):

GUT BC GUT Unc. | TeV Unc.
g=9g 0.3%

Yio = 9 6% 2%
)\]72 - %92 8% 8%
As = 2d° 7% 5%
A\ = 2097 7% 5%

The T lepton Yukawa emerges from a higher-dimensional operator and has significantly
wider freedom. The standard 7 lepton mass is used as input.
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1-loop Results

1-loop [-functions used throughout the analysis that change between the
three landmark scales Mgyr, Mjnt and Mgy, .

— mp(M;) and Ay are predicted within 20 of the experimental values

o my(M;) = 3.00 GeV mEP(M;z) =2.83 +£0.10 GeV
o iy =171.6 GeV P =172.44+0.7 GeV

— my, is predicted within 10 of the experimental value

o mp=125.18 GeV mE® = 125,10+ 0.14 GeV

— Large tan 5 ~ 48
— Mp ~ 2000 — 3000 GeV
— LSP ~ 1800 GeV

Phenomenological Analysis Conclusions



Conclusions

Special choice of coset radii for split-like SUSY 2HDM
Mgyr ~ 10" GeV — no proton decay

1-loop predictions agree with LHC measurements
LSP 2> 1500 GeV

M, ~ 2000 — 3000 GeV

Conclusions
@00
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Worle in preparation/planned

e Full (light) SUSY spectrum

e 2-loop analysis

e Application of B-physics constraints
o Calculation of CDM relic density

o Investigation of discovery potential at existing and future
colliders

— Examination of high energy potential — test agreement with
observed value of cosmological constant



Coset Space Dimensional Reduction Phenomenological Analysis Conclusions
0000000000 0000000 ooe

Thank you for your attention!



...a few more things

23/22
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Chiral Fermions

The (SU(2) x SU(2)) x SO(d) branching rule is:

JD:(2,1;JU)+(1,2;0(;) Ué:(Q,];U;)—‘y—(],Q;Ud)

where op, o}, are non-self conjugate spinors of SO(] ,D— 1).

Starting with Dirac fermions — equal number of LH and RH reps of H.

e Odd D:

e Even D

e D=4n+2:

Weyl condition cannot be applied
— equal number of LH and RH reps of H.

Weyl condition selects either o or o, .

FDH\IIi =3V, Weyl condition
V=V,pV_=o0p+0p,

We start with a vector-like rep F

— 04 is non-self-conjugate and U(’j =04.

SO(d)D R:  o0g=>.0k, Ta=, 0«
GD Rg X H: F:Zi(r,-,h,-)

(r, i) either self-conjugate or have a partner (7;, hy)
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Chiral Fermions

— Rule from o4 — 4D LH fermions f, = > hk
04 is non-self-conjugate — f; is non-self-conjugate.

— Similarly from 4 — 4D RHrep > AF = >" hL
F vectorlike — h{ ~ hi — H'is theory with double spectrum.
o Majorana condition — eliminate the doubling of the fermion spectrum.
Majorana condition forces fr to be the charge conjugate of f;.

All fogether:
@ D=4n+2
@ Fermions in vector-like rep F of the 10D G gauge group
@ Weyl + Majorana conditions imposed

— chiral 4D theory!
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2HDM General Potential

V =(|ul? + mi ) (HiH) + (Iul? + m?, ) (HLHy) + b(H] Hy + he)
+ %/\1(H1TH1 )2+ %/\2("’;"’2)2
+ As(H] Hh ) (HE o) + Na(H Ho) (H] )
+ {%As(hrmz)2 + [Po(HI H) + A (H Ho)](HT Hy) + he}

Supersymmetry imposes tree level relations among couplings

1
A=A = zl(g2 + QIZ)
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