

High Energy Theory Group

Department of Physics

National Technical University of Athens

Phenomenology of Supersymmetric Trinification from Dimensional Reduction of a N = 1, 10D E_8 Theory

Gregory Patellis

G. Manolakos, GP, G. Zoupanos arXiv:2009.07059 (hep-ph)

7 September 2021

Motivation

Unified description of Nature

- Extra Gauge Symmetry (i.e. GUTs)
- Supersymmetry
- Extra Dimensions
 - Unify gauge and Higgs sectors
 - Also unify fermion interactions with the above sectors
 - SUSY can unify all the above in one vector supermultiplet
 - Less free parameters

Coset Space Dimensional Reduction

- 1. Compactification
 - B compact space

$$\dim B = D - 4 = d$$

 $D \text{ dims} \rightarrow 4 \text{ dims}$

$$M^{D} \rightarrow M^{4} \times B$$

$$| \qquad | \qquad |$$

$$x^{M} \qquad x^{\mu} \qquad y^{\nu}$$

2. Dimensional Reduction

 \mathcal{L} independent of the extra coordinates y^a :

- ullet "Naive" way: Discard the field dependence on y^{a} coordinates
- Elegant way: Allow field dependence on y^{α}
 - ightarrow compensated by a symmetry of the Lagrangian

→ Gauge Symmetry

3. Coset Space Dimensional Reduction

Reduction Witten (1977); Forgacs, Manton (1980); Chapline, Slansky (1982); Kapetanakis, Zoupanos - Phys.Rept. (1992)

Kubyshin, Mourao, Rudolph, Volobujev - Book (1989)

$$-B=S/R$$

- Allow a non-trivial dependence on y^a
- impose the condition that a symmetry transformation by an element of the isometry group S of B is compensated by a gauge transformation
 - \rightarrow Gauge invariant $\mathcal{L} \rightarrow \mathcal{L}$ independent of y^{α} !

Reduction of a D-dimensional Yang-Mills Lagrangian

Consider a Yang-Mills-Dirac theory in D dims based on group G defined on $M^D \to M^4 \times S/R$, D=4+d

$$S = \int d^4x d^dy \sqrt{-g} \left[-\frac{1}{4} Tr(F_{MN} F_{K\Lambda}) g^{MK} g^{N\Lambda} + \frac{i}{2} \overline{\psi} \Gamma^M D_M \psi \right]$$

Demand: any transformation by an element of S acting on S/R is compensated by gauge transformations.

 \rightarrow Constraints on the fields of the theory A_{α} and ψ

Solution of constraints:

- Remaining gauge invariance
- 4-dimensional fields
- Potential

1) The 4D gauge group

$$H=C_G(R_G)$$

i.e. $G\supset R_G imes H$

2) Scalar fields

for each $s_i = r_i \Rightarrow h_i$ survives in 4D.

(The 4D gauge fields are independent of the extra dimensions)

3) Fermions

$$SO(d) \supset R$$

$$\sigma_d = \sum \sigma_j$$

$$G \supset R_G \times H$$

$$F = \sum (t_i, h_i)$$

for each $t_i = \sigma_i \Rightarrow h_i$ survives in 4D.

D = 4n + 2 Weyl + Majorana fermions in vector-like rep \rightarrow 4D chiral theory.

The 4D Theory

Integrate out the extra coordinates (+ take into account constraints):

$$S = C \int \sigma^{4} x \operatorname{tr} \left[-\frac{1}{8} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} (D_{\mu} \phi_{\sigma}) (D^{\mu} \phi^{\sigma}) \right]$$
$$+ V(\phi) + \frac{i}{2} \bar{\psi} \Gamma^{\mu} D_{\mu} \psi - \frac{i}{2} \bar{\psi} \Gamma^{\sigma} D_{\sigma} \psi$$

$$D_{\mu}=\partial_{\mu} igA_{\mu}$$
 C : coset space volume

$$D_a = \partial_a - \theta_a - ig\phi_a$$
 $\phi_a \equiv A_a$

$$V(\phi) = -\frac{1}{8}g^{ac}g^{bd}\text{Tr}\left\{ (f^{C}_{ab}\phi_{C} - ig[\phi_{a},\phi_{b}])(f^{D}_{cd}\phi_{D} - ig[\phi_{c},\phi_{d}])\right\}$$

 $V(\phi)$ still only formal since ϕ_a must satisfy one more constraint.

• If
$$G \supset S \Rightarrow H$$
 breaks to $K = C_G(S)$:

$$G \supset S \times K \leftarrow \text{ gauge group after SSB}$$

$$G \supset R \times H \leftarrow \text{ gauge group in 4 dims}$$

Harnad, Shnider, Tafel (1980)

Reduction of 10D,
$$N = 1$$
 E_8 over $S/R = SU(3)/U(1) \times U(1)$

anousselis, Zoupanos (2001-2004)

The non-symmetric (nearly-Kähler) coset space $SU(3)/U(1) \times U(1)$:

- admits torsion and may have different radii
- naturally produces soft supersymmetry breaking terms
- preserves the supersymmetric multiplets

We use the decomposition

$$E_8 \supset E_6 \times SU(3) \supset E_6 \times U(1)_A \times U(1)_B$$

and choose $R = U(1)_A \times U(1)_B$

$$\rightarrow$$
 $H = C_{E_8}(U(1)_A \times U(1)_B) = E_6 \times U(1)_A \times U(1)_B$

Since $S \subset G$, H breaks to

$$K = C_{G}(S) = E_{6} \times [U(1) \times U(1)]_{global}$$

- N = 1, $E_6 \times U(1)_A \times U(1)_B$ gauge group
- Three chiral supermultiplets $A^i: 27_{(3,1/2)}, B^i: 27_{(-3,1/2)}, C^i: 27_{(0,-1)}$
- Three chiral supermultiplets $A: 1_{(3,1/2)}, B: 1_{(-3,1/2)}, C: 1_{(0,-1)}$
- Gaugino mass $M=(1+3\tau)\frac{R_1^2+R_2^2+R_3^2}{8\sqrt{R_1^2R_2^2R_3^2}}$

$$V = \frac{g^2}{5} \left(\frac{1}{R_1^4} + \frac{1}{R_2^4} + \frac{1}{R_3^4} \right) + V_F + V_D + V_{soff}$$

$$\frac{2}{g^2} V_D = \frac{1}{2} D^{\alpha} D^{\alpha} + \frac{1}{2} D_1 D_1 + \frac{1}{2} D_2 D_2 \qquad \frac{2}{g^2} V_F = \sum_s |F_s|^2 , \quad F_s = \frac{\partial W}{\partial s}$$

$$\begin{split} \frac{2}{g^2} \mathbf{V}_{\text{soft}} &= \left(\frac{4R_1^2}{R_2^2R_3^2} - \frac{8}{R_1^2}\right) \left(\alpha'\alpha_l + \bar{\alpha}\alpha\right) + \left(\frac{4R_2^2}{R_1^2R_3^2} - \frac{8}{R_2^2}\right) \left(\beta'\beta_l + \bar{\beta}\beta\right) + \left(\frac{4R_3^2}{R_1^2R_2^2} - \frac{8}{R_2^3}\right) \left(\gamma'\gamma_l + \bar{\gamma}\gamma\right) \\ &+ \sqrt{2}80 \left(\frac{R_1}{R_2R_3} + \frac{R_2}{R_1R_3} + \frac{R_3}{R_2R_1}\right) \left(d_{\parallel k}\alpha'\beta'\gamma^k + \alpha\beta\gamma + \text{h.c.}\right) \end{split}$$

where

$$\begin{split} &D^{\alpha} = \frac{1}{\sqrt{3}} \left(\alpha^{l} (G^{\alpha})^{l}_{l} \alpha_{j} + \beta^{l} (G^{\alpha})^{l}_{l} \beta_{j} + \gamma^{l} (G^{\alpha})^{l}_{l} \gamma_{j} \right) \\ &D_{1} = \frac{\sqrt{10}}{3} \left(\alpha^{l} (3\delta^{l}_{l}) \alpha_{j} + \bar{\alpha} (3) \alpha + \beta^{l} (-3\delta^{l}_{l}) \beta_{j} + \bar{\beta} (-3) \beta \right) \\ &D_{2} = \frac{\sqrt{40}}{3} \left(\alpha^{l} (\frac{1}{2}\delta^{l}_{l}) \alpha_{j} + \bar{\alpha} (\frac{1}{2}) \alpha + \beta^{l} (\frac{1}{2}\delta^{l}_{l}) \beta_{j} + \bar{\beta} (\frac{1}{2}) \beta + \gamma^{l} (-1\delta^{l}_{l}) \gamma_{j} + \bar{\gamma} (-1) \gamma \right) \\ &\mathcal{W} = \sqrt{40} d_{lik} A^{l} B^{l} C^{k} + \sqrt{40} ABC \end{split}$$

Singlets α and β are chosen to acquire vevs $\to E_6 \times U(1)_A \times U(1)_B \to E_6$ $\to U(1)_A \times U(1)_B$ remain as global symmetries

The Wilson Flux Breaking

Hosotani (1983); Witten (1985); Zoupanos (1988); Kozimirov, Kuzmin, Tkachev (1989); Kapetanakis, Zoupanos (1989)

$$\label{eq:mass_bound} \textit{M}^{4} \times \textit{B}_{0} \, \rightarrow \, \textit{M}^{4} \times \textit{B}, \qquad \textit{B} = \textit{B}_{0}/\textit{F}^{S/R}$$

 $-F^{S/R}$ is a freely acting discrete symmetry of B_0 .

B becomes multiply connected \rightarrow breaking of H to $K' = C_H(T^H)$ T^H is the image of the homomorphism of $F^{S/R}$ into H

In our case

•
$$F^{S/R} = \mathbb{Z}_3 \rightarrow B = SU(3)/U(1) \times U(1) \times \mathbb{Z}_3$$

•
$$H = \underline{E_6} \times U(1)_A \times U(1)_B$$

•
$$K' = SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_A \times U(1)_B$$
, still $N = 1$

Matter fields invariant under $F^{S/R} \oplus T^H$ survive

$$ightarrow \gamma_3 = \operatorname{diag}(\mathbf{1}, \omega \mathbf{1}, \omega^2 \mathbf{1}), \quad \omega = e^{2i\pi/3} \in \mathbb{Z}_3$$

The surviving gauge fields satisfy the condition:

•
$$[A_M, \gamma_3] = 0 \Rightarrow A_M = \gamma_3 A_M \gamma_3^{-1}$$

The matter counterpart of the above equation is:

$$\bullet \ A^i = \omega \gamma_3 A^i, \ B^i = \omega^2 \gamma_3 B^i, \ C^i = \omega^3 \gamma_3 C^i, \ A = \omega A, \ B = \omega^2 B, \ C = \omega^3 C$$

$$E_6 \supset SU(3)_c \times SU(3)_L \times SU(3)_R$$
 $27 = (1,3,\bar{3}) \oplus (3,\bar{3},1) \oplus (\bar{3},1,3)$

Surviving matter content of the projected theory:

•
$$A_3 \equiv \Psi_1 \equiv q^c \sim (\bar{3}, 1, 3)_{(3, \frac{1}{2})}, \quad B_2 \equiv \Psi_2 \equiv Q \sim (3, \bar{3}, 1)_{(-3, \frac{1}{2})},$$

 $C_1 \equiv \Psi_3 \equiv L \sim (1, 3, \bar{3})_{(0, -1)}, \quad C \equiv \theta \sim (1, 1, 1)_{(0, -1)}$

Non-trivial monopole charges in $R \to \text{three generations: } \Psi_1^{(l)}, \ \Psi_2^{(l)}, \ \Psi_3^{(l)}, \ C^{(l)}$

$$\mathbf{q}^c = \left(\begin{array}{ccc} \mathbf{d}_R^{c1} & \mathbf{u}_R^{c1} & \mathbf{D}_R^{c1} \\ \mathbf{d}_R^{c2} & \mathbf{u}_R^{c2} & \mathbf{D}_R^{c2} \\ \mathbf{d}_R^{c3} & \mathbf{u}_R^{c3} & \mathbf{D}_R^{c3} \end{array} \right) \; , \; \; \mathbf{Q} = \left(\begin{array}{ccc} -\mathbf{d}_L^1 & -\mathbf{d}_L^2 & -\mathbf{d}_L^3 \\ \mathbf{u}_L^1 & \mathbf{u}_L^2 & \mathbf{u}_L^3 \\ \mathbf{D}_L^1 & \mathbf{D}_L^2 & \mathbf{D}_L^3 \end{array} \right) \; , \; \; \mathbf{L} = \left(\begin{array}{ccc} H_d^0 & H_u^+ & \nu_L \\ H_d^- & H_u^0 & \mathbf{e}_L \\ \nu_R^c & \mathbf{e}_R^c & \mathbf{S} \end{array} \right) \; . \label{eq:qc}$$

For one generation:

$$\begin{split} \mathcal{D}^{A} &= \frac{1}{\sqrt{3}} \langle \Psi_{I} | \mathcal{G}^{A} | \Psi_{I} \rangle \\ \mathcal{D}_{1} &= 3 \sqrt{\frac{10}{3}} (\langle \Psi_{1} | \Psi_{1} \rangle - \langle \Psi_{2} | \Psi_{2} \rangle) \\ \mathcal{D}_{2} &= \sqrt{\frac{10}{3}} (\langle \Psi_{1} | \Psi_{1} \rangle + \langle \Psi_{2} | \Psi_{2} \rangle - 2 \langle \Psi_{3} | \Psi_{3} \rangle - 2 |\theta|^{2}) \\ \frac{2}{g^{2}} V_{F} &= 360 \mathrm{tr} (\hat{q}^{c^{\dagger}} \hat{q}^{c} + \hat{Q}^{\dagger} \hat{Q} + \hat{\mathcal{I}}^{\dagger} \hat{\mathcal{L}}) \\ \frac{2}{g^{2}} V_{soff} &= \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}} \right) \langle \Psi_{1} | \Psi_{1} \rangle + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}} \right) \langle \Psi_{2} | \Psi_{2} \rangle \\ &+ \left(\frac{4R_{3}^{2}}{R_{2}^{2}R_{2}^{2}} - \frac{8}{R_{2}^{2}} \right) (\langle \Psi_{3} | \Psi_{3} \rangle + |\theta|^{2}) \end{split}$$

$$\begin{split} &+80\sqrt{2}\left(\frac{R_{1}}{R_{2}R_{3}}+\frac{R_{2}}{R_{1}R_{3}}+\frac{R_{3}}{R_{1}R_{2}}\right)\left(d_{abc}\Psi_{1}^{a}\Psi_{2}^{b}\Psi_{3}^{c}+h.c\right)\\ &=m_{1}^{2}\left\langle \Psi_{1}|\Psi_{1}\right\rangle +m_{2}^{2}\left\langle \Psi_{2}|\Psi_{2}\right\rangle +m_{3}^{2}\left(\left\langle \Psi_{3}|\Psi_{3}\right\rangle +|\theta|^{2}\right)+\left(\alpha_{abc}\Psi_{1}^{a}\Psi_{2}^{b}\Psi_{3}^{c}+h.c\right) \end{split}$$

Note: Supersymmetry is broken by *D*- and *F*-terms, in addition to the soft breaking.

Further Gauge Breaking of $SU(3)^3$

Babu, He, Pakvasa (1986); Ma, Mondragon, Zoupanos (2004); Leontaris, Rizos (2006); Savre, Wiesenfeldt, Willenbrock (2006)

Two generations of L acquire vevs that break the GUT:

$$\langle L_s^{(3)} \rangle = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V \end{array} \right), \ \ \langle L_s^{(2)} \rangle = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ V & 0 & 0 \end{array} \right)$$

each one alone is not enough to produce the (MS)SM gauge group:

$$\begin{split} &SU(3)_c \times SU(3)_L \times SU(3)_R \to SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1) \\ &SU(3)_c \times SU(3)_L \times SU(3)_R \to SU(3)_c \times SU(2)_L \times SU(2)_R' \times U(1)' \end{split}$$

Their combination gives the desired breaking:

$$SU(3)_c \times SU(3)_L \times SU(3)_R \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y$$

electroweak breaking then proceeds by:

$$\langle L_s^{(3)} \rangle = \left(\begin{array}{ccc} v_{\sigma} & 0 & 0 \\ 0 & v_{u} & 0 \\ 0 & 0 & 0 \end{array} \right)$$

Choice of Radii

Manolakos, Patellis, Zoupanos (2020)

- Soft trilinear terms $\sim \frac{1}{R_{\rm l}}$ - Soft scalar masses $\sim \frac{1}{D^2}$
- Two main possible directions:
 - Large $R_i \rightarrow$ calculation of the Kaluza-Klein contributions of the 4D theory \times Eigenvalues of the Dirac and Laplace operators unknown.
 - ullet Small $R_i
 ightarrow ext{high scale}$ SUSY breaking
 - Small $R_i \sim \frac{1}{M_{GUT}}$ with R_3 slightly different in a specific configuration

$$ightarrow$$
 $m_3^2 \sim -\mathcal{O}(extit{TeV}^2),$ $m_{1,2}^2 \sim -\mathcal{O}(extit{M}_{ extit{GUT}}^2),$ $a_{ extit{abc}} \gtrsim extit{M}_{ extit{GUT}}$

- supermassive squarks
- TeV-scale sleptons
- TeV-scale soft Higgs squared masses

Reminder: in this scenario $M_C=M_{GUT}$

Lepton Yukawas and μ terms

After the GUT breaking, the potential at the minimum becomes

$$\begin{split} \frac{2}{g^2} V_{scalar}^{GUT} &= \frac{6}{5} \left(\frac{1}{R_1^4} + \frac{1}{R_2^4} + \frac{1}{R_3^4} \right) + \frac{V^4}{9} \\ &+ \frac{20}{3} \left[(V^2 + (\theta_0^{(3)})^2)^2 + (V^2 + (\theta_0^{(2)})^2)^2 + (\theta_0^{(1)})^4 \right] \\ &+ \left(\frac{4R_3^2}{R_1^2 R_2^2} - \frac{8}{R_3^2} \right) \left(2V^2 + |\theta_0^{(3)}|^2 + |\theta_0^{(2)}|^2 + |\theta_0^{(1)}|^2 \right) \end{split}$$

$$ightarrow \ \langle heta^{(3)}
angle \sim \mathcal{O}(extsf{TeV}) \, , \ \ \langle heta^{(1,2)}
angle \sim \mathcal{O}(extsf{M}_{ extsf{GUT}})$$

- The two global U(1)s forbid Yukawa terms for leptons
 - \rightarrow introduce higher-dimensional operators:

$$L\overline{e}H_d\left(\frac{\overline{K}}{M}\right)^3$$

- ullet μ terms for each generation of Higgs doublets are absent
 - → solution through higher-dimensional operators:

$$H_{u}^{(i)}H_{d}^{(i)}\overline{\theta}^{(i)}\overline{\underline{K}}_{M}^{K}$$

 $-\overline{K}$ is the vev of the conjugate scalar component of either $S^{(l)},\ \nu_R^{(l)}$ or $\theta^{(l)},$ or any combination of them

Approximate Scale of Parameters

Parameter	Scale
soft trilinear couplings	O(GUT)
squark masses	O(GUT)
slepton masses	$\mathcal{O}(\mathit{TeV})$
soft Higgs masses	$\mathcal{O}(\mathit{TeV})$
$\mu^{(3)}$	$\mathcal{O}(\mathit{TeV})$
$\mu^{(1,2)}$	O(GUT)
unified gaugino mass M_U	$\mathcal{O}(\mathit{TeV})$

Scale

M_{FW}-M_{TeV}

M_{TeV}-M_{int}

Mint-MGUT

Gauge Unification

Since many SUSY parameters are comparable to M_{GUT} , we consider them to decouple at an intermediate scale M_{int} .

The 1-loop gauge β -functions are:

$$2\pi\beta_i = b_i\alpha_i^2$$

- b_i depends on the particle content
 - $\alpha_{1,2}$ are used as input to determine M_{GUT}
 - 0.3% uncertainty at the unification boundary
- $\rightarrow \alpha_3$ is predicted within 2σ of the experimental value

$$a_s(M_Z) = 0.1218$$

$$a_s^{EXP}(M_7) = 0.1187 \pm 0.0016$$

Scale	GeV	
M _{GUT}	$\sim 1.7 \times 10^{15}$	
M _{int}	$\sim 9 \times 10^{13}$	
M _{TeV}	~ 1500	

bı

bo

-3

bз

—7

-5

-3

$$\checkmark$$
 No proton decay problem: $U(1)_A = -\frac{1}{9}B$

Higgs Potential

The analysis is restricted to the third generation

$$\begin{split} V_{\mathit{Higgs}} = & \left(3|\mu^{(3)}|^2 + m_3^2 \right) \left(|H_d^0|^2 + |H_d^-|^2 \right) + \left(3|\mu^{(3)}|^2 + m_3^2 \right) \left(|H_u^0|^2 + |H_u^+|^2 \right) \\ & + b^{(3)} \left[\left(H_u^+ H_D^- - H_u^0 H_D^0 \right) + \text{c.c.} \right] \\ & + \frac{10}{3} g^2 \left[|H_d^0|^4 + |H_d^-|^4 + |H_u^0|^4 + |H_u^+|^4 + \right. \\ & \left. 2|H_d^0|^2 |H_d^-|^2 + 2|H_d^-|^2 |H_u^0|^2 + 2|H_d^0|^2 |H_u^+|^2 + 2|H_u^0|^2 |H_u^+|^2 \right] \\ & + \frac{20}{3} g^2 \left[|H_d^0|^2 |H_u^0|^2 + |H_d^-|^2 |H_u^+|^2 \right] - 20g^2 \left[\overline{H_d^0} H_d^- \overline{H_u^0} H_u^+ + \text{c.c.} \right] \end{split}$$

→ Comparison with standard 2 Higgs doublet potential gives:

$$\bullet \ \lambda_1 = \lambda_2 = \lambda_3 = \frac{20}{3}g^2$$

•
$$\lambda_4 = 20g^2$$

•
$$\lambda_5 = \lambda_6 = \lambda_7 = 0$$

 $-\lambda_{5,6,7}=0$ in a (even broken) SUSY theory – These relations are boundary conditions at M_{GUT}

Boundary Conditions and Uncertainties

At the unification scale we have the following boundary conditions and their respective uncertainties due to threshold corrections (such uncertainties also appear at the TeV boundary):

Kubo, Mondragon, Olechowski, Zoupanos (1996)

GUT BC	GUT Unc.	TeV Unc.
$g_3 = g$	0.3%	
$Y_{t,b} = g$	6%	2%
$\lambda_{1,2}=rac{20}{3}g^2$	8%	8%
$\lambda_3 = \frac{20}{3}g^2$	7%	5%
$\lambda_4 = 20g^2$	7%	5%

The au lepton Yukawa emerges from a higher-dimensional operator and has significantly wider freedom. The standard au lepton mass is used as input.

1-loop Results

1-loop β -functions used throughout the analysis that change between the three landmark scales M_{GUT} , M_{Int} and M_{TeV} .

- $\rightarrow m_b(M_Z)$ and \hat{m}_t are predicted within 2σ of the experimental values
 - $m_b(M_7) = 3.00 \text{ GeV}$

$$m_b^{EXP}(M_Z) = 2.83 \pm 0.10 \ {
m GeV}$$

•
$$\hat{m}_t = 171.6 \text{ GeV}$$

$$\hat{m}_t^{EXP} = 172.4 \pm 0.7 \text{ GeV}$$

 $\rightarrow m_{\rm h}$ is predicted within 1σ of the experimental value

•
$$m_h = 125.18 \text{ GeV}$$

$$m_h^{EXP} = 125.10 \pm 0.14 \text{ GeV}$$

- Large $\tan \beta \sim 48$
- $-M_A \sim 2000 3000 \text{ GeV } \checkmark$
- LSP \sim 1500 GeV

Conclusions

- Special choice of coset radii for split-like SUSY 2HDM
- ullet $M_{GUT}\sim 10^{15}\,{
 m GeV}-{
 m no}$ proton decay
- 1-loop predictions agree with LHC measurements
- \bullet LSP \gtrsim 1500 GeV
- ullet $M_A\sim 2000-3000$ GeV

Work in preparation/planned

- Full (light) SUSY spectrum
- 2-loop analysis
- Application of B-physics constraints
- Calculation of CDM relic density
- Investigation of discovery potential at existing and future colliders
- Examination of high energy potential

 test agreement with observed value of cosmological constant

Thank you for your attention!

...a few more things

Chiral Fermions

The $(SU(2) \times SU(2)) \times SO(d)$ branching rule is:

$$\sigma_D = (2, 1; \sigma_d) + (1, 2; \sigma_d')$$
 $\sigma_D' = (2, 1; \sigma_d') + (1, 2; \sigma_d)$

where σ_D, σ_D' are non-self conjugate spinors of SO(1, D-1).

Starting with Dirac fermions \rightarrow equal number of LH and RH reps of H.

- dring with bilde fermions / equal number of the and kinneps of 7.
- Odd D: Weyl condition cannot be applied \rightarrow equal number of LH and RH reps of H.
- ullet Even D : Weyl condition selects either σ_D or σ_D' .

$$\Gamma^{D+1}\Psi_{\pm}=\pm\Psi_{\pm}$$
 Weyl condition $\Psi=\Psi_{+}\oplus\Psi_{-}=\sigma_{D}+\sigma_{D}'$,

• D=4n+2: We start with a vector-like rep F $\rightarrow \sigma_d$ is non-self-conjugate and $\sigma_d'=\bar{\sigma}_d$.

$$SO(d) \supset R:$$
 $\sigma_d = \sum_i \sigma_k$, $\bar{\sigma}_d = \sum_i \bar{\sigma}_k$
 $G \supset R_G \times H:$ $F = \sum_i (r_i, h_i)$
 (r_i, h_i) either self-conjugate or have a partner (\bar{r}_i, \bar{h}_i)

Chiral Fermions

- Rule from $\sigma_d \to 4$ D LH fermions $f_L = \sum h_k^L$ σ_d is non-self-conjugate $\to f_L$ is non-self-conjugate.
- Similarly from $ar{\sigma}_{\it d}
 ightarrow$ 4D RH rep $\sum ar{h}^{\it R}_{\it k} = \sum h^{\it L}_{\it k}$

F vector-like $\to \bar{h}_k^R \sim h_k^L \to H$ is chiral theory with double spectrum.

ullet Majorana condition ullet eliminate the doubling of the fermion spectrum.

Majorana condition forces f_R to be the charge conjugate of f_L .

All together:

- D = 4n + 2
- Fermions in vector-like rep F of the 10D G gauge group
- Weyl + Majorana conditions imposed
- → chiral 4D theory!

2HDM General Potential

$$\begin{split} V = &(|\mu|^2 + m_{H_1}^2)(H_1^\dagger H_1) + (|\mu|^2 + m_{H_2}^2)(H_2^\dagger H_2) + b(H_1^\dagger H_2 + \text{hc}) \\ &+ \frac{1}{2}\lambda_1(H_1^\dagger H_1)^2 + \frac{1}{2}\lambda_2(H_2^\dagger H_2)^2 \\ &+ \lambda_3(H_1^\dagger H_1)(H_2^\dagger H_2) + \lambda_4(H_1^\dagger H_2)(H_2^\dagger H_1) \\ &+ \{\frac{1}{2}\lambda_5(H_1^\dagger H_2)^2 + [\lambda_6(H_1^\dagger H_1) + \lambda_7(H_2^\dagger H_2)](H_1^\dagger H_2) + \text{hc}\} \end{split}$$

Supersymmetry imposes tree level relations among couplings

$$\lambda_1 = \lambda_2 = \frac{1}{4}(g^2 + g'^2)$$

$$\lambda_3 = \frac{1}{4}(g^2 - g'^2), \ \lambda_4 = -\frac{1}{4}g^2$$

$$\lambda_5 = \lambda_6 = \lambda_7 = 0$$

Gunion, Haber (1986); Quiros (1997);

Branco, Ferreira, Lavoura, Rebelo, Sher, Silva - Review (2011)