Celestial IR divergences and the effective action of supertranslation modes

based on arXiv:2105.10526 in collaboration with Jakob Salzer

Kevin Nguyen

August 31, 2021

Workshop on Celestial Amplitudes and Flat Space Holography, Corfu

Motivation

Soft factorization of scattering amplitudes:

$$\mathcal{A} = \mathcal{A}_{\mathsf{soft}} \, \mathcal{A}_{\mathsf{hard}} \, .$$

For n hard external particles and arbitrary number of soft virtual gravitons [Weinberg '65]:

$$\mathcal{A}_{\mathsf{soft}} = \exp \left[-\frac{2G \log \Lambda_0}{\pi} \sum_{i,j=1}^n \eta_i \eta_j \omega_i \omega_j |x_i - x_j|^2 \ln |x_i - x_j|^2 \right] ,$$

where Λ_0 is an IR regulator and $x_i \in \mathcal{CS}$.

Motivation

Formulation in terms of the supertranslation field ${\cal C}(x)$

[Himwich et al '20, Arkani-Hamed et al '20]

$$\mathcal{A}_{\mathsf{soft}}(p_1,..,p_n) = \left< \mathcal{W}_i \dots \mathcal{W}_n \right>, \qquad \mathcal{W}_i = e^{i\eta_i \omega_i C(x_i)} \,,$$

such that

$$\mathcal{A}_{\mathsf{soft}} = \exp \left[-\frac{1}{2} \sum_{i \neq j}^{n} \eta_i \eta_j \omega_i \omega_j \langle C(x_i) C(x_j) \rangle \right] .$$

By comparison with Weinberg's result, one can infer [Himwich et al '20]

$$\langle C(x)C(y)\rangle = \frac{4G\log\Lambda_0}{\pi} |x-y|^2 \log|x-y|^2.$$

Objectives

Basic question

Is there a more direct way to derive the expression of $\langle C(x)C(y)\rangle$?

- ightharpoonup Dynamics of the supertranslation Goldstone mode C(x)?
- ► Effective boundary action? (for superrotations see [KN-Salzer '20, KN '21])
- ▶ Relation to IR divergences?
- Intrinsic formulation of the celestial CFT?
- ► Formulation of celestial holography for nonlinear gravity, à la AdS/CFT?

The IR-divergent triangle

Table of contents

1. Gravity near spatial infinity

2. Infrared effective action

3. Path integral formulation of celestial CFT

4. Summary and open questions

Gravity near spatial infinity

Figure 1: Spacetime near spatial infinity i^0 . The de Sitter hyperboloids \mathcal{H}_{\pm} are surfaces of constant $\rho=\Lambda_{\pm}$.

Asymptotic configuration space

Beig-Schmidt gauge [Beig-Schmidt '82]

$$ds^{2} = N^{2} d\rho^{2} + H_{ab} (N^{a} d\rho + dx^{a}) (N^{b} d\rho + dx^{b}),$$

with

$$\begin{split} N &= 1 + \frac{\sigma}{\rho} \,, \\ H_{ab} N^b &= o(\rho^{-1}) \,, \\ H_{ab} &= \rho^2 \left(h_{ab} + \rho^{-1} h_{ab}^{(1)} + \frac{\log \rho}{\rho^2} \, i_{ab} + \rho^{-2} h_{ab}^{(2)} + o(\rho^{-2}) \right) \,. \end{split}$$

Einstein's equation imply that h_{ab} is 3d de Sitter metric,

$$R\left[h\right]_{ab} = 2h_{ab} \,.$$

We define the magnetic potential

$$k_{ab} \equiv h_{ab}^{(1)} + 2\sigma h_{ab} \,,$$

such that the electric and magnetic Weyl tensors are

$$E_{ab}^{(1)} = -(D_a D_b + h_{ab}) \sigma, \qquad B_{ab}^{(1)} = \frac{1}{2} \epsilon_a{}^{cd} D_c k_{db}.$$

Boundary conditions for a well-defined action principle

$$k \equiv h^{ab} k_{ab} = 0, \qquad D^a k_{ab} = 0.$$

Supertranslations

ASG contains spi-supertranslations:

$$\rho \mapsto \rho + \omega(x^a) + o(\rho^0), \qquad (D^2 + 3) \omega = 0,$$

$$x^a \mapsto x^a + \rho^{-1} D^a \omega + o(\rho^{-1}).$$

that act as

$$\delta_{\omega}\sigma = \delta_{\omega}h_{ab} = 0, \qquad \delta_{\omega}k_{ab} = 2(D_aD_b + h_{ab})\omega.$$

They have been mapped to supertranslations at \mathscr{I} [Troessart '17, Prabhu '19]. Non-radiative spacetime:

$$k_{ab} = 2 (D_a D_b + h_{ab}) \Phi, \qquad (D^2 + 3) \Phi = 0,$$

where Φ is the spi-supertranslation Goldstone mode,

$$\delta_{\omega}\Phi=\omega.$$

Matching to null infinity

Bondi gauge near \mathscr{I}^+ :

$$\begin{split} ds^2 &= -\,du^2 - 2\,du\,dr + r^2\gamma_{AB}\,dx^A\,dx^B \\ &+ \frac{2m}{r}\,du^2 + r\,C_{AB}\,dx^A\,dx^B + D^AC_{AB}\,du\,dx^B + \dots \,, \end{split}$$

Non-radiative spacetimes:

$$C_{AB} = -2D_A D_B C + \gamma_{AB} D^2 C,$$

where C is the supertranslation Goldstone mode,

$$\delta_T C = T$$
.

Building on [Troessart '17], we can show

$$C \sim \lim_{\mathscr{Q}^+} \Phi \,, \qquad T \sim \lim_{\mathscr{Q}^+} \omega \,.$$

and derive the antipodal matching condition [Strominger '13].

Infrared divergences

Basic action [Mann-Marolf '05]

$$S = S_{\mathsf{EH}} + S_{\mathcal{H}_{+}} \,,$$

with

$$S_{\mathcal{H}_{+}} = \frac{1}{8\pi G} \int_{\mathcal{H}_{+}} d^{3}x \sqrt{-H} \left(K - \hat{K}\right).$$

Its onshell variation localizes at the corners \mathcal{S}_{\pm} ,

$$\delta S = \pm \frac{\log \Lambda_{+}}{16\pi G} \int_{\mathcal{S}_{\pm}} dS_{a} \left(4\delta\sigma D^{a}\sigma + \frac{1}{2}\delta k_{bc} D^{a}k^{bc} - \delta k_{bc} D^{c}k^{ab} \right)$$
$$+ \delta \left(\Lambda_{+} \mathcal{R}_{\mathcal{S}_{\pm}} + \log \Lambda_{+} \mathcal{R}_{\mathcal{S}_{\pm}}^{(log)} + \log^{2} \Lambda_{+} \mathcal{R}_{\mathcal{S}_{\pm}}^{(log\,2)} \right) + O(\Lambda_{+}^{0}).$$

Infrared divergences

The first line is responsible for a logarithmically divergent symplectic structure! [Compère-Dehouck '11]

Renormalized action

Total renormalized action:

$$S_{\text{total}} = S - \Lambda_{+} \, \Delta \mathcal{R}_{\mathcal{S}} - \log \Lambda_{+} \, \Delta \mathcal{R}_{\mathcal{S}}^{(\log)} - \log^{2} \Lambda_{+} \, \Delta \mathcal{R}_{\mathcal{S}}^{(\log 2)} + S_{\text{CD}} \, ,$$

with [Compère-Dehouck '11]

$$S_{\mathsf{CD}} = \frac{\log \Lambda_+}{4\pi G} \left(S^{(\sigma)} + S^{(k)} \right) \,,$$

$$\begin{split} S^{(\sigma)} &= -\frac{1}{2} \int_{\mathcal{H}} d^3x \, \sqrt{h} \, \left(D^a \sigma D_a \sigma - 3 \sigma^2 \right) \,, \\ S^{(k)} &= -\frac{1}{8} \int_{\mathcal{H}} d^3x \, \sqrt{h} \, \left(\frac{1}{2} D_a k_{bc} \, D^a k^{bc} - D_a k_{bc} D^b k^{ac} - \frac{3}{2} k^{ab} k_{ab} \right) \,. \end{split}$$

The renormalized onshell action is infrared finite!

Infrared sector

The Compère–Dehouck boundary action $S_{\rm CD}$ controls the IR divergent sector of General Relativity.

► Can it teach us something about the supertranslation Goldstone mode?

Strategy

In the spirit of AdS/CFT correspondence, let us evaluate $S_{\rm CD}$ onshell, in the absence of radiation for simplicity.

- lackbox S_{CD} is defined on a 3d de Sitter hyperboloid $\mathcal H$
- lacktriangle Onshell, it should reduce to a 2d theory on the celestial sphere \mathcal{CS}

Onshell reduction

We have to solve

$$(D^2+3)\Phi = (D^2+3)\sigma = 0$$
.

Let's use planar coordinates on \mathcal{H} ,

$$ds_{\mathcal{H}}^2 = \eta^{-2} \left(-d\eta^2 + \delta_{ij} dx^i dx^j \right), \qquad i, j = 1, 2.$$

Familiar from the (A)dS/CFT correspondence, we can expand close to \mathcal{CS} ,

$$\Phi(\eta, x) = \eta^{-1} \left(\Phi_{(0)} + \eta^2 \, \Phi_{(2)} + \eta^4 \ln \eta \, \tilde{\Phi} + \eta^4 \, \Phi_{(4)} + O(\eta^6) \right) \,,$$

and solve in terms of $\Phi_{(0)}$ and $\Phi_{(4)}.$ Importantly, we can show

$$C_{\mathsf{plane}}(x^i) = \Phi_{(0)}(x^i) \,.$$

The infrared effective action

Result

$$S_{\rm IR} \equiv S_{\rm CD} \big|_{\rm onshell} = -\frac{\log \Lambda}{32\pi G} \int_{CS} d^2 x \left(\Box C_{\rm plane}\right)^2 , \qquad \Lambda \equiv \Lambda_+/\Lambda_- .$$

- ▶ Invariant under global $SL(2,\mathbb{C})$, not under Virasoro
- lacktriangle Extremized by "translations" modes $1,z,ar{z},zar{z}$, i.e.,

$$\Box^2 C_{\mathsf{plane}} = 0 \, .$$

▶ Two-point function

$$\langle C_{\mathsf{plane}}(x)C_{\mathsf{plane}}(0)\rangle \sim G\,|x|^2\log|x|^2\,.$$

Celestial derivation of the soft factor

Recall [Himwich et al '20, Arkani-Hamed et al '20]

$$\mathcal{A}_{\mathsf{soft}}(p_1,..,p_n) = \langle \mathcal{W}_i \dots \mathcal{W}_n \rangle \,, \qquad \mathcal{W}_i = e^{i\eta_i \omega_i C(x_i)} \,.$$

Path integral representation:

$$\langle \mathcal{W}_i \dots \mathcal{W}_n \rangle \equiv \int \mathcal{D}C_{\mathsf{plane}} \, \mathcal{W}_i \dots \mathcal{W}_n \, e^{-S_{\mathsf{IR}}[C_{\mathsf{plane}}]/\log^2 \Lambda} \, .$$

Explicit evaluation yields Weinberg's result [Weinberg '65]

$$\mathcal{A}_{\mathsf{soft}}(p_1,..,p_n) \sim \exp\left[-\frac{2G\log\Lambda}{\pi}\sum_{i,j=1}^n \eta_i\eta_j\omega_i\omega_j |x_i - x_j|^2 \ln|x_i - x_j|^2\right].$$

Summary and open questions

Summary:

- ► Setup appropriate to describe nonlinear gravity
- $ightharpoonup S_{\mathsf{CD}}$ controls and regulates the IR divergences
- ightharpoonup S_{IR} describes the IR-divergent sector of scattering amplitudes/CCFT
- ▶ Intrinsic path integral formulation of CCFT

Open questions:

- ▶ Full action is IR-finite $\stackrel{?}{\leftrightarrow}$ dressed IR-safe amplitudes [Faddeev-Kulish '70]
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- lacktriangle Inclusion of radiation ightarrow Goldstone-radiation coupling
- ▶ ..

The IR-divergent triangle

