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Motivation

Soft factorization of scattering amplitudes:

A= -Asoft -Ahard .

For n hard external particles and arbitrary number of soft virtual gravitons
[Weinberg '65]:

2G log Ay -
Asoft = exp | ———=— ‘Zl minjwiw; o — x|z — 2|
,]=

where Ag is an IR regulator and z; € CS.



Motivation

Formulation in terms of the supertranslation field C'(z)
[Himwich et al '20, Arkani-Hamed et al '20]

Asoft(pla vpn) = <W’L Wn> ) W’L = eimwiC(zi) 9

such that
1 n
Asoft = exp -3 Z ninjwiw; (C(x:)C(x;))
i#j
By comparison with Weinberg's result, one can infer [Himwich et al '20]

4G log Ay
= ——— |z —ylloglz —yI*.

(C(=)C(y))



Objectives

Basic question

Is there a more direct way to derive the expression of (C'(z)C(y))?

Dynamics of the supertranslation Goldstone mode C'/(x)?

Effective boundary action? (for superrotations see [KN-Salzer '20, KN '21])

>

>

» Relation to IR divergences?

» Intrinsic formulation of the celestial CFT?
>

Formulation of celestial holography for nonlinear gravity, & la AdS/CFT?
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Gravity near spatial infinity




Gravity near spatial infinity

Figure 1: Spacetime near spatial infinity i°. The de Sitter hyperboloids H are
surfaces of constant p = A4.



Asymptotic configuration space

Beig—Schmidt gauge [Beig-Schmidt '82]

ds? = N*dp? + Hy, (N®dp + dz) (N® dp + da®),
with
N=1+2Z,
P
Hyp N =o(p™),

logp . _ _
Hab = P2 (hab + Pilhg,) + % tab + P 2h¢(12b) + O(p 2)) .
Einstein's equation imply that hg;, is 3d de Sitter metric,

R[h],, = 2has -



We define the magnetic potential
kap = h&,) + 20hqy ,
such that the electric and magnetic Weyl tensors are
EY) = —(DuDy+hay)o,  BY) = %eaCchkdb.

Boundary conditions for a well-defined action principle
[Compere-Dehouck '11, Virmani '11]:

k= h®ky, =0, D% =0.



Supertranslations

ASG contains spi-supertranslations:

p p+w(@®) +o(p°), (D*+3)w=0,
2% 2% + p D% 4 o(ph).

that act as

0w = Oyhap = 0, Oukapr = 2(Dan + hab)w .

They have been mapped to supertranslations at .# [Troessart '17, Prabhu '19].
Non-radiative spacetime:

kap =2 (DaDp + hap) @, (D*+3)e =0,

where @ is the spi-supertranslation Goldstone mode,

0®=w.



Matching to null infinity
Bondi gauge near ./
ds® = — du® — 2dudr + r2'yAB da? dz®
2
+ Tm du? + 1 Cap dx? da® + DAC g duda® + ...,
Non-radiative spacetimes:

Cap = —2DsDgpC +yapD*C,

where C'is the supertranslation Goldstone mode,

orC=1T.

Building on [Troessart '17], we can show

C ~1lim®, T~lmw.
g+ I+

and derive the antipodal matching condition [Strominger '13].



Infrared divergences

Basic action [Mann-Marolf '05]
S = Sen + Sn,

with 1
= SeV/—H (K — K).
SHJr 87TG A+d T ( )

Its onshell variation localizes at the corners Sy,

10g A+
167TG Sy

+0 (A R, +log Ay RGP +10g? Ay RED) + 0(AY).

1
58 =+ dS, (4501)% + 551%6 Dkb — 5k, D%ab)

Infrared divergences
The first line is responsible for a logarithmically divergent symplectic
structure! [Compére-Dehouck '11]



Renormalized action

Total renormalized action:

Stotal =S — Ay AR —log Ay ARYY —log? Ay AR 1 Sepy

with [Compere-Dehouck '11]

1
Sl = —f/ d®zVh (D*0D,0 —30%) ,
2 H
1 1
Sk — -3 / d*zvh <2Dakbc Dkb — D, ky. Dbk — gk“bkab> .
H

The renormalized onshell action is infrared finite!



Infrared effective action




Infrared sector
The Compere—Dehouck boundary action Scp controls the IR divergent
sector of General Relativity.

» Can it teach us something about the supertranslation Goldstone mode?

Strategy
In the spirit of AdS/CFT correspondence, let us evaluate Scp onshell, in the
absence of radiation for simplicity.

» Scp is defined on a 3d de Sitter hyperboloid H
» Onshell, it should reduce to a 2d theory on the celestial sphere CS



Onshell reduction

We have to solve
(D* 4 3)® = (D* +3)0 = 0.

Let's use planar coordinates on H,
ds?izn_Q (—d772+5ijdxidxj) , i,j=1,2.
Familiar from the (A)dS/CFT correspondence, we can expand close to CS,
o(n,x) =n"" (‘1)(0) +17 @)+ Inn® + 7t By + 0(776)> :
and solve in terms of ® () and ®4). Importantly, we can show

C’plane(aji) = (I)(O) ('rl) .



The infrared effective action

Result

log A

- _ 22 (OC,1ane ) A=A /A .
onshell 321G Cde( Cpl ) ) +/

Sir = Sco|

» Invariant under global SL(2,C), not under Virasoro

» Extremized by "translations” modes 1,z,Z2, 2%, i.e.,

|:|2C'plane =0.

» Two-point function

(Cptane () Cptane(0)) ~ G |z|* log [[*.



Path integral formulation of celestial CFT




Celestial derivation of the soft factor

Recall [Himwich et al '20, Arkani-Hamed et al '20]
Asoft(ph 7pn> = <W7, Wn> ) WZ = eim'wiC(xi) .

Path integral representation:
<Wi Wn> = /Dcplane W; .. W, e_S'R[C”'E"e]/lOg2 A .

Explicit evaluation yields Weinberg's result [Weinberg '65]

2Glog A <& 9 9
Asoft (D1, -, Dn) ~ €xp B Z ninjwiw; |x; — ;)" In|z; — x;
ij—1



Summary and open questions




Summary and open questions

Summary:

» Setup appropriate to describe nonlinear gravity

» Scp controls and regulates the IR divergences

> Sir describes the IR-divergent sector of scattering amplitudes/CCFT
» Intrinsic path integral formulation of CCFT

Open questions:

» Full action is IR-finite <> dressed IR-safe amplitudes [Faddeev-Kulish '70]

» Natural use of dS3/CFT; technology (prediction: A = 3 operator ® 4
& Goldstone diamond [Pasterski-Puhm-Trevisani '21])

» Inclusion of radiation — Goldstone-radiation coupling

> ...
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