Gamma Factory
Status and Physics Highlights

Corfu Workshop on the Standard Model and
Beyond, Sept 2021

Mieczyslaw Witold Krasny
LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP



HEP future: concepts and tools
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“New directions in science are launched by new tools
much more often than by new concepts.

The effect of a concept-driven revolution is to
explain old things in new ways.

The effect of a tool-driven revolution is to discover
new things that have to be explained" - F. Dyson
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The Gamma Factory in a nutshell

O The infrastructure and the operation mode of the CERN accelerators allowing to:

» produce, accelerate, cool, and store beams of highly ionised atoms

= excite their atomic degrees of freedom by laser photons to form high
intensity

= produce plug-power-efficient diverse tertiary beams

O The research programme in a broad domain of science enabled by the “Gamma
Factory tools”



Present LHC beam partiCIeS: The Gamma Factory proposal for CERN
Mieczyslaw Witold Krasny (Paris U., VI-VII) (Nov 24, 2015)

e-Print: 1511.07794 [hep-ex]
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GF research tools made from light




1.Atomic traps of highly-charged, “small-size” atoms

Opening new research opportunities:

Atomic rest-frame
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Highly-charged atoms — very strong (~107° V//cm)
electric field (QED-vacuum effects)
Small size atoms (electroweak effects)
Hydrogen-like and Helium-like atomic structure
(calculation precision and simplicity)
Atomic degrees of freedom of trapped highly-charged
atoms can be resonantly excited by lasers
Circular, repetitive relativistic motion of the GF atomic

traps = Lorentz invariance tests and gravitational
wave detection

Crysialline beams?
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2.Electron beam for ep collisions at LHC
(in the ATLAS, CMS, ALICE and LHCb interaction points)

Hydrogen-like lead

Opens the possibility of collecting, by each of the LHC

IN PHYSICS
RESEARCH

detectors, over one day of the Pb+81—p operation, the
E.y~ 200 GeV effective ep-collision luminosity comparable to the
, ® '\ @ HERA integrated luminosity in the first year of its
:'/ ‘\‘\ average distance of the operation (1992) — in-situ diagnostic of the emittance of
i i electron to the lead nucleus partonic beams at the LHC!
; “: d - 600 fm Availabls i di =NUCLEAR
i (sizeably higher than the range SRS wlincunrs

of strong interactions)
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Alomic beams can be considered as independent electron Collimation of partially stripped ions in the CERN Large Hadron Collider
and nuclear beams as long as the incoming proton scatters e otvont . Redsel s M. Setman
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3.Gamma Factory y-source
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Novel technology: Resonant scattering of laser photons on ultra-relativistic atomic beam




Source properties
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1. Point-like:
» For high-Z, hydrogen- and helium-like atoms: decay length (cty,) << 1 cm

2. High intensity:
» Resonant process. A leap in the intensity by 6—8 orders of magnitude w.r.t.

electron-beam-based Inverse Compton Sources (ICS) (at fixed y, and laser power)
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Source properties

High energy atomic beams play the role of high-stability light-frequency converters:

Vit — (4 YLZ) V| aser

for photons emitted in the direction if incoming atoms, y, = E/M is the Lorentz factor for the ion beam

3.Tuneable energy:

> The tuning of the beam energy (SPS or LHC), the choice of the ion, the number of left electrons and of
the laser type allow to tune the y-ray energy at CERN in the energy range of 10 keV — 400 MeV
(extending, by a factor of ~1000, the energy range of the FEL X-ray sources)

4. Pluqg power efficient:

» Atoms loose a tiny fraction of their energy in the process of the photon emission. Important: No need
to refill the driver beam. The RF power is fully converted to the power of the photon beam
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dn/dE, [MeV' s]

A concrete example: Nuclear physics application: He-like, LHC
Calcium beam, (1s—>2p),, transition, TiSa laser

5. Highly-collimated monochromatic y-beams:

» the beam power is concentrated in a narrow angular
region (facilitates beam extraction)

> the (E,®,) correlation can be used (collimation) to
‘monochromatise” the beam
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laser pulse parameters

— Gaussian spatial and time profiles,

— photon energy: E_photon = 1.8338 eV

— photon pulse energy spread: sigma_{omega}/omega = 2 x 10Y{-4},

— photon wavelength: lambda = 676 nm,

— pulse energy: W_{I} =5 mJ,

— peak power density 1.12 x 10413 W/m~2

— r.m.s. transverse beam size at focus: sigma_{x} = \sigma_{y } = 150 um (micrometers),
— Rayleigh length: R_{Lx}=R_{L,y}=7.5¢cm,

— r.m.s. pulse length: |_{I} = 15 cm.
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4.Tertiary beams’ sources — Intensity/quality targets

Polarised positrons — potential gain of up to a factor of 107 in intensity w.r.t. the KEK positron source,
satisfying both the LEMMA and the LHeC requirements

Pions — potential, gain by a factor of 10°, gain in the spectral density (dN_/dEdpdP [MeV-? x MW] with
respect to proton-beam-driven sources at KEK and FNAL (P is the driver beam power)

Muons — potential gain by a factor of 10° in intensity w.r.t. the PSI muon source, charge symmetry (Nu
* ~ Nu), polarisation control, no necessity of the muon beam cooling?

Neutrinos — fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small
spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven
by the beams of polarised muons

Neutrons — potential gain of up to a factor of 10% in intensity of primary MeV-energy neutrons per 1 MW
of the driver beam power

Radioactive ions — potential gain of up to a factor 10* in intensity w.r.t. e.g. ALTO
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The SPS as a driver of secondary beams

1974-2021: 47 years of the experimental
program with the SPS extracted beams
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The LHC as a driver of secondary beams?

Gamma Factory proposal: (> 20387?) - experimental program with the LHC-driven secondary beams

gae W Neutron
| physics

Pl Medical S L
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GF: Convert the LHC RF power into the power of secondary
beams while keeping stable atomic beams circulating in the LHC!
. » / e ,:- o .

é | Dark Matter
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5.Doppler laser cooling methods of high energy beams

Opens a possibility of forming at
CERN hadronic beams of the
required longitudinal and
transverse emittances within a
seconds-long time scale
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Beam cooling speed: the laser wavelength band is chosen such that
only the ions moving in the laser pulse direction (in the bunch rest frame)

can resonantly absorb photons.
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Simulation of laser cooling of the lithium-like Ca(+17)
bunches in the SPS: transverse emittance evolution.
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Physics with the GF tools

particle physics (studies of the basic symmetries of the universe, dark matter searches, precision QED and EW
studies, vacuum birefringence studies, Higgs physics in yy collision mode, rare muon decays, precision neutrino
physics, ...).

accelerator physics (beam cooling techniques, low emittance hadronic beams, plasma wake field acceleration, high
intensity polarized positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and
flavour-tagged neutrino beams).

particle physics (studies of the basic symmetries of the universe, dark matter searches, precision QED and EW
studies, vacuum birefringence studies, Higgs physics in yy collision mode, rare muon decays, precision neutrino
physics, ...).

accelerator physics (beam cooling techniques, low emittance hadronic beams, plasma wake field acceleration, high
intensity polarized positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and
flavour-tagged neutrino beams).
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=1 Introduction

& The Gamma Factory (GF) facility at CERN [1, 2] can provide the next generation 4 beams, based o
resonant absorption and emission of laser photons on partially stripped ultra-relativistic heavy-ion (PST)
"' beams. The state-of-the art ~-beam facilities, such as HIS at Duke University, USA [3) or the V]
G5 system i ELINP, which i s & el stage of constsucion . Muguree, Rowmasia, as based o Counp-
D ton ek acstaing of s photons of relaivistic dlctions (LCB). The -beam fux s the GF i o
&3 pected to be several orders of magnitude higher compared to the preseat generation +-beam facil
- Lo il du o the terction cros setion which s ghe by up (0 i oxdesof ‘magnitude for
173 the absorption of laser photons by PSls than that for L
S One of the pou-vnm\ apphmmm of this unprecedented *rrhrmn intensity is the grurratmn of high yield
& radioactive-ion Bs) via photon fnduced fision. The fssion process has been used sucessflly
£ in the production o mtermedint s (A ~ 70 150) maclids i the nontroeih reion fo sy o
175 the valley of 3 stability. The study of exotic nuclides in this region is the test-bench for theory in ar-
'S eas lke the nuclear equation of state, nuclear structure models and nucleosynthesis via the rapid neu-
& tron capture process
‘mergers [4] have indicated that these cosmic events are one of the likely locations where r-process nu-
cloogihess takes lac. This has incresse tho nteret in sty the neutron-ich uclides long he
7-process path, with special interest around the waiting points at ne 82
S N = 126, he st tw boing accosble in ision, wile he last
nucleon transfer reactions.
Seraal RIS faclios aze currntly etive worldwide, such as CARIBU (AN (), ISAG (Thu) (0,
ISOLDE (CERN) [7], FRS (GSI) [8}, SPIRAL (GANIL) [9], JYFL (Jyviiskyl&) [10], and RIBF (RIKEN)
[L1]. For a recent review see Reference [12]. To a large dpme (he\ complement each other by employing
a variety of methods and technologics, such as beam types (from heavy ions to photons), target types
(thick or thin), fragment separation (in-flight separators or in-cell catchers) and selection (with lasers,
‘magnets, time-of-fight cpcmomum) s experimental stations. Among the RID it vith drve
beams and thick actinide targets, like ssed here, the current ALTO (IPN Orsay) [13) and
the future ARIEL (TRIUMF) [14] faci e employ bremsstrablung sources, while the future ELISOL

reached in ﬁsgmemauon or multi-
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L INTRODUCTION
L INTRODUCTI ®| (Received 3 November 2020 revised 23 February 2021; accepted 13 April

21; published 3 May 2021)

‘We present a possibility of dircct resonance production of pioaic atoms (Coulomb bound states of a negative
sy Factory

We explore the perspecti

end, we ast DOI: 10.1103/PhysRevC. 103.054603

ss in detail the parameter regime which can be reliably analyzed resorting to the leading

contribution to the Heisenberg-Euler effective Lagrangian. We ex

plicitly show that - contrarily to

. 1L INTRODUCTION certainly deserves a preliminary investigation, which is the
'h allows for the accurate theoretical study of quantum vacuum

aim of the present note.

naive expectations - this appro The poic som 1] const of 3 egaive pon 3
the Coulomb potential of an alomic nucleus. Such systems
provide great opportunities (0 study the sirong interaction 1L ESTIMATE OF THE PRODUCTION RATE
and derive information on nuclear strcture. Theoretical study pin
of energy levels in pionic aloms started long 20 [23] 204 oyg 4 fxed target. Photoproduction of pionic atoms is eal-
iniiated exteasive theoretcal and experimental studies; see, o i cLen ST FOATATIEH” o I "

signatures up to fairly large photon energies. The big advantage of this parameter regime

the possibility of studying the phenomenon in experimentally realistic, manifestly inhomogeneous

1L SPECIAL RELATIVITY TESTS WITH BEAMS OF FAST PARTICLES

2104.03784v1 [hep-ex] 8 Apr 2021

pump and probe field configurations. Thereafter, we focus on two specific scenarios giving rise for example, the recent experiment on laser spectroscopy of 1 P+ within a nucleus,
ffece (DE) was already consid E 101 Dapples ef L N ‘o . pionic *He of Ref. [4], and references therein. B

way to cbue: Ric space time: the titme. dilatio pe loagiceinal DE, criginat to a vacuum birefringence effect for traversing gamma probe photons. In the first scenario the ‘A conventional production mechanism of pionic atoms in- y+AX > (X 1), m

Y maisin s change m photon fre o Locentz boast. The frst such st was uccessellyrenlized by . ) ) volves creation of free negative pions which are then capturcd wol -
> of fast atoms. With progress iz photor and accelerator technology. a numbes of experiments Eave been performed, birefringence phenomenon is induced by a quasi-constant static magnetic field. In the second case by nuclei. Here, we explore a possibility of direct production  where 4X and 4X" are the initial zl\d final nucleus, respec-
] o o . of pion-nicleus bound tates by a monochromatic gamma-ray  tively (both in their nuclear ground state!), Z and Z — 7 + 1
g advanced expe: cas in & storage ring was completed in it is driven by a counter-propagating high-intensity laser field. beam with the energy tuned to that of the bound state. This  are the corresponding atomic numhﬂs A is the number of
“ ian at the level of 107 ‘monochromatic gamma-ray beam s expected at the nucleons, which is the same for the initial nucleus and the

e tested, bt this requi Gamma Factory (GF)[5,6] currently studied within the CERN  final one, 7 is the pionic atom principal quantum number,
Physics Beyond Colliders program. It is noted that photopro-  and / is the angular momentum quantum number. We will
duction of pionic atoms was once put forward by Tzara (7). focus mainly on s states since 7~ in ns states have larger
Here, we introduce different approaches to evaluating photo-  probability densities inside the nucleus and thus larger cross

2106.06359v1 [hep-ph] 11 Jun 2021

passbic 2 high pre production cross sections, and, making use of experimental  sections for their production.
o of the specd.of. h;m GE/E = 27 (3c/c). The data for free-pion (both charged and neutral) photoproduc- ‘An example of the reaction is
ME. peovided 2 limit an the anisatropy of the cae-way MAS at tion, we extend the analysis 10 a range of nuclei. Estimates o
e presented below show that the pionic-atom production rate 7 +’H = CHe+ 7 ). @

7 may. in principl, each ~ 100 atoms per second, . i

may exceed the production rate a existng fcilities (~10° ST ;:f;:"; ;ﬁ:;“g': heavier nuclel Assuming hat
pionic atoms per second; se. for example, Ref. [4] by many " poton & "+ Ee :“A B4 AN,
orders of magnitude. Specific experimental amangements, the o e Pt n + Acw + Bt
Giscussion of which s beyond the scope of (he presen paper,  "1E%E M€ = 13057 MeV i the st enegy of the egative
‘may reduce this gain in the production rate, but the problem

arXiv

excited states can

*1a principl, pionic atoms with final muclci

*Cormesponding author: ah201

2469-9985/2021/103(5)054603(7) 054603-1 ©2021 American Physical Society
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Example 1:

High-Luminosity LHC with low emittance,
Gamma Factory “cold” beams

21




The Gamma Factory path to high-luminosity LHC

nin9 LThe on-going HL(pp)-LHC project

< = f47r\/€x Bz €y By

Two complementary ways to
_ 1.2 km of LHC !I!

increase collider luminosity: Pl

Levelled Luminosity: 2.5 (5) x 10%* cm2s, cost ~ 1 billion euro

> increase the focusing strength, p* \
» reduce the beam emittance, ¢ 20 Physics
> both. Volume 114, September 2020, 103792

Review

Progress in Particle and Nuclear

High-luminosity Large Hadron Collider
A low-emittance particle beam is the beam where with laser-cooled isoscalar ion beams *

particles are confined within small distances and have

M.W. Krasny # b 2 =, A. Petrenko < °, W. Ptaczek ¢

nearly the same momentum vectors — cold beams. Show more
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The GF scheme
of reducing the
transverse

beam emittance

» Produce highly charged ion bunches (partially stripped atoms) with
the existing CERN ion source

» Leave a couple of electrons attached to their parent nuclei for the
SPS acceleration phase (in the canonical SPS heavy ion operation
all electrons are already stripped off).

» Cool the atomic beam with the specialised laser system at the top
SPS energy to reduce its emittance (longitudinal and the transverse
cooling).

« Strip the electrons in the SPS-to-LHC transfer line.

Accelerate and collide

* Accelerate and collide fully stripped ion beams in the LHC.
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Gamma Factory path to HL(AA)-LHC:
A concrete implementation scheme with Ca beams

LHC: fully stripped

Calcium Ca(+20)

: /\Aﬁv Laser cooling
(2s—>3p) 4

SPS

SPS: Lithium-like
Calcium - Ca(+17)

Stripper

Stripper

P Pbions

LINAC 3

lon Source + Linac: charge state after stripping: Ca(+17)

1.6

— e
1.4 \\ A.Petrenko —
~ 12
-"E 1.0 \
£
g 08 \\
E o6 ™N
e o \\\
0.2 \‘
. ———
0.0
0 2 4 6 8 10 12

t (sec)

Reduction of the
transverse x,y, emittances
by a factor of 5 can be
achieved in 9 seconds

e Progress in Particle and Nuclear

# by N Physics

Volume 114, September 2020, 103792

High-luminosity Large Hadron Collider
with laser-cooled isoscalar ion beams

M.W. Krasny * ® & &, A. Petrenko © *, W. Placzek ¢

Show more

https://doi.org/10.1016/j.ppnp.2020.103792 Get rights and content

Parameter Value

s"2 [TeV] 7
Ogrpp(Ca)/Ogepp(Pb) 5x10°
ahad(Ca)/ Otot(Ca) 0.6

N, 3x10°
g(x,y)n [‘um] ) 0-3

IBS [h] 1-2

B* [m] 0.15

Ly [em2sT] 4.2 x 1034
Nb of bunches 1404

Collisions/beam crossing 5.5

Optical stochastic cooling time for the Ca beam, if
necessary, at the top energy — 1.5 hours (V. Lebedev)
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Significantly higher precision can be achieved in measuring EW processes
with isoscalar ion beams (e.g. Ca) rather than proton beams - WHY?

u and d quarks have In addition the relative
different charges, weak distributions of the
isospin and vector and axial valence and sea u and d
@ @ couplings. quarks determine the
‘ For EW-physics: proton effective W/Z boson

@ beams are equivalent to polarisation. Proton
neutrino and electron beam beams —> polarisation
mixed in not precisely known cannot be precisely
proportions. controlled.

Isoscalar (A=2Z) ion beams

Profit from the flavour symmetry of strong interactions to to equalize the distributions of the
uand d quarks: | w7 (@ ke, Q) = TP (2 ke, Q)

M.W. Krasny, F. Dydak, F. Fayette, W. Placzek, A. Siodmok, Eur.Phys.J. C69 (2010) 379-397.

F. Fayette, M.W. Krasny, W. Placzek, A. Siodmok, Eur.Phys.J. C63 (2009) 33-56.

M.W. Krasny, F. Fayette, W. Placzek, A. Siodmok, Eur.Phys.J. C51 (2007) 607-617.

M.W. Krasny, S. Jadach, W. Placzek, Eur.Phys.J. C44 (2005) 333-350. 25




The merits of
the low-
emittance
ISoscalar

(Z=A/2)
beams

Partonic emittances (longitudinal and transverse) can be
fully controlled by the LHC data alone (no precision brick-
walls coming from the LHC-external data, and PDFs, PS
models).

Significantly higher systematic precision in measuring the
EW processes by using isoscalar ion beams rather than
proton beams (as in the earlier fixed target experiments).

A Z4leap in photon fluxes — access to exclusive Higgs
boson production in photon—photon collisions —
unreachable for the pp running mode.

Lower pileup background at the equivalent (high) nucleon-
nucleon luminosity.

New research opportunities for the EW symmetry breaking
sector.
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Example 2:

Gamma-Factory-driven, neutrino source
and
polarised muon source
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Towards the Gamma-Factory-driven, neutrino source and
polarised muon source

Neutrino Factory (NuMAX)

lProton Driver Front End Copl— Acceleration | Storage Ring
OO -:,:,_mf ﬁ’ X Shouldn’t we try to
?2 M : : : B | @ =— |” | | avoid constructing a
2 £ 5 |82 %S 281m costly, high power
= 2°8 2|5 [SFatne | oo sasenene | | PrOton Driver, and to
get rid of the

Proton-driven Muon Collider Concept (MAP)

necessity of building

fProton Driver Front End Cooling Acceleration Collider Ring
= S Higgs Fact ot :
? . .. i (=5 | | sophisticated cooling
2 8 £ £ |95 2 2|8 s £ £ = .
S £ E 562358 sz 8 - section?
a S S |Ee® aloe o o Z = 7! )
S 288 Sls ¥ @ e £ Accelerators:
= 2o =28 & Y Linacs, RLA or FFAG, RCS

Who would not be excited by the perspective of constructing a 3 TeV muon-
collider in the existing, 7 km long, SPS tunnel, forthe (5.5 BCHF) cost of
digging the tunnel for the 100 km long, 350 GEV, e*e collider? 28




Muon-beam driven neutrino beams

Neutrino Factory (NuMAX)

. . Proton Driver Front End [Cool- | Acceleration | Storage Ring .
Detailed studies O O ing m 1. Can we deliver
over the last 20 e et YT 5 Gev 1073-10"* muons/
years... £ 2 2 E9EEglg | o o - second of each

3 E 5 5228 3|2 " ;
&‘3‘ 038 z&: £ Accelerators: Slgn?
§ (= = Single-Pass Linacs Long Baseline NF
Neutrino Factory parameters
) NUMAX 2. Can we produce
ystem Parameters Unit nuSTORM Commissioning NuMAX NuMAX+ i
Ve OF V, 10 \ \ polarised muon
detectorsly:ar 4.9x10" 1.8x10% | 5.0x10% 2
Stored p+ or p-lyear 1.25x10% | 4.65%10%° | 1.3x10% beam:
Acceleration ] ) .
Gamma Factory u-polarisation- 3. Can we avoid the
ongoing studies preserving cooling phase?
going Gamma-Factory-based [0 ) Iz ap -
. GeV GeV @@
polarised muon source
Accel : storage rin
Si(r:'ncgelee-;aatsiriinacs g g 29




The importance of muon (longitudinal) polarisation

Precise control of CP and flavour composition of the u-beam driven neutrino source

The GF source for
isoscalar targets is
“‘charge-symmetric”!

Selection of v,v, or v, v,
beam by changing the sign
of collected pions

Control of the relative v,/v,
(v/v,) fluxes by changing

muon polarisation »

uE s et
d’N 1 P
m = E[fg(I)?Pﬂfl(l‘) COSG] w

r=2E,/m, ’

P, is the muon polarization \

@ 1s the angle between the neutrino 1s
momentum vector and the
muon spin direction

L | Jol®) |
vy,e | 22%(3 — 2z)
ve | 122%(1—1x)

1

05 -

filz) | 0
22%(1 — 22)
122%(1 — 2)

+ Ve(Ve) + Vu()

v, for P=+1,u beam
3 P=-1 u* beam

v, for P=+1,u- beam
P=-1 u* beam

F F. Dydak, GF note,
October 2015

1 ! ! ! 1 ! ! !
o of 02 03 04 05 06 07 08 09 1

Fractional neutrino momentum

1 1 1 1 1 1 1 1 1
[ o1 02 03 04 05 06 07 08 09 1

Fractional neutrino momentum

Conceptually optimal experiment to search for CP violation in the neutrino sector:

The experiment would compare the oscillation probabilities of v, — ve., with the v, flux
obtained from the decay under zero forward angle from fully polarized p~, and of 7, — 7.,
with the 7, flux obtained from the decay under zero forward angle from fully polarized p*.
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Gamma Factory - producing polarised muons by photons

Total cross section [barn]

l+
—

Y
Circularly

polarised Y
GF photons
N

— —1

1=

=
o
IS

-
o
o

=
o
&

-
o
~

y+Cu—putpu +X

-
o
&

|

I
107 10° 10* 102 103
oton energy [GeV]

GF@HE-LHC

GF@LHC

~ 1079 w/s source for GFQLHC
(Mass threshold effect)

New concept

mt+,7t-

A+’ AQ

n,p
Photon energy [GeV]
20 25 0.5 1.0 15 20 25

. \
2,1 24
Invariant mass [GeV]

Pion rest frame

< t+ >
v u+

1

Lab frame

Polarisation =P(6)

W

Requires quasi-monochromatic
pion beam ...and 6—-dependent
packing of muons into
successive

RF buckets to minimise the
polarisation smearing!

High intensity source: 2x10"3 (10M4) u* and w per second for the 2X0
graphite (deuterium) target and 1 MW, 300 MeV photon beam!
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Quasi-monochromatic pion source:

De-randomising pion spectra and restoring their charge symmetry

CM frame:

Monochromatic pions

Laboratory frame:

» Pion energy and transverse
momentum fully specified by one
parameter: the pion emission angle,

0 15 75

30 45 60
0 (degree)

20

Unbound nucleon target

Y J'E+,TE—

p.n n,p

Nucleons bound in the nucleus

Y %—< o
+ 0
p,n A% A n,p

Z=A/2, (N,=N,)

Isoscalar target choice:
assures almost exact charge
symmetry of ¥ and 7 production

(below 2z production threshold)
(note the effect of the nucleon Fermi
motion smearing — relative to hydrogen

target) \

40

10 20 30 40 50 60 70 80 90
6 (Degree)
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Can we avoid u-cooling stage? — pion spectral density

8 GeV proton beam

300 MeV GF y-beam

For A, = 2 graphite target:

~41x10" a*/sand ~ 2.6 x 10" /s for 1 MW p beam

For A, = 2 graphite target :

~3x 10" x* and /s for 1 MW y beam (2 x 1076 y/s)

dNidp (1/GeVic)

103,
,‘:+
[
&~
Nikolai V. Mokhov, Robert J. Noble and A. Van Ginneken # [ ]
Fermi National Accelerator Laboratory* : []
% Bt
[
103 %
! ! & [
*p (1.107) b
‘ ®pi+ (0.687) "
©pi- (0.562) A A
% AK+(0.031)
G L aK(0007) | J %
% A
> &l e
A e . Wmm +
~ Y 10 |
BAD
N A .A@r
/,\ A a ‘Ak‘f v
“ ‘:b
S ]
o, ~1000 Me 2 Oy ~250 MeV' s
f 1 1 1 1 1
0 1 2 3 % 5 6 7 8 9 ) 0.2 0.4 0.6
p (GeVic) p; (GeV/c)

30 x40
I E =300 eV Graphite 40om E, =300 MeV_Graphite 40 cm
40< BW " 71100 degree 40 < 9p‘m " 72100 degree

%’2.5 - :m;;"gll:lgoMeV,n - 24 MeV % 30 P:n19u:24 MeV, = 22 MeV
2 7_ ;‘;:ZAMev,onsMev I = - "P',’lf:LMev,c:zaMev
Ezoi E [
S I o,~24 MeV 82010y ~22- MeV \
& q5f a I
5 f ° [
61.0' E) S
'g i '81.0 ‘
3 [ 3 B
Z05f / z | /

0.0k 0.0 e e

0 50 100 150 200 250 300 0 50 100 150 200 250
P, (VeV) P, (MeV)

A factor of 10 less pions produced by 1 MW photon beam w.r.t. 1 MW proton beam,

higher, by a of factor ~ 500, spectral density [1/MeV?] of produced “beam-like” pions!

..but significantly

300
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Mark Palmer for the Muon Accelerator Program (MAP)

Cooling

Expected pion source beam
emittance:

1 MW gamma beam, 20 cm long
graphite target, Nn= 1.3x10*3
of each sign

Remaining challenge: design a
pion/muon collection scheme in

which the emittance is preserved
(...or worsen by not more than a
factor of ~4)

Rubbia’s Proposal

Advanced techniques =

Improved HF Luminosity

Simplified Final Cooling requirements
December 1, 2020

: For acceleration to
. multi-TeV collider

= *
1;/11111_

10.0

10?

@ Specification *Achieved (simulations)

post-merge
6D Cooling

Hybrid
| 1 111l

Front End

(15mm,45mm)
Initial
(X Cooling
5 pre-merge
6D Cooling
(to optimize)
pre-merge
Bunch 6D Cooling
Merge (original design)
L1 1l J

103

MAP Higgs 10%

Transverse Emittance (microns)actory Target

PITT PACC Workshop: Muon Collider Physics

BROOKHFAVEN

11 NATIONAL LABORATORY
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Example 3:

Dark Matter searches in Gamma-Factory
ALPs and Dark Photons
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DM searches (and studies): Axion-Like-Particles (ALP) example

Collision schemes for ALP production: ::}>‘*

“Production” phase

Search phase

Y ‘I(\ﬂ "r\’ 4 _\/\/\/\ YGF ~ YLaser
VU Map ~ 1-100 keV

My p < 1keV

LHC
\/\/\/\’ Yer— A (beam dump) ,v/\ ;A“ N 4\/\ /\/f\ Yor Y (LHC)
mup ~ 1 keV — 10 MeV Uy V mu.p ~ 100 keV — 800 MeV
W\/\) o e Y A (LHC) [ Concurrent, rich QED programme (e.g. vacuum birefringence }
Map ~ 10 MeV — 10 GeV studies)

Three principal advantages of the Gamma Factory photon beams:

Large fluxes: ~107?° photons on target over year (SHIP — 10?0 protons on target).

Multiple ALP production schemes covering a vast region of ALP masses (sub eV — GeV)

Once ALP candidate seen - a unique possibility to tune the GF beam energy to the resonance.
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Gamma Factory APL-finding potential

(beam-dump search mode)

Search phase 102 ‘
Example: beam-dump mode

1 ~
_ nv
La= graF* Fo

1073

vgr—A collisions
Wv\; 16,02, GeV
beams (A,B, )

EUEN

Lasy = my/(647A2)

imEx Belle-II

3

Two appearance modes: -
>
& 105
— 2o, g
| Y 1
) WY m :
/ 4 10°6
L i,

» decay:a 2>yy (AB, )

N

arXiv:2105.15072v1 [hep-ph] 31 May 2021

am Dumps

Belle-II _|

i
|
|
i
|
|
i

\J'

>

10m 107 . . /
«———» . .
— 4 = M\b mC
\/W\I /

1
1073 104

» reconversion: aN 2>yN (B,C)

1
103

m,[GeV]

102

10!

1
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Gamma Factory dark photon discovery potential
(beam-dump search mode)

1 / i
LD 5m31,A2 —sezf:qff,,qf,

ve — eX

L

Ltargel Lshield Ldecay

FIG. 1. Experiment layout. The experiment consists of a (graphite) target with thickn
Liarger = 1 m, followed by a (lead) shield with thickness Lgpielq = 2 m, an open air decay reg
with length Lgecay, and a tracking detector, centered on the beam axis, which we take to be
circular disk with diameter Lge;. The GF photon beam enters from the left and produces an
particle through dark Compton scattering ye — eX. The X particle is produced with an angl
relative to the GF beamline and decays to an e”e™ pair, which is detected in the tracking detect

Gamma Factory Searches for
Extremely Weakly-Interacting Particles

Sreemanti Chakraborti,'* Jonathan L. Feng,* ' James K. Koga,* ! and Mauro Valli*%

—2e
sy NA48/2  Babar LHCb

10-°

W 104 2
‘O‘Q

10—7 4

107% 4

B Nor=3x 102, E, = 1600 MeV
=3x 1020, Ey =200 MeV
109 4 SN1987A Ngp =3 x 10%% |, Ey =20 MeV
10! 102 10°
my [MeV]

FIG. 3. Dark photon sensitivity. The sensitivity reach for the three sets of GF parameters
(B, Ncr) indicated, each corresponding to a year of running, and detector parameters Ldecay =
12 m and Lget = 3 m. The contours are for 3 eTe™ signal events and assume no background.
The gray shaded regions are existing bounds from the terrestrial experiments indicated [32-42] (for
further details, see also [43, 44]), from (g — 2)e [45], and the dashed gray line encloses the region
probed by supernova cooling, as determined in Ref. [46].
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Gamma Factory status
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Gamma Factory group

A. Abramov!, S.E. Alden', R. Alemany Fernandez?, P.S. Antsiferov®, A. Apyan4. D. Balabanski®?, H. Bartosik?2,
J. Berengut®, E.G. Bessonov®, N. Biancacci?, J. Bieroi”, A. Bogacz®, A. Bosco!, R. Bruce?, D. Budker®!°,
P. Constantin®!, K. Cassou!!, E Castelli'?, I. Chaikovska'!, C. Curatolo'®, C. Curceanu®®, P. Czodrowski?,
A. Derevianko'4, K. Dupraz!!, Y. Dutheil?, K. Dzierzgga”, V. Fedosseev?, V. Flambaum?®, S. Fritzsche!”, N. Fuster
Martinez2, S.M. Gibsonl, B. GoddardQ, M. Gorshteynzo. A. Gorzawski15‘2, R. Hajima%. T. Hayakawa26. S. Hirlander?,
1. Jin%3, JM. Jowett?, R. Kersevan?, M. Kowalska?, M.W. Krasny'®2, F. Kroeger'”, D. Kuchler?, M. Lamont?,
T. Lefevre2, D. Manglunkiz. B. Marsh?, A. Martens'2, S. Miyamoto31 J. Molson?, D. Nichita**, D. Nutarelli'!,
L.J. Nevay!, V. Pascalutsa®®, A. Petrenko'®:2, V. Petrillo!?, W. Placzek”, S. Redaelli?, Y. Peinaud'!, S. Pustelny”,
S. Rochester'?, M. Safronova2?-3°, D. Samoilenko!?, M. Sapinskim, M. Schaumann?, R. Scrivens?, L. Serafini'2,
V.P. Shevelko®, Y. Soreq32, T. Stoehlker'”, A. Surzhyk0v21, L. Tolstikhina®, E VelottiZ, A.V. Volotka'”, G. Weber!”,
W. Weiqiang27 D. Winterszo, YK. Wu22, C. Yin-VaIlgren2, M. Zanettizg'ls, E Zimmermann?, M.S. Zolotorev?*

and F. Zomer!!

The Gamma Factory initiative ( ) was suported by the
CERN management by creating (February 2017) the Gamma Factory study
group, embedded within the Physics Beyond Colliders studies framework.

~90 physicists from 35 institutions have contributed so far to the development of

the project. The GF group is open for everyone who wants to contribute.

We acknowledge the crucial role of the CERN PBC framework in bringing our
accelerator tests, the PoP experiment design, software development and physics

studies to its present stage!
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Gamma Factory milestones — where we are?

1. Successful demonstration of efficient production, acceleration and —

storage of “atomic beams” in the CERN accelerator complex.

2. Development “ab nihilo” the requisite Gamma Factory software ol Dorne...
tools.

3. Building up the physics cases for the LHC-based GF research
programme and attracting wide scientific communities to evaluate —)
and use (in the future) the GF tools in their respective research.

Work ongoing...

4. Successful execution of the GF Proof-of-Principle (PoP) m) T
experiment in the SPS tunngl. SPSC on the 25 of
September 2019, public

presentation on the 13t

of October 2020 -»>

5. Extrapolation of the PoP experiment results to the LHC case and
precise assessment of the performance figures of the GF
programme (prior to the next European Strategy Update).

6. Elaboration of the TDR for the LHC-based GF research programme.
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Conclusions

Gamma Factory can create, at CERN, a variety of novel research tools, which could
open novel research opportunities in a very broad domain of basic and applied science

The Gamma Factory research programme can be largely based on the existing CERN
accelerator infrastructure — it requires ‘relatively” minor infrastructure investments

Its “quest for diversity of research subjects and communities” is of particular importance

in the present phase of accelerator-based research, as we neither have any solid
theoretical guidance for a new physics ‘just around the corner”, accessible by FCC or
CLIC, nor an established “reasonable cost” technology for a leap into very high energy
‘terra incognita”

Gamma Factory requires extensive R&D studies (including its proof-of-principle
experiment), which must be finalised prior to the next European Strategy Update
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