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Extensions of the photon and graviton soft theorems are derived in 4d local effective field theories
with massless particles of arbitrary spin. We prove that effective operators can result in new terms
in the soft theorems at subleading order for photons and subsubleading order for gravitons. The
new soft terms are unique and we provide a complete classification of all local operators responsible
for such modifications. We show that no local operators can modify the subleading soft graviton
theorem. The soft limits are taken in a manifestly on-locus manner using a complex double defor-
mation of the external momenta. In addition to the new soft theorems, the resulting master formula
yields consistency conditions such as the conservation of electric charge, the Einstein equivalence
principle, supergravity Ward identities, and the Weinberg-Witten theorem.

I. INTRODUCTION

In this letter, we show that in a 4d local effective field
theory of only massless particles, the tree-level soft pho-
ton and graviton theorems receive modifications at sub-
leading and subsubleading orders, respectively. Specif-
ically, in effective field theory, the soft theorems for
positive-helicity soft photons or gravitons take the form

Aph
n+1=

(S(0)

ε2
+

S(1)

ε

)

An +
S̃(1)

ε
Ãn +O(ε) , (1)

Agrav
n+1=

(S(0)

ε3
+

S(1)

ε2
+

S(2)

ε

)

An +
S̃(2)

ε
Ãn +O(ε) , (2)

where S(i) and S(i) are the standard soft factors, well-
known from the work of [1–8], and given explicitly in (4)
and (5) below. The new soft terms are

S̃(1)Ãn =
∑

k

gk
[sk]

〈sk〉
Ã(k)

n , S̃(2)Ãn =
∑

k

gk
[sk]3

〈sk〉
Ã(k)

n ,

(3)
where gk denotes the couplings of the associated effective
operators. The tilde and superscript (k) on the n-point
amplitude indicate that the particle type of the kth leg
of Ãn may differ from that in An+1. Thus, the new soft
terms are different from the factorized form of the tradi-
tional soft theorems. Only a small set of effective opera-
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tors can modify the soft theorems and we provide a com-
plete classification. We show that no matter which op-
erator is responsible for the modification, the kinematic
soft factor is uniquely fixed to take the form (3). Our
result for the photon soft theorem naturally generalizes
to non-abelian gauge theory.

Only effective operators with 3-point interactions can
affect the single-particle soft theorems in (1) and (2). If
an operator has too many derivatives, its interaction is
too soft to affect the soft theorems at these orders. For
example, trF 3 does not modify the soft theorem, but
the Pauli dipole operator χγµνFµνχ does. All effective
operators that can modify the soft theorems (1)-(2) are
listed in (21) and (23). Note that our results imply that
the soft graviton theorem is not corrected at subleading
order 1/ε2 in effective field theory. This is important for
recent proposals [9, 10] connecting soft graviton theorems
to asymptotic symmetries.

To investigate the soft limits, we present a novel ap-
proach based on a double complex deformation of the
amplitudes. Combining a “soft shift” with two BCFW
shifts allows us to identify the parts of the amplitude
responsible for the soft theorems as factorization poles.
Note that we are not deriving new recursion relations
and the results are independent of which lines are shifted
along with the soft line. The method allows us to take
the soft limit in a manifestly on-locus fashion that em-
phasizes the path dependence of the soft theorems at
subleading order.

The approach yields not only the well-known soft the-
orems and new soft terms, it also implies non-trivial,
though well known, consistency conditions, such as
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∑

k

gk
[sk]

〈sk〉
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Note that we are not deriving new recursion relations
and the results are independent of which lines are shifted
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Photons

Gravity

When pµ ! ✏pµ with ✏ ! 0
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The soft factors are UNIVERSAL.

Weinberg (1965) Cachazo & Strominger (2014)
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however, the shifted angle brackets vanish. The mass
dimension of the coupling is

[gHk
] = a− 2hs , with a ≡ hs − hk − hP + 1 . (11)

Using the kinematics above, (9) becomes

Ân+1(z, ε) =
∑

k,hP ,c

gHk
[sk]2hs−a〈Xs〉1−a Â(k)

n (z)

ε za−1〈sk〉2−a

(

1− z
ε
〈Xk〉
〈sk〉

)

+O(ε0) .

(12)
This is the “master formula” for the following analysis.
(For comments about signs, see footnote [19].) We work
with the Laurent expansion (12) for sufficiently small z %
ε and, as we shall see, the soft theorems then follow from
the O(z0) terms.

III. PHOTON AND GRAVITON CONSISTENCY

CONDITIONS

At tree level, locality requires that an amplitude can
be singular only on a factorization channel. For z = 0
and generic ε &= 0 there is no associated channel, so the
appearance of such a pole violates locality. Therefore, if
the value of a is greater than 1 in (12), the sum of residues
of the apparent poles at z = 0 must vanish. This imposes
non-trivial constraints on the amplitudes.
Two non-trivial constraints arising from this require-

ment are

hs = 1, a = 2 =⇒
∑

k

gHk
= 0 ,

hs = 2, a = 3 =⇒
n
∑

k=1

gHk
[sk]〈sk〉 = 0 .

(13)

The first condition is simply charge conservation. The
second condition can be satisfied only when the gravi-
ton couples identically to all particles; we recognize this
as the equivalence principle. These results were first ob-
tained by a different argument by Weinberg [20].
We now prove that a unitary local theory can have no

interactions with a ≥ 4. Let the highest value of a in
a theory be amax ≥ 4. The kinematic structure of the
corresponding 3-particle amplitude A3

(

shs

a , 1h1

b , P hP

c

)

is
uniquely determined by little group scaling as in (10).
Denote the coupling by fabc, where a, b, c are collective
indices for all internal quantum numbers. CPT invari-
ance requires that the theory also includes the ampli-
tude of the CP conjugate states; its coupling is fabc =
f∗
abc. Consider the soft limit of the 4-particle amplitude
A4

(

shs

a , 1h1

b , 2−hs

a , 3−h1

b

)

, whose s1-channel diagram in-
cludes the 3-particle interaction with amax ≥ 4 and its
conjugate, as well as the s2- and s3-channel diagrams,
if relevant. The consistency condition arising from the
absence of the pole 1/zamax−1 in (12) implies

3
∑

k=1

〈sk〉amax−2Bk = 0 , (14)

where B1 =
∑

c fabc[sk]
2hs−amaxÂ(k)

3 (0) and similarly for
B2 and B3 (if present). Importantly, the Bi are inde-
pendent of |s〉. Applying the operator |p〉ȧ∂|s〉ȧ to (14)
gives

3
∑

k=1

〈kp〉〈sk〉amax−3Bk = 0 . (15)

Since |s〉 and |p〉 are arbitrary, we can choose them to be
|2〉 and |3〉 in which case (15) requires B1 = 0. (Similarly,
one can show B2 = B3 = 0.) Since

B1 ∝
∑

c

fabcfabc =
∑

c

|fabc|
2, (16)

it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂

!
A [16, 17].

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator !−2FµνF ν

ρ∂µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ε2 and takes the form

Ân+1(z, ε)
∣

∣

z0,1/ε2
=

1

ε2

∑

k,c

gHk

〈Xk〉

〈Xs〉〈sk〉
An , (17)

where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).
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Ân+1(z, ε) =
∑

k,hP ,c

gHk
[sk]2hs−a〈Xs〉1−a Â(k)
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Ãn +O(ε) , (2)

where S(i) and S(i) are the standard soft factors, well-
known from the work of [1–8], and given explicitly in (4)
and (5) below. The new soft terms are

S̃(1)Ãn =
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∑

k

gk
[sk]3

〈sk〉
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〈sk〉
Ã(k)

n ,

(3)
where gk denotes the couplings of the associated effective
operators. The tilde and superscript (k) on the n-point
amplitude indicate that the particle type of the kth leg
of Ãn may differ from that in An+1. Thus, the new soft
terms are different from the factorized form of the tradi-
tional soft theorems. Only a small set of effective opera-

∗ elvang@umich.edu
† jonescal@umich.edu
‡ naculich@bowdoin.edu

tors can modify the soft theorems and we provide a com-
plete classification. We show that no matter which op-
erator is responsible for the modification, the kinematic
soft factor is uniquely fixed to take the form (3). Our
result for the photon soft theorem naturally generalizes
to non-abelian gauge theory.

Only effective operators with 3-point interactions can
affect the single-particle soft theorems in (1) and (2). If
an operator has too many derivatives, its interaction is
too soft to affect the soft theorems at these orders. For
example, trF 3 does not modify the soft theorem, but
the Pauli dipole operator χγµνFµνχ does. All effective
operators that can modify the soft theorems (1)-(2) are
listed in (21) and (23). Note that our results imply that
the soft graviton theorem is not corrected at subleading
order 1/ε2 in effective field theory. This is important for
recent proposals [9, 10] connecting soft graviton theorems
to asymptotic symmetries.

To investigate the soft limits, we present a novel ap-
proach based on a double complex deformation of the
amplitudes. Combining a “soft shift” with two BCFW
shifts allows us to identify the parts of the amplitude
responsible for the soft theorems as factorization poles.
Note that we are not deriving new recursion relations
and the results are independent of which lines are shifted
along with the soft line. The method allows us to take
the soft limit in a manifestly on-locus fashion that em-
phasizes the path dependence of the soft theorems at
subleading order.

The approach yields not only the well-known soft the-
orems and new soft terms, it also implies non-trivial,
though well known, consistency conditions, such as

Photons
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<latexit sha1_base64="3py2V3KcihyM4KVKFRWvFtfUi/s=">AAACMHicbVDLSgMxFM34rPVVdekmWARXZUYEdVd0ocsK1gqdWjLpbRuayQzJHbUM7R+58VN0o6CIW7/CdFrB14XAyTnnkpwTxFIYdN1nZ2p6ZnZuPreQX1xaXlktrK1fmCjRHKo8kpG+DJgBKRRUUaCEy1gDCwMJtaB3PNJr16CNiNQ59mNohKyjRFtwhpZqFk58hFtMa11Qg+FwGF/5YUJ9jKgPsREyUjSjrJQfO28EdgfZ9cswcrvNQtEtudnQv8CbgCKZTKVZePBbEU9CUMglM6buuTE2UqZRcAmDvJ8YiBnvsQ7ULVQsBNNIs8ADum2ZFm1H2h6FNGO/b6QsNKYfBtYZMuya39qI/E+rJ9g+aKRCxQmC4uOH2omkNuKoPdoSGjjKvgWMa2H/SnmXacbRdpy3JXi/I/8FF7slb690eLZXLB9N6siRTbJFdohH9kmZnJIKqRJO7sgjeSGvzr3z5Lw572PrlDPZ2SA/xvn4BF1Aq5E=</latexit>

The soft factors are UNIVERSAL.

Weinberg (1965) Cachazo & Strominger (2014)

New terms from certain-cubic field 
EFT operators
Jones, Naculich, HE (2016)

Motivated by the question of 
loop-corrections:
The effect of massive particles 
are encoded in EFT operators.

3

however, the shifted angle brackets vanish. The mass
dimension of the coupling is

[gHk
] = a− 2hs , with a ≡ hs − hk − hP + 1 . (11)

Using the kinematics above, (9) becomes

Ân+1(z, ε) =
∑

k,hP ,c

gHk
[sk]2hs−a〈Xs〉1−a Â(k)

n (z)

ε za−1〈sk〉2−a

(

1− z
ε
〈Xk〉
〈sk〉

)

+O(ε0) .

(12)
This is the “master formula” for the following analysis.
(For comments about signs, see footnote [19].) We work
with the Laurent expansion (12) for sufficiently small z %
ε and, as we shall see, the soft theorems then follow from
the O(z0) terms.

III. PHOTON AND GRAVITON CONSISTENCY

CONDITIONS

At tree level, locality requires that an amplitude can
be singular only on a factorization channel. For z = 0
and generic ε &= 0 there is no associated channel, so the
appearance of such a pole violates locality. Therefore, if
the value of a is greater than 1 in (12), the sum of residues
of the apparent poles at z = 0 must vanish. This imposes
non-trivial constraints on the amplitudes.
Two non-trivial constraints arising from this require-

ment are

hs = 1, a = 2 =⇒
∑

k

gHk
= 0 ,

hs = 2, a = 3 =⇒
n
∑

k=1

gHk
[sk]〈sk〉 = 0 .

(13)

The first condition is simply charge conservation. The
second condition can be satisfied only when the gravi-
ton couples identically to all particles; we recognize this
as the equivalence principle. These results were first ob-
tained by a different argument by Weinberg [20].
We now prove that a unitary local theory can have no

interactions with a ≥ 4. Let the highest value of a in
a theory be amax ≥ 4. The kinematic structure of the
corresponding 3-particle amplitude A3

(

shs

a , 1h1

b , P hP

c

)

is
uniquely determined by little group scaling as in (10).
Denote the coupling by fabc, where a, b, c are collective
indices for all internal quantum numbers. CPT invari-
ance requires that the theory also includes the ampli-
tude of the CP conjugate states; its coupling is fabc =
f∗
abc. Consider the soft limit of the 4-particle amplitude
A4

(

shs

a , 1h1

b , 2−hs

a , 3−h1

b

)

, whose s1-channel diagram in-
cludes the 3-particle interaction with amax ≥ 4 and its
conjugate, as well as the s2- and s3-channel diagrams,
if relevant. The consistency condition arising from the
absence of the pole 1/zamax−1 in (12) implies

3
∑

k=1

〈sk〉amax−2Bk = 0 , (14)

where B1 =
∑

c fabc[sk]
2hs−amaxÂ(k)

3 (0) and similarly for
B2 and B3 (if present). Importantly, the Bi are inde-
pendent of |s〉. Applying the operator |p〉ȧ∂|s〉ȧ to (14)
gives

3
∑

k=1

〈kp〉〈sk〉amax−3Bk = 0 . (15)

Since |s〉 and |p〉 are arbitrary, we can choose them to be
|2〉 and |3〉 in which case (15) requires B1 = 0. (Similarly,
one can show B2 = B3 = 0.) Since

B1 ∝
∑

c

fabcfabc =
∑

c

|fabc|
2, (16)

it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂

!
A [16, 17].

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator !−2FµνF ν

ρ∂µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ε2 and takes the form

Ân+1(z, ε)
∣

∣

z0,1/ε2
=

1

ε2

∑

k,c

gHk

〈Xk〉

〈Xs〉〈sk〉
An , (17)

where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).
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however, the shifted angle brackets vanish. The mass
dimension of the coupling is
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This is the “master formula” for the following analysis.
(For comments about signs, see footnote [19].) We work
with the Laurent expansion (12) for sufficiently small z %
ε and, as we shall see, the soft theorems then follow from
the O(z0) terms.
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appearance of such a pole violates locality. Therefore, if
the value of a is greater than 1 in (12), the sum of residues
of the apparent poles at z = 0 must vanish. This imposes
non-trivial constraints on the amplitudes.
Two non-trivial constraints arising from this require-
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The first condition is simply charge conservation. The
second condition can be satisfied only when the gravi-
ton couples identically to all particles; we recognize this
as the equivalence principle. These results were first ob-
tained by a different argument by Weinberg [20].
We now prove that a unitary local theory can have no
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corresponding 3-particle amplitude A3
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uniquely determined by little group scaling as in (10).
Denote the coupling by fabc, where a, b, c are collective
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, whose s1-channel diagram in-
cludes the 3-particle interaction with amax ≥ 4 and its
conjugate, as well as the s2- and s3-channel diagrams,
if relevant. The consistency condition arising from the
absence of the pole 1/zamax−1 in (12) implies
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where B1 =
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B2 and B3 (if present). Importantly, the Bi are inde-
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gives
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Since |s〉 and |p〉 are arbitrary, we can choose them to be
|2〉 and |3〉 in which case (15) requires B1 = 0. (Similarly,
one can show B2 = B3 = 0.) Since

B1 ∝
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∑
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|fabc|
2, (16)

it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂

!
A [16, 17].

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator !−2FµνF ν

ρ∂µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ε2 and takes the form

Ân+1(z, ε)
∣

∣

z0,1/ε2
=

1

ε2

∑

k,c

gHk

〈Xk〉

〈Xs〉〈sk〉
An , (17)

where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).
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however, the shifted angle brackets vanish. The mass
dimension of the coupling is

[gHk
] = a− 2hs , with a ≡ hs − hk − hP + 1 . (11)

Using the kinematics above, (9) becomes
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This is the “master formula” for the following analysis.
(For comments about signs, see footnote [19].) We work
with the Laurent expansion (12) for sufficiently small z %
ε and, as we shall see, the soft theorems then follow from
the O(z0) terms.

III. PHOTON AND GRAVITON CONSISTENCY

CONDITIONS

At tree level, locality requires that an amplitude can
be singular only on a factorization channel. For z = 0
and generic ε &= 0 there is no associated channel, so the
appearance of such a pole violates locality. Therefore, if
the value of a is greater than 1 in (12), the sum of residues
of the apparent poles at z = 0 must vanish. This imposes
non-trivial constraints on the amplitudes.
Two non-trivial constraints arising from this require-

ment are

hs = 1, a = 2 =⇒
∑
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gHk
= 0 ,

hs = 2, a = 3 =⇒
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∑
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gHk
[sk]〈sk〉 = 0 .
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The first condition is simply charge conservation. The
second condition can be satisfied only when the gravi-
ton couples identically to all particles; we recognize this
as the equivalence principle. These results were first ob-
tained by a different argument by Weinberg [20].
We now prove that a unitary local theory can have no

interactions with a ≥ 4. Let the highest value of a in
a theory be amax ≥ 4. The kinematic structure of the
corresponding 3-particle amplitude A3
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cludes the 3-particle interaction with amax ≥ 4 and its
conjugate, as well as the s2- and s3-channel diagrams,
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absence of the pole 1/zamax−1 in (12) implies
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it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂
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A [16, 17].

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator !−2FµνF ν

ρ∂µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ε2 and takes the form
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=
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∑
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where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).

where we use 4d spinor helicity formalism                              and a positive-helicity particle s is taken soft holomorphically:p = �|pi[p|
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with and

The formula is derived from very basic principles (locality & unitarity)
- Only cubic interactions can give rise to divergent soft limits
- Tree amplitudes factorize on their simple poles
- 3-pt amplitudes of massless particles are uniquely fixed by the particle helicities h
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absence of the pole 1/zamax−1 in (12) implies

3
∑

k=1

〈sk〉amax−2Bk = 0 , (14)

where B1 =
∑

c fabc[sk]
2hs−amaxÂ(k)

3 (0) and similarly for
B2 and B3 (if present). Importantly, the Bi are inde-
pendent of |s〉. Applying the operator |p〉ȧ∂|s〉ȧ to (14)
gives

3
∑

k=1

〈kp〉〈sk〉amax−3Bk = 0 . (15)

Since |s〉 and |p〉 are arbitrary, we can choose them to be
|2〉 and |3〉 in which case (15) requires B1 = 0. (Similarly,
one can show B2 = B3 = 0.) Since

B1 ∝
∑

c

fabcfabc =
∑

c

|fabc|
2, (16)

it can vanish only if fabc = 0. This shows that any cou-
plings of interactions with a ≥ 4 must vanish.
For a = 3, the above argument fails because the power

of 〈sk〉 in (15) is no longer strictly positive. Indeed, a = 3
is perfectly fine for gravitons. For soft photons, how-
ever, we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions:

• A 3-particle interaction with hs = 1 and hk = hP = −1
gives a = 4. It may appear strange that such an in-
teraction is excluded here, since the gluon amplitude
A3(1+, 2−, 3−) certainly exists and is non-vanishing in
Yang-Mills theory. However, this 3-gluon amplitude is
non-vanishing in terms of angle brackets only. To pro-
duce such an amplitude in terms of square brackets only
would require a non-local interaction A2 ∂

!
A [16, 17].

• Consider a soft photon case of a = 3: take hs = 1,
hk = −1, hP = 0. This matrix element can be obtained
from the operator !−2FµνF ν

ρ∂µ∂ρφ which clearly is not
local.
Since hs+hk+hP = 0 implies a = 2hs+1, we conclude

from the above bounds on a that no 3-point interactions
involving photons, gravitinos, or gravitons are allowed if
the sum of the three helicities vanishes.

IV. SOFT PHOTON THEOREMS

Standard soft photon theorem. Set a = 2 in the
master formula (12) for a soft positive-helicity photon
(hs = 1). Expanding the n-point amplitude and the de-
nominator factor in small z, there are two contributions
at order z0. One goes as 1/ε2 and takes the form

Ân+1(z, ε)
∣

∣

z0,1/ε2
=

1

ε2

∑

k,c

gHk

〈Xk〉

〈Xs〉〈sk〉
An , (17)

where An is the unshifted amplitude, which is a func-
tion of the momenta pk that satisfy n-particle momentum
conservation. The result (17) is the standard leading soft
factor S(0).

s

k
n

Above X is a reference spinor and z is an auxiliary variable.

ps = �|si[s| ! �✏|si[s|
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Divergent Soft Limit Master Formula

There can be no poles at z=0

Jones, Naculich, HE (2016)
=>

• charge conservation
• equivalence principle
• Massless spin > 2 cannot couple consistently gravitons
• Massless spin 3/2 must couple supersymmetrically to gravitons

Well-known statements, but derived from same compact formula. 

The order O(z0) terms in the Master Formula  
=>  

the universal soft theorems 
and
specify precisely which 3-field EFT operators contribute at subleading order to the soft photon theorem 
and at subsubleading order to the soft graviton theorem



Soft behavior 

Under the holomorphic shift of a massless soft particle,

ps = �|si[s|
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We saw divergent soft limits

Photons:   

Gravitons:

Also

Gluons:
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Soft behavior 

Under the holomorphic shift of a massless soft particle,
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We saw divergent soft limits

Photons:   

Gravitons:

Also

Gluons:
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When                  the amplitude has vanishing soft limits. 
Often (but not always) the case for Goldstone bosons (Adler zeros)

Examples: 

� > 0
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NLSM (such as chiral perturbation theory) � = 1

<latexit sha1_base64="lTPPxcXaAQgq2BccXhsSbKnkdaE=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2e+WKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0aHkAU=</latexit>

DBI (Dirac-Born-Infeld) � = 2

<latexit sha1_base64="MM4wFGTQJLharQLK7PC+y5VTMvs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktBfUgFL14rGA/sF1KNs22oUl2SbJCWfovvHhQxKv/xpv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5IOZxtQXeCRZyAg2VnrsazYSGF2j2qBccavuHGiVeDmpQI7moPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzi2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCS/9lMk4MVSSxaIw4chEKHsfDZmixPCpJZgoZm9FZIwVJsaGVLIheMsvr5J2rerVq1f39UrjJo+jCCdwCufgwQU04A6a0AICEp7hFd4c7bw4787HorXg5DPH8AfO5w9IC5AG</latexit>

Special Galileon � = 3

<latexit sha1_base64="0wM5VlH4iPUkhTDp2LwtV4RUR3U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnoQil48VrAf2C4lm2bb0CS7JFmhLP0XXjwo4tV/481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYTVZpF8sFMYuoLPJQsZAQbKz32NBsKjK7Reb9ccavuDGiZeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtlVhQ7aezi6foxCoDFEbKljRopv6eSLHQeiIC2ymwGelFLxP/87qJCS/9lMk4MVSS+aIw4chEKHsfDZiixPCJJZgoZm9FZIQVJsaGVLIheIsvL5PWWdWrVa/ua5X6TR5HEY7gGE7Bgwuowx00oAkEJDzDK7w52nlx3p2PeWvByWcO4Q+czx9Jj5AH</latexit>



Soft behavior 

Under the holomorphic shift of a massless soft particle,

ps = �|si[s|

<latexit sha1_base64="raqR7oE2zaP83mpqwP8BgBOn7K4=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCF0siBfUgFL14rGA/IA1ls520SzebsLsRSlrwr3jxoIhXf4c3/43bNgdtfTDweG+GmXlBwpnSjvNtLS2vrK6tFzaKm1vbO7v23n5DxamkUKcxj2UrIAo4E1DXTHNoJRJIFHBoBoPbid98BKlYLB70MAE/Ij3BQkaJNlLHPkw6Cl/jMzxSbUlEjwP21Khjl5yyMwVeJG5OSihHrWN/tbsxTSMQmnKilOc6ifYzIjWjHMbFdqogIXRAeuAZKkgEys+m54/xiVG6OIylKaHxVP09kZFIqWEUmM6I6L6a9ybif56X6vDSz5hIUg2CzhaFKcc6xpMscJdJoJoPDSFUMnMrpn0iCdUmsaIJwZ1/eZE0zstupXx1XylVb/I4CugIHaNT5KILVEV3qIbqiKIMPaNX9GY9WS/Wu/Uxa12y8pkD9AfW5w/If5TD</latexit>

|si ! ✏|si

<latexit sha1_base64="yeRjBH7a2Gd7zQwiQzGmz7ePHZ8=">AAACCXicbVDLSgMxFM3UV62vUZdugkVwVWZEUHdFNy4r2Ad0Ssmkd9rQTDIkGaGM3brxV9y4UMStf+DOvzFtB9TWA4HDOfdyc06YcKaN5305haXlldW14nppY3Nre8fd3WtomSoKdSq5VK2QaOBMQN0ww6GVKCBxyKEZDq8mfvMOlGZS3JpRAp2Y9AWLGCXGSl0X3+tAEdHngAMjcQCJZlyKH7nrlr2KNwVeJH5OyihHret+Bj1J0xiEoZxo3fa9xHQyogyjHMalINWQEDokfWhbKkgMupNNk4zxkVV6OJLKPmHwVP29kZFY61Ec2smYmIGe9ybif147NdF5J2MiSQ0IOjsUpRzbzJNacI8poIaPLCFUMftXTAdEEWpseSVbgj8feZE0Tir+aeXi5rRcvczrKKIDdIiOkY/OUBVdoxqqI4oe0BN6Qa/Oo/PsvDnvs9GCk+/soz9wPr4B2UaadA==</latexit>

|s] ! |s]

<latexit sha1_base64="xH9EFdB1djBV23CXYt7Dd8aOOWA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgnorevFYwX7AdinZNNuGZrNLMiuU2p/hxYMiXv013vw3pu0etPVByOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjlkkyzXiTJTLRnZAaLoXiTRQoeSfVnMah5O1wdDvz249cG5GoBxynPIjpQIlIMIpW8p9MQLqYEPv3yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGuN7borBhGoUTPJpqZsZnlI2ogPuW6pozE0wma88JWdW6ZMo0fYpJHP1d8eExsaM49BWxhSHZtmbif95fobRVTARKs2QK7YYFGWS2CNn95O+0JyhHFtCmRZ2V8KGVFOGNqWSDcFbPnmVtC6qXq16fV+r1G/yOIpwAqdwDh5cQh3uoAFNYJDAM7zCm4POi/PufCxKC07ecwx/4Hz+AO1ekQs=</latexit>

with and

An ! O(✏�)

<latexit sha1_base64="jVozOVtYAKE7BknR5U7Umpk2yR0=">AAACA3icbVDLSgMxFM34rPU16k43wSLUTZmRgrqrunFnBfuAzjhk0kwbmmSGJCOUoeDGX3HjQhG3/oQ7/8a0nYW2HggczrmXm3PChFGlHefbWlhcWl5ZLawV1zc2t7btnd2milOJSQPHLJbtECnCqCANTTUj7UQSxENGWuHgauy3HohUNBZ3epgQn6OeoBHFSBspsPcvAgE9HcObskcSRVks7j1FexwdB3bJqTgTwHni5qQEctQD+8vrxjjlRGjMkFId10m0nyGpKWZkVPRSRRKEB6hHOoYKxInys0mGETwyShdGsTRPaDhRf29kiCs15KGZ5Ej31aw3Fv/zOqmOzvyMiiTVRODpoShl0GQeFwK7VBKs2dAQhCU1f4W4jyTC2tRWNCW4s5HnSfOk4lYr57fVUu0yr6MADsAhKAMXnIIauAZ10AAYPIJn8ArerCfrxXq3PqajC1a+swf+wPr8AdT9lwk=</latexit>

a (tree) amplitude generally behaves as

where       is the soft weight�

<latexit sha1_base64="yEI9CNkiA+u8nrMwt4FZ6Q4Q2rM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauOrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukdVENatXr+1qlfpPHUYQTOIVzCOAS6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/oD+PLw==</latexit>

We saw divergent soft limits

Photons:   

Gravitons:

Also

Gluons:

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

� = �3

<latexit sha1_base64="STUAcJDLBtY9cWwdFe7I9NFOrwo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbKrBfUgFL14rGA/YLuUbJptQ5PskswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0UVlbX1jeKm6Wt7Z3dvfL+QcvEqaasSWMR605IDBNcsSZwEKyTaEZkKFg7HN1N/fYT04bH6hHGCQskGSgecUrASn7X8IEk+AafXfTKFbfqzoCXiZeTCsrR6JW/uv2YppIpoIIY43tuAkFGNHAq2KTUTQ1LCB2RAfMtVUQyE2Szkyf4xCp9HMXalgI8U39PZEQaM5ah7ZQEhmbRm4r/eX4K0VWQcZWkwBSdL4pSgSHG0/9xn2tGQYwtIVRzeyumQ6IJBZtSyYbgLb68TFrnVa9WvX6oVeq3eRxFdISO0Sny0CWqo3vUQE1EUYye0St6c8B5cd6dj3lrwclnDtEfOJ8/tdCQPg==</latexit>

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

When                  the amplitude has vanishing soft limits. 
Often (but not always) the case for Goldstone bosons (Adler zeros)

Examples: 

� > 0

<latexit sha1_base64="V7emtr0Vqj9+aq17mr4Wo8ty4gQ=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoF6k6MVjBfuB7VKyabYNTbJLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmhYngxnreNyqsrK6tbxQ3S1vbO7t75f2DpolTTVmDxiLW7ZAYJrhiDcutYO1EMyJDwVrh6Hbqt56YNjxWD3acsECSgeIRp8Q66bFr+EASfI29XrniVb0Z8DLxc1KBHPVe+avbj2kqmbJUEGM6vpfYICPacirYpNRNDUsIHZEB6ziqiGQmyGYXT/CJU/o4irUrZfFM/T2REWnMWIauUxI7NIveVPzP66Q2ugwyrpLUMkXni6JUYBvj6fu4zzWjVowdIVRzdyumQ6IJtS6kkgvBX3x5mTTPqv559er+vFK7yeMowhEcwyn4cAE1uIM6NICCgmd4hTdk0At6Rx/z1gLKZw7hD9DnD0aJkAU=</latexit>

NLSM (such as chiral perturbation theory) � = 1

<latexit sha1_base64="lTPPxcXaAQgq2BccXhsSbKnkdaE=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2e+WKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0aHkAU=</latexit>

DBI (Dirac-Born-Infeld) � = 2

<latexit sha1_base64="MM4wFGTQJLharQLK7PC+y5VTMvs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktBfUgFL14rGA/sF1KNs22oUl2SbJCWfovvHhQxKv/xpv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5IOZxtQXeCRZyAg2VnrsazYSGF2j2qBccavuHGiVeDmpQI7moPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzi2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCS/9lMk4MVSSxaIw4chEKHsfDZmixPCpJZgoZm9FZIwVJsaGVLIheMsvr5J2rerVq1f39UrjJo+jCCdwCufgwQU04A6a0AICEp7hFd4c7bw4787HorXg5DPH8AfO5w9IC5AG</latexit>

Special Galileon � = 3

<latexit sha1_base64="0wM5VlH4iPUkhTDp2LwtV4RUR3U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnoQil48VrAf2C4lm2bb0CS7JFmhLP0XXjwo4tV/481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYTVZpF8sFMYuoLPJQsZAQbKz32NBsKjK7Reb9ccavuDGiZeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtlVhQ7aezi6foxCoDFEbKljRopv6eSLHQeiIC2ymwGelFLxP/87qJCS/9lMk4MVSS+aIw4chEKHsfDZiixPCJJZgoZm9FZIQVJsaGVLIheIsvL5PWWdWrVa/ua5X6TR5HEY7gGE7Bgwuowx00oAkEJDzDK7w52nlx3p2PeWvByWcO4Q+czx9Jj5AH</latexit>

Also models with                 e.g. � = 0

<latexit sha1_base64="7GmrpWaHZCTdpH/j1L4g+Krp1Ro=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2euWKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0UDkAQ=</latexit>

Born-Infeld (BI)
N=2 SUSY CP1 NLSM
Conformal-DBI



Soft behavior 

Under the holomorphic shift of a massless soft particle,

ps = �|si[s|

<latexit sha1_base64="raqR7oE2zaP83mpqwP8BgBOn7K4=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCF0siBfUgFL14rGA/IA1ls520SzebsLsRSlrwr3jxoIhXf4c3/43bNgdtfTDweG+GmXlBwpnSjvNtLS2vrK6tFzaKm1vbO7v23n5DxamkUKcxj2UrIAo4E1DXTHNoJRJIFHBoBoPbid98BKlYLB70MAE/Ij3BQkaJNlLHPkw6Cl/jMzxSbUlEjwP21Khjl5yyMwVeJG5OSihHrWN/tbsxTSMQmnKilOc6ifYzIjWjHMbFdqogIXRAeuAZKkgEys+m54/xiVG6OIylKaHxVP09kZFIqWEUmM6I6L6a9ybif56X6vDSz5hIUg2CzhaFKcc6xpMscJdJoJoPDSFUMnMrpn0iCdUmsaIJwZ1/eZE0zstupXx1XylVb/I4CugIHaNT5KILVEV3qIbqiKIMPaNX9GY9WS/Wu/Uxa12y8pkD9AfW5w/If5TD</latexit>

|si ! ✏|si

<latexit sha1_base64="yeRjBH7a2Gd7zQwiQzGmz7ePHZ8=">AAACCXicbVDLSgMxFM3UV62vUZdugkVwVWZEUHdFNy4r2Ad0Ssmkd9rQTDIkGaGM3brxV9y4UMStf+DOvzFtB9TWA4HDOfdyc06YcKaN5305haXlldW14nppY3Nre8fd3WtomSoKdSq5VK2QaOBMQN0ww6GVKCBxyKEZDq8mfvMOlGZS3JpRAp2Y9AWLGCXGSl0X3+tAEdHngAMjcQCJZlyKH7nrlr2KNwVeJH5OyihHret+Bj1J0xiEoZxo3fa9xHQyogyjHMalINWQEDokfWhbKkgMupNNk4zxkVV6OJLKPmHwVP29kZFY61Ec2smYmIGe9ybif147NdF5J2MiSQ0IOjsUpRzbzJNacI8poIaPLCFUMftXTAdEEWpseSVbgj8feZE0Tir+aeXi5rRcvczrKKIDdIiOkY/OUBVdoxqqI4oe0BN6Qa/Oo/PsvDnvs9GCk+/soz9wPr4B2UaadA==</latexit>

|s] ! |s]

<latexit sha1_base64="xH9EFdB1djBV23CXYt7Dd8aOOWA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgnorevFYwX7AdinZNNuGZrNLMiuU2p/hxYMiXv013vw3pu0etPVByOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjlkkyzXiTJTLRnZAaLoXiTRQoeSfVnMah5O1wdDvz249cG5GoBxynPIjpQIlIMIpW8p9MQLqYEPv3yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGuN7borBhGoUTPJpqZsZnlI2ogPuW6pozE0wma88JWdW6ZMo0fYpJHP1d8eExsaM49BWxhSHZtmbif95fobRVTARKs2QK7YYFGWS2CNn95O+0JyhHFtCmRZ2V8KGVFOGNqWSDcFbPnmVtC6qXq16fV+r1G/yOIpwAqdwDh5cQh3uoAFNYJDAM7zCm4POi/PufCxKC07ecwx/4Hz+AO1ekQs=</latexit>

with and

An ! O(✏�)

<latexit sha1_base64="jVozOVtYAKE7BknR5U7Umpk2yR0=">AAACA3icbVDLSgMxFM34rPU16k43wSLUTZmRgrqrunFnBfuAzjhk0kwbmmSGJCOUoeDGX3HjQhG3/oQ7/8a0nYW2HggczrmXm3PChFGlHefbWlhcWl5ZLawV1zc2t7btnd2milOJSQPHLJbtECnCqCANTTUj7UQSxENGWuHgauy3HohUNBZ3epgQn6OeoBHFSBspsPcvAgE9HcObskcSRVks7j1FexwdB3bJqTgTwHni5qQEctQD+8vrxjjlRGjMkFId10m0nyGpKWZkVPRSRRKEB6hHOoYKxInys0mGETwyShdGsTRPaDhRf29kiCs15KGZ5Ej31aw3Fv/zOqmOzvyMiiTVRODpoShl0GQeFwK7VBKs2dAQhCU1f4W4jyTC2tRWNCW4s5HnSfOk4lYr57fVUu0yr6MADsAhKAMXnIIauAZ10AAYPIJn8ArerCfrxXq3PqajC1a+swf+wPr8AdT9lwk=</latexit>

a (tree) amplitude generally behaves as

where       is the soft weight�

<latexit sha1_base64="yEI9CNkiA+u8nrMwt4FZ6Q4Q2rM=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FvXiMYB6QLGF2MpuMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEo1oU2iuNKdCBvKmaRNyyynnURTLCJO29H4dua3n6g2TMkHO0loKPBQspgRbJ3U6hk2FLhfrvhVfw60SoKcVCBHo1/+6g0USQWVlnBsTDfwExtmWFtGOJ2WeqmhCSZjPKRdRyUW1ITZ/NopOnPKAMVKu5IWzdXfExkWxkxE5DoFtiOz7M3E/7xuauOrMGMySS2VZLEoTjmyCs1eRwOmKbF84ggmmrlbERlhjYl1AZVcCMHyy6ukdVENatXr+1qlfpPHUYQTOIVzCOAS6nAHDWgCgUd4hld485T34r17H4vWgpfPHMMfeJ8/oD+PLw==</latexit>

We saw divergent soft limits

Photons:   

Gravitons:

Also

Gluons:

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

� = �3

<latexit sha1_base64="STUAcJDLBtY9cWwdFe7I9NFOrwo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbKrBfUgFL14rGA/YLuUbJptQ5PskswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0UVlbX1jeKm6Wt7Z3dvfL+QcvEqaasSWMR605IDBNcsSZwEKyTaEZkKFg7HN1N/fYT04bH6hHGCQskGSgecUrASn7X8IEk+AafXfTKFbfqzoCXiZeTCsrR6JW/uv2YppIpoIIY43tuAkFGNHAq2KTUTQ1LCB2RAfMtVUQyE2Szkyf4xCp9HMXalgI8U39PZEQaM5ah7ZQEhmbRm4r/eX4K0VWQcZWkwBSdL4pSgSHG0/9xn2tGQYwtIVRzeyumQ6IJBZtSyYbgLb68TFrnVa9WvX6oVeq3eRxFdISO0Sny0CWqo3vUQE1EUYye0St6c8B5cd6dj3lrwclnDtEfOJ8/tdCQPg==</latexit>

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

When                  the amplitude has vanishing soft limits. 
Often (but not always) the case for Goldstone bosons (Adler zeros)

Examples: 

� > 0

<latexit sha1_base64="V7emtr0Vqj9+aq17mr4Wo8ty4gQ=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoF6k6MVjBfuB7VKyabYNTbJLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmhYngxnreNyqsrK6tbxQ3S1vbO7t75f2DpolTTVmDxiLW7ZAYJrhiDcutYO1EMyJDwVrh6Hbqt56YNjxWD3acsECSgeIRp8Q66bFr+EASfI29XrniVb0Z8DLxc1KBHPVe+avbj2kqmbJUEGM6vpfYICPacirYpNRNDUsIHZEB6ziqiGQmyGYXT/CJU/o4irUrZfFM/T2REWnMWIauUxI7NIveVPzP66Q2ugwyrpLUMkXni6JUYBvj6fu4zzWjVowdIVRzdyumQ6IJtS6kkgvBX3x5mTTPqv559er+vFK7yeMowhEcwyn4cAE1uIM6NICCgmd4hTdk0At6Rx/z1gLKZw7hD9DnD0aJkAU=</latexit>

NLSM (such as chiral perturbation theory) � = 1

<latexit sha1_base64="lTPPxcXaAQgq2BccXhsSbKnkdaE=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2e+WKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0aHkAU=</latexit>

DBI (Dirac-Born-Infeld) � = 2

<latexit sha1_base64="MM4wFGTQJLharQLK7PC+y5VTMvs=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktBfUgFL14rGA/sF1KNs22oUl2SbJCWfovvHhQxKv/xpv/xmy7B219MPB4b4aZeUHMmTau++0U1tY3NreK26Wd3b39g/LhUVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5IOZxtQXeCRZyAg2VnrsazYSGF2j2qBccavuHGiVeDmpQI7moPzVH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afzi2fozCpDFEbKljRorv6eSLHQeioC2ymwGetlLxP/83qJCS/9lMk4MVSSxaIw4chEKHsfDZmixPCpJZgoZm9FZIwVJsaGVLIheMsvr5J2rerVq1f39UrjJo+jCCdwCufgwQU04A6a0AICEp7hFd4c7bw4787HorXg5DPH8AfO5w9IC5AG</latexit>

Special Galileon � = 3

<latexit sha1_base64="0wM5VlH4iPUkhTDp2LwtV4RUR3U=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnoQil48VrAf2C4lm2bb0CS7JFmhLP0XXjwo4tV/481/Y7bdg7Y+GHi8N8PMvCDmTBvX/XYKK6tr6xvFzdLW9s7uXnn/oKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7N/PYTVZpF8sFMYuoLPJQsZAQbKz32NBsKjK7Reb9ccavuDGiZeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFrqJZrGmIzxkHYtlVhQ7aezi6foxCoDFEbKljRopv6eSLHQeiIC2ymwGelFLxP/87qJCS/9lMk4MVSS+aIw4chEKHsfDZiixPCJJZgoZm9FZIQVJsaGVLIheIsvL5PWWdWrVa/ua5X6TR5HEY7gGE7Bgwuowx00oAkEJDzDK7w52nlx3p2PeWvByWcO4Q+czx9Jj5AH</latexit>

Also models with                 e.g. � = 0

<latexit sha1_base64="7GmrpWaHZCTdpH/j1L4g+Krp1Ro=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2euWKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0UDkAQ=</latexit>

Born-Infeld (BI)
N=2 SUSY CP1 NLSM
Conformal-DBI



Double-Copy

gravity+   = ( Yang-Mills )  x  ( Yang Mills )

So…. How can it be that � = �3

<latexit sha1_base64="STUAcJDLBtY9cWwdFe7I9NFOrwo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbKrBfUgFL14rGA/YLuUbJptQ5PskswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0UVlbX1jeKm6Wt7Z3dvfL+QcvEqaasSWMR605IDBNcsSZwEKyTaEZkKFg7HN1N/fYT04bH6hHGCQskGSgecUrASn7X8IEk+AafXfTKFbfqzoCXiZeTCsrR6JW/uv2YppIpoIIY43tuAkFGNHAq2KTUTQ1LCB2RAfMtVUQyE2Szkyf4xCp9HMXalgI8U39PZEQaM5ah7ZQEhmbRm4r/eX4K0VWQcZWkwBSdL4pSgSHG0/9xn2tGQYwtIVRzeyumQ6IJBZtSyYbgLb68TFrnVa9WvX6oVeq3eRxFdISO0Sny0CWqo3vUQE1EUYye0St6c8B5cd6dj3lrwclnDtEfOJ8/tdCQPg==</latexit>

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

Gravitons:
Gluons:

When naively one might have expected 

�grav ? =? �YM + �YM

<latexit sha1_base64="lPmAd+py0LCCDaxKY5MLIc+32bE=">AAACJHicbZDJSgNBEIZ74hbjNurRS2MQBCHMSEBFJEEvXoQIZpEkDD2dnqRJz0J3TTAMybt48VW8eHDBgxefxc5yMNEfGn6+qqK6fjcSXIFlfRmphcWl5ZX0amZtfWNzy9zeqagwlpSVaShCWXOJYoIHrAwcBKtFkhHfFazqdq9G9WqPScXD4A76EWv6pB1wj1MCGjnmeUPxtk+cBrAHSNqS9AZ4WLgoDGf4/c0AH+F55JhZK2eNhf8ae2qyaKqSY743WiGNfRYAFUSpum1F0EyIBE4FG2QasWIRoV3SZnVtA+Iz1UzGRw7wgSYt7IVSvwDwmP6eSIivVN93dadPoKPmayP4X60eg3faTHgQxcACOlnkxQJDiEeJ4RaXjILoa0Oo5PqvmHaIJBR0rhkdgj1/8l9TOc7Z+dzZbT5bvJzGkUZ7aB8dIhudoCK6RiVURhQ9omf0it6MJ+PF+DA+J60pYzqzi2ZkfP8Aemyl8g==</latexit>

The double-copy maps gluon amplitudes to gravity amplitudes



Double-Copy

gravity+   = ( Yang-Mills )  x  ( Yang Mills )

The double-copy maps gluon amplitudes to gravity amplitudes

So…. How can it be that � = �3

<latexit sha1_base64="STUAcJDLBtY9cWwdFe7I9NFOrwo=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgxbKrBfUgFL14rGA/YLuUbJptQ5PskswKZenP8OJBEa/+Gm/+G9N2D9r6YODx3gwz88JEcAOu++0UVlbX1jeKm6Wt7Z3dvfL+QcvEqaasSWMR605IDBNcsSZwEKyTaEZkKFg7HN1N/fYT04bH6hHGCQskGSgecUrASn7X8IEk+AafXfTKFbfqzoCXiZeTCsrR6JW/uv2YppIpoIIY43tuAkFGNHAq2KTUTQ1LCB2RAfMtVUQyE2Szkyf4xCp9HMXalgI8U39PZEQaM5ah7ZQEhmbRm4r/eX4K0VWQcZWkwBSdL4pSgSHG0/9xn2tGQYwtIVRzeyumQ6IJBZtSyYbgLb68TFrnVa9WvX6oVeq3eRxFdISO0Sny0CWqo3vUQE1EUYye0St6c8B5cd6dj3lrwclnDtEfOJ8/tdCQPg==</latexit>

� = �2

<latexit sha1_base64="I68YuRs+H4g2e/cEojcLIMf+Ric=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRbBi2W3FNSDUPTisYL9gO1Ssmm2Dc0mS5IVytKf4cWDIl79Nd78N6btHrT1wcDjvRlm5oUJZ9q47rdTWFvf2Nwqbpd2dvf2D8qHR20tU0Voi0guVTfEmnImaMsww2k3URTHIaedcHw38ztPVGkmxaOZJDSI8VCwiBFsrOT3NBvGGN2gi1q/XHGr7hxolXg5qUCOZr/81RtIksZUGMKx1r7nJibIsDKMcDot9VJNE0zGeEh9SwWOqQ6y+clTdGaVAYqksiUMmqu/JzIcaz2JQ9sZYzPSy95M/M/zUxNdBRkTSWqoIItFUcqRkWj2PxowRYnhE0swUczeisgIK0yMTalkQ/CWX14l7VrVq1evH+qVxm0eRxFO4BTOwYNLaMA9NKEFBCQ8wyu8OcZ5cd6dj0VrwclnjuEPnM8ftEyQPQ==</latexit>

Gravitons:
Gluons:

When naively one might have expected 

�grav ? =? �YM + �YM

<latexit sha1_base64="lPmAd+py0LCCDaxKY5MLIc+32bE=">AAACJHicbZDJSgNBEIZ74hbjNurRS2MQBCHMSEBFJEEvXoQIZpEkDD2dnqRJz0J3TTAMybt48VW8eHDBgxefxc5yMNEfGn6+qqK6fjcSXIFlfRmphcWl5ZX0amZtfWNzy9zeqagwlpSVaShCWXOJYoIHrAwcBKtFkhHfFazqdq9G9WqPScXD4A76EWv6pB1wj1MCGjnmeUPxtk+cBrAHSNqS9AZ4WLgoDGf4/c0AH+F55JhZK2eNhf8ae2qyaKqSY743WiGNfRYAFUSpum1F0EyIBE4FG2QasWIRoV3SZnVtA+Iz1UzGRw7wgSYt7IVSvwDwmP6eSIivVN93dadPoKPmayP4X60eg3faTHgQxcACOlnkxQJDiEeJ4RaXjILoa0Oo5PqvmHaIJBR0rhkdgj1/8l9TOc7Z+dzZbT5bvJzGkUZ7aB8dIhudoCK6RiVURhQ9omf0it6MJ+PF+DA+J60pYzqzi2ZkfP8Aemyl8g==</latexit>

Answer: DOUBLE-COPY KERNEL

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

�grav = 1 + �YM + �YM

<latexit sha1_base64="uLSbo9PzzYyOL7mMLjk0iHSAM2I=">AAACJXicbVDJSgNBEO1xjXEb9eilMQiCEGYkoIJC0IsXIYJZJAmhp9MzadKz0F0TDMPkY7z4K148GETw5K/YWQ4m8UHB470qquo5keAKLOvbWFpeWV1bz2xkN7e2d3bNvf2KCmNJWZmGIpQ1hygmeMDKwEGwWiQZ8R3Bqk73duRXe0wqHgaP0I9Y0ydewF1OCWipZV41FPd80moAe4bEk6SX4sH1wD7FM8bTfYoXpZaZs/LWGHiR2FOSQ1OUWuaw0Q5p7LMAqCBK1W0rgmZCJHAqWJptxIpFhHaJx+qaBsRnqpmMv0zxsVba2A2lrgDwWP07kRBfqb7v6E6fQEfNeyPxP68eg3vRTHgQxcACOlnkxgJDiEeR4TaXjILoa0Ko5PpWTDtEEgo62KwOwZ5/eZFUzvJ2IX/5UMgVb6ZxZNAhOkInyEbnqIjuUAmVEUUv6A19oKHxarwbn8bXpHXJmM4coBkYP7+mTaX6</latexit>

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)

Henriette Elvang D3-branes and Oxidation of Symmetries 14 /14

Mandelstam variables



The double-copy in field theory: KLT form

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)

Henriette Elvang D3-branes and Oxidation of Symmetries 5 /11

KLT kernel
a and b are choices of (n-3)! color orderings

Color-ordered tree amplitudes

a function of Mandelstams

[Kawai-Lewellen-Tye 1985]

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)

Agravity4 = AYM4 [1234]S4[1234|1243]AYM4 [1243] (51)

[1234|1243] = �s (52)

Henriette Elvang D3-branes and Oxidation of Symmetries 14 /14

Ex 4pt:

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)

Agravity4 = AYM4 [1234]S4[1234|1243]AYM4 [1243] (51)

S4[1234|1243] = �s (52)

Henriette Elvang D3-branes and Oxidation of Symmetries 14 /14

with



It remarkable that this works!! 

Color-ordered YM gluon amplitudes: A4[1234] has simple poles in s and u, but not t.
A4[1243] has simple poles in s and t, but not u.

Graviton amplitudes have no color-structure, so M4(1234) has simple poles in the s, t and u channels.

How can a product of A4’s possibly get even the pole structure of M4 right???   And avoid double-poles?

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)

Henriette Elvang D3-branes and Oxidation of Symmetries 14 /14



Answer: DOUBLE-COPY KERNEL

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

Color-ordered YM gluon amplitudes: A4[1234] has simple poles in s and u, but not t.
A4[1243] has simple poles in s and t, but not u.

Graviton amplitudes have no color-structure, so M4(1234) has simple poles in the s, t and u channels.

How can a product of A4’s possibly get even the pole structure of M4 right???   And avoid double-poles?

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)

Henriette Elvang D3-branes and Oxidation of Symmetries 14 /14

It remarkable that this works!! 



4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)
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The double-copy kernel:
1) Eliminates double-poles from A4 * A4
2) Provides “missing” poles

Answer: DOUBLE-COPY KERNEL

Color-ordered YM gluon amplitudes: A4[1234] has simple poles in s and u, but not t.
A4[1243] has simple poles in s and t, but not u.

Graviton amplitudes have no color-structure, so M4(1234) has simple poles in the s, t and u channels.

How can a product of A4’s possibly get even the pole structure of M4 right???   And avoid double-poles?

L = LBAS + a0,0�4 + a1,id2�4 + a2,id4�4 + . . . (49)

s =(p1 + p2)2

t =(p1 + p3)2

u =(p1 + p4)2
(50)
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It remarkable that this works!! 



Another important aspect of field theory KLT:    KKBCJ relations

And this is true for YM amplitudes.

This is an example of a BCJ (Bern-Carrasco-Johansson) relation at 4-point. 

then their difference must be zero, i.e. 

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

4d helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2
+1 �1 Z
�1 +1 Z̄

(40)

Z = �+ ia (41)

M4 = �sA4[1234]A4[1243] (42)

M4 = �
su

t
A4[1234]A4[1234] (43)

0 = A4[1243]�
u

t
A4[1234] (44)

Henriette Elvang D3-branes and Oxidation of Symmetries 12 /12

the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory to be able to use it in the double-copy and they reduce the number of independent
color-ordered amplitudes from (n� 1)! to (n� 3)!. At 4-point, these 5 KKBCJ conditions
are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.15)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.16)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.17)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.10) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry in-
teraction tr

�
'{','}

�
do not obey KKBCJ. Similarly, it was shown in [4] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.

1.2 Beyond Cubic BAS

Perhaps the reader is concerned that YM with a trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
simple: the string KLT formula uses a string KLT kernel S(↵0)

n in place of the field theory
KLT kernel Sn. When ↵

0
! 0, the strings KLT kernel simply reduces at the leading order

to the field theory KLT kernel Sn described above. If we replace Sn in the KKBCJ relations
(1.10) by the ↵

0-expansion of S(↵0)
n , one can indeed show that the trF 4 operator is allowed.

Moreover, its Wilson coefficient is fixed to be exactly its value in the open string gluon
amplitude.
This example indicates that in order to systematically examine the double-copy in the
context of higher-derivative operators with general Wilson coefficients, we need to consider
generalizations of the KLT kernel. But the question then is: what are the rules for such
generalizations? The subject of this paper is to propose very simple rules for generalizations
of the KLT kernel and utilize them to formulate a “bootstrap” for the kernel. Let us now
outline the ideas, focusing on 4-point.
Just like the field theory KLT kernel, Sn can be written as the inverse of a submatrix of
BAS tree-amplitudes mn, as in (1.13), Mizera [7] showed that the string theory KLT kernel
S
(↵0)
n is the inverse of a (n�3)!⇥ (n�3)! submatrix of amplitudes m(↵0)

n . These amplitudes
m

(↵0)
n are obtained from the BAS tree-amplitudes mn by replacing the propagators 1/p2 by
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etc
Kleiss-Kuijf

and

“KKBCJ relations”



A n-point

and associated KKBCJ relations that ensure that the result of the double-copy is
independent of the choice of (n-3)! color-orders out of the (n-1)! possible in the KLT sum. 

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)
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KLT kernel

Field theory double-copy `selection criterium’
In order to be “double-copyable”, a theory’s tree amplitudes must obey the 
KK and BCJ relations. 

reduces the number of color-orderings from (n-1)! to (n-2)!

A new way to explore the landscape of field theories: which theories can be input/output of the double-copy?

choices of (n-3)! color orderings

reduces the number of color-orderings from (n-2)! to (n-3)!



Which theories obey the field theory KK&BCJ relations?

YM theory Chiral perturbation theory

Super YM theory

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)
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Double-copy multiplication table

�L⌦R = 1 + �L + �R

<latexit sha1_base64="6feEhWuF8J6vh2wSRX1IN6WElj0=">AAACM3icbVDLSgMxFM34rPU16tJNsAiCUGakoC6EohsRF7XYB3RKyaRpG5p5kNwRyzD9Jjf+iAtBXCji1n8wbQfR1gOBwznnknuPGwquwLJejLn5hcWl5cxKdnVtfWPT3NquqiCSlFVoIAJZd4ligvusAhwEq4eSEc8VrOb2L0Z+7Y5JxQP/FgYha3qk6/MOpwS01DKvHMW7HmnFDrB7iK8T7ATAPabwRCgnCR6eDe1DnAZ/clNKOWmZOStvjYFniZ2SHEpRaplPTjugkcd8oIIo1bCtEJoxkcCpYEnWiRQLCe2TLmto6hO9VjMe35zgfa20cSeQ+vmAx+rviZh4Sg08Vyc9Aj017Y3E/7xGBJ2TZsz9MALm08lHnUhgCPCoQNzmklEQA00IlVzvimmPSEJB15zVJdjTJ8+S6lHeLuRPbwq54nlaRwbtoj10gGx0jIroEpVQBVH0gJ7RG3o3Ho1X48P4nETnjHRmB/2B8fUNdMisBA==</latexit>

Helicity maps as hL⌦R = hL + hR

<latexit sha1_base64="7+pC+Crrn39Od9kTiZsA5GQQvLg=">AAACIXicbVDLSgMxFM3UV62vUZdugkUQhDIjBetCKLpx4aIW+4C2DJk0bUMzD5I7Yhmmn+LGX3HjQpHuxJ8xfSjaeiBwcs693HuPGwquwLI+jNTS8srqWno9s7G5tb1j7u5VVRBJyio0EIGsu0QxwX1WAQ6C1UPJiOcKVnP7V2O/ds+k4oF/B4OQtTzS9XmHUwJacsxCz4mbwB4gvklwMwDuMYWnQjlJ8PBi2HN+/BP8/Sknjpm1ctYEeJHYM5JFM5Qcc9RsBzTymA9UEKUathVCKyYSOBUsyTQjxUJC+6TLGpr6RG/SiicXJvhIK23cCaR+PuCJ+rsjJp5SA8/VlR6Bnpr3xuJ/XiOCTqEVcz+MgPl0OqgTCQwBHseF21wyCmKgCaGS610x7RFJKOhQMzoEe/7kRVI9zdn53PltPlu8nMWRRgfoEB0jG52hIrpGJVRBFD2iZ/SK3own48V4N0bT0pQx69lHf2B8fgEwZ6TF</latexit>

Softness maps as

Double-copy

FT⌦ FT YM N = 4 SYM �PT BAS

YM gravity+ N = 4 SG BI YM

N = 4 SYM N = 4 SG N = 8 SG N = 4 sDBI N = 4 SYM

�PT BI N = 4 sDBI sGalileon �PT

BAS YM N = 4 SYM �PT BAS
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Example: all 70 scalars of N=8 supergravity have vanishing 
soft limits with � = 1

<latexit sha1_base64="lTPPxcXaAQgq2BccXhsSbKnkdaE=">AAAB8XicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoB6EohePFewHtkvJptk2NMkuSVYoS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZFyaCG+t536iwsrq2vlHcLG1t7+zulfcPmiZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo9up33pi2vBYPdhxwgJJBopHnBLrpMeu4QNJ8DX2e+WKV/VmwMvEz0kFctR75a9uP6apZMpSQYzp+F5ig4xoy6lgk1I3NSwhdEQGrOOoIpKZIJtdPMEnTunjKNaulMUz9fdERqQxYxm6Tkns0Cx6U/E/r5Pa6DLIuEpSyxSdL4pSgW2Mp+/jPteMWjF2hFDN3a2YDokm1LqQSi4Ef/HlZdI8q/rn1av780rtJo+jCEdwDKfgwwXU4A7q0AAKCp7hFd6QQS/oHX3MWwsonzmEP0CfP0aHkAU=</latexit>

nL⌦R = nLnR

<latexit sha1_base64="lB+kxnTSZklodFCK+8gKww5Ub14=">AAACHXicbZDLSgMxFIYz9VbrbdSlm2ARXJUZKagLoejGhYta7AXaMmTStA3NZIbkjFiGeRE3voobF4q4cCO+jekNtPVA4OP/zyHn/H4kuAbH+bYyS8srq2vZ9dzG5tb2jr27V9NhrCir0lCEquETzQSXrAocBGtEipHAF6zuD65Gfv2eKc1DeQfDiLUD0pO8yykBI3l2UXpJC9gDJDcpboXAA6bxRKikKb7A0pvZM6qknp13Cs648CK4U8ijaZU9+7PVCWkcMAlUEK2brhNBOyEKOBUszbVizSJCB6THmgYlMVu0k/F1KT4ySgd3Q2WeBDxWf08kJNB6GPimMyDQ1/PeSPzPa8bQPWsnXEYxMEknH3VjgSHEo6hwhytGQQwNEKq42RXTPlGEggk0Z0Jw509ehNpJwS0Wzm+L+dLlNI4sOkCH6Bi56BSV0DUqoyqi6BE9o1f0Zj1ZL9a79TFpzVjTmX30p6yvH3Gso2g=</latexit>



Does FT x FT -> FT have an identity element?
(1.6) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –
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the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –

Color structure



Does FT x FT -> FT have an identity element?

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –



Does FT x FT -> FT have an identity element?

�L⌦R = 1 + �L + �R
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Helicity maps as hL⌦R = hL + hR
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Softness maps as

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)

Henriette Elvang D3-branes and Oxidation of Symmetries 5 /11

single colorno color
structure

double color-structure

Spectrum has to map to self 
=> only allow a single scalar in double-adjoint rep �aa0

<latexit sha1_base64="AC5VrBm1i72i2wAWFujVakal9Ds=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPoKexKQL0FvXiMYB6YrKF3MkmGzM4uM7NCWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJoqxOIxGpVoCaCS5Z3XAjWCtWDMNAsGYwupn6zSemNI/kvRnHzA9xIHmfUzRWeujEQ/6YIp5OusWSW3ZnIMvEy0gJMtS6xa9OL6JJyKShArVue25s/BSV4VSwSaGTaBYjHeGAtS2VGDLtp7OLJ+TEKj3Sj5QtachM/T2RYqj1OAxsZ4hmqBe9qfif105M/9JPuYwTwySdL+ongpiITN8nPa4YNWJsCVLF7a2EDlEhNTakgg3BW3x5mTTOy16lfHVXKVWvszjycATHcAYeXEAVbqEGdaAg4Rle4c3Rzovz7nzMW3NONnMIf+B8/gBsNpDG</latexit>

(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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interaction

Color structure



Does FT x FT -> FT have an identity element?

�L⌦R = 1 + �L + �R
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Helicity maps as hL⌦R = hL + hR
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Softness maps as

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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=> only allow a single scalar in double-adjoint rep �aa0
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(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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divergent in the limit ⇤ ! 1 where the cubic BAS amplitudes are recovered. This would
imply that the double-copy amplitudes do not have sensible ⇤ ! 1 limits and then we can
no longer identify ⇤ ! 1 as the limit of decoupling UV physics.
To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore
require that the rank of the zeroth copy does not change as a function of ⇤.6 This means
that to study the most general double-copy kernel based on BAS+h.d. we must work with
the rank Rn = (n� 3)!.
The double-copy bootstrap with rank (n � 3)! is studied at 3-, 4-, and 5-point in Sections
3-6. In Section 7 we consider examples of models with rank Rn > (n� 3)! that are not UV
deformations of the BAS model.

3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher-point analysis. In 3-particle
kinematics, all Mandelstam variables vanish on-shell, so it is impossible for an on-shell 3-
point scalar amplitude to have momentum dependence. At the level of the Lagrangian, this
means that any higher-derivative corrections at 3-point can be moved into higher-point by
a field redefinition. Thus we only need to consider constant 3-point scalar amplitudes.
By cyclic symmetry, there are two independent options for the double color ordered bi-
adjoint scalar amplitudes and we parameterize them using couplings g and �3 as

m3[123|123] = g + �3, m3[123|132] = �g + �3 . (3.1)

These amplitudes arise from Lagrangian interactions of the form7

L3 = �
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0 +

�3

6
d
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (3.2)

The first term is the cubic interaction from the cubic BAS model (1.4) and the second one
is its fully symmetric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic
representations of SU(N) groups with N > 2.
The general 2 ⇥ 2 bi-adjoint scalar matrix labeled by the (n � 1)! = 2 independent color-

6Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to
entertain the possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples
studied in this paper, relaxing this naturalness assumption also leads to spurious poles in the double-copy.

7A mixed term , fabc
d̃
a0b0c0

�
aa0

�
bb0

�
cc0 = 0, vanishes due to the symmetric-antisymmetric index con-

tractions.
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imply that the double-copy amplitudes do not have sensible ⇤ ! 1 limits and then we can
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To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore
require that the rank of the zeroth copy does not change as a function of ⇤.6 This means
that to study the most general double-copy kernel based on BAS+h.d. we must work with
the rank Rn = (n� 3)!.
The double-copy bootstrap with rank (n � 3)! is studied at 3-, 4-, and 5-point in Sections
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is its fully symmetric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic
representations of SU(N) groups with N > 2.
The general 2 ⇥ 2 bi-adjoint scalar matrix labeled by the (n � 1)! = 2 independent color-

6Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to
entertain the possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples
studied in this paper, relaxing this naturalness assumption also leads to spurious poles in the double-copy.

7A mixed term , fabc
d̃
a0b0c0

�
aa0

�
bb0

�
cc0 = 0, vanishes due to the symmetric-antisymmetric index con-

tractions.

– 18 –

?

divergent in the limit ⇤ ! 1 where the cubic BAS amplitudes are recovered. This would
imply that the double-copy amplitudes do not have sensible ⇤ ! 1 limits and then we can
no longer identify ⇤ ! 1 as the limit of decoupling UV physics.
To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore
require that the rank of the zeroth copy does not change as a function of ⇤.6 This means
that to study the most general double-copy kernel based on BAS+h.d. we must work with
the rank Rn = (n� 3)!.
The double-copy bootstrap with rank (n � 3)! is studied at 3-, 4-, and 5-point in Sections
3-6. In Section 7 we consider examples of models with rank Rn > (n� 3)! that are not UV
deformations of the BAS model.

3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher-point analysis. In 3-particle
kinematics, all Mandelstam variables vanish on-shell, so it is impossible for an on-shell 3-
point scalar amplitude to have momentum dependence. At the level of the Lagrangian, this
means that any higher-derivative corrections at 3-point can be moved into higher-point by
a field redefinition. Thus we only need to consider constant 3-point scalar amplitudes.
By cyclic symmetry, there are two independent options for the double color ordered bi-
adjoint scalar amplitudes and we parameterize them using couplings g and �3 as

m3[123|123] = g + �3, m3[123|132] = �g + �3 . (3.1)

These amplitudes arise from Lagrangian interactions of the form7

L3 = �
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0 +

�3

6
d
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (3.2)

The first term is the cubic interaction from the cubic BAS model (1.4) and the second one
is its fully symmetric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic
representations of SU(N) groups with N > 2.
The general 2 ⇥ 2 bi-adjoint scalar matrix labeled by the (n � 1)! = 2 independent color-

6Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to
entertain the possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples
studied in this paper, relaxing this naturalness assumption also leads to spurious poles in the double-copy.

7A mixed term , fabc
d̃
a0b0c0

�
aa0

�
bb0

�
cc0 = 0, vanishes due to the symmetric-antisymmetric index con-

tractions.

– 18 –

divergent in the limit ⇤ ! 1 where the cubic BAS amplitudes are recovered. This would
imply that the double-copy amplitudes do not have sensible ⇤ ! 1 limits and then we can
no longer identify ⇤ ! 1 as the limit of decoupling UV physics.
To avoid a situation of unnatural UV-IR mixing in the double-copy, we must therefore
require that the rank of the zeroth copy does not change as a function of ⇤.6 This means
that to study the most general double-copy kernel based on BAS+h.d. we must work with
the rank Rn = (n� 3)!.
The double-copy bootstrap with rank (n � 3)! is studied at 3-, 4-, and 5-point in Sections
3-6. In Section 7 we consider examples of models with rank Rn > (n� 3)! that are not UV
deformations of the BAS model.

3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher-point analysis. In 3-particle
kinematics, all Mandelstam variables vanish on-shell, so it is impossible for an on-shell 3-
point scalar amplitude to have momentum dependence. At the level of the Lagrangian, this
means that any higher-derivative corrections at 3-point can be moved into higher-point by
a field redefinition. Thus we only need to consider constant 3-point scalar amplitudes.
By cyclic symmetry, there are two independent options for the double color ordered bi-
adjoint scalar amplitudes and we parameterize them using couplings g and �3 as

m3[123|123] = g + �3, m3[123|132] = �g + �3 . (3.1)

These amplitudes arise from Lagrangian interactions of the form7

L3 = �
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0 +

�3

6
d
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (3.2)

The first term is the cubic interaction from the cubic BAS model (1.4) and the second one
is its fully symmetric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

The invariant dabc is sometimes called the anomaly coefficient and it is non-zero for generic
representations of SU(N) groups with N > 2.
The general 2 ⇥ 2 bi-adjoint scalar matrix labeled by the (n � 1)! = 2 independent color-

6Of course, it is logically possible that the UV dynamics may not fully decouple, and we are free to
entertain the possibility of a discontinuity in the rank of the zeroth copy. Curiously, for all examples
studied in this paper, relaxing this naturalness assumption also leads to spurious poles in the double-copy.

7A mixed term , fabc
d̃
a0b0c0

�
aa0

�
bb0

�
cc0 = 0, vanishes due to the symmetric-antisymmetric index con-

tractions.

– 18 –

Cubic Bi-Adjoint Scalar model (BAS) 

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and
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Scalar in adjoint of (say) U(N) and U(N’) 

structure 
constants

So that takes care of 

What about the rest of the algebra?

(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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Double-copy

FT⌦ FT YM N = 4 SYM �PT BAS

YM gravity+ N = 4 SG BI YM

N = 4 SYM N = 4 SG N = 8 SG N = 4 sDBI N = 4 SYM

�PT BI N = 4 sDBI sGalileon �PT

BAS YM N = 4 SYM �PT BAS
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String KLT also has an identity element: 
BAS + very specific higher-derivative operators.

The double-copy is a map FT x FT  -> FT 

The kernel defines the multiplication rule of this map
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KLT algebra



Consider now the double-copy in EFT contexts



Which theories obey the field theory KKBCJ relations?

YM theory Chiral perturbation theory

Super YM theory Bi-adjoint scalar model 

What about higher-derivative operators in EFTs? 

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /12

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /12

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /12

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

dabcd̃a
0b0c0�aa

0
�bb

0
�cc

0
(37)

dabcdd̃a
0b0c0d0�aa

0
�bb

0
�cc

0
�dd

0
(38)

tr�3 tr�4 tr�F2 (39)

Henriette Elvang D3-branes and Oxidation of Symmetries 11 /12

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)
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Here just MHV
counting

Dixon & Broedel
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Why are some operators allowed and not others?  Is this the most general story?

Here only MHV
counting



YM + h.d.

Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)

Henriette Elvang D3-branes and Oxidation of Symmetries 5 /11

YM + h.d.

Gravity+ + h.d.
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YM + h.d.

Include higher-derivative 
corrections in the double-copy kernel

Gravity+ + h.d.

String theory does that!



Double-copy
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KLT originally came from closed string = (open string)2 at tree-level

String theory KLT

string KLT kernel

The KLT kernel is deeply linked with the open string amplitudes to ensure correct pole structure in the closed string amps.

Upon expansion in alpha’, this translates to very particular higher-derivative corrections of the kernel:
not the most general options and tuned exactly to the alpha’ corrections in the open string. 

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)
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Example:

Only s-dependence, no t or u; why? Only odd powers in s; why?



Double-copy

Agravityn =
X

a,b

AYMn [a]Sn[a|b]AYMn [b] (1)

AL⌦Rn =
X

a,b

ALn[a]Sn[a|b]A
R
n [b] (2)

Agravity4 = �sAYM4 [1234]AYM4 [1243] (3)

helicity book-keeping

gluon ⌦ gluon ! graviton
+1 +1 +2
�1 �1 �2

(4)

Henriette Elvang D3-branes and Oxidation of Symmetries 5 /11

What are the rules for generalizing the KLT kernel?

The generalized double-copy kernel should
1) eliminate double-poles
2) provide “missing” poles
3) not introduce spurious poles



We propose a new framework for systematically analyzing generalizations 
of the double-copy kernel: the KLT bootstrap

The proposal is based on the KLT algebra

2106.12600 with Chi, A. Herderschee,  C. Jones, S. Paranjape



KLT algebra
(1.6) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –

KLT Bootstrap 
EquationGeneralize the KKBCJ / monodromy relations

(will not derive here; pls see 2106.12600)

When the multiplication rule is changed, 
the identity element  is changed, and vice versa: 
The kernel and the identity model are uniquely linked!



KLT algebra
(1.6) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –

KLT Bootstrap 
EquationGeneralize the KKBCJ / monodromy relations

When the multiplication rule is changed, 
the identity element  is changed, and vice versa: 
The kernel and the identity model are uniquely linked!

(will not derive here; see 2106.12600)



Statement BAS = BAS x BAS  --- or                    can be written as    

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

or in matrix form

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)
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Double-sum over (n-3)! color orderings

(n-3)! x (n-3)! submatrices

Bi-Adjoint Scalar model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and

– 2 –



Statement BAS = BAS x BAS  --- or                    can be written as    

So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives 

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,

– 4 –

or in matrix form

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)
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The field theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS amplitudes!

Bi-Adjoint Scalar model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and
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Statement BAS = BAS x BAS  --- or                    can be written as    

So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives 

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:
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↵,�
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We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.
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The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!
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The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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or in matrix form

Double-copy

AL⌦R

4
=

X nLi n
R

iQ
I P

2

I

(23)

ABAS

4 =

X ci c̃iQ
I P

2

I

(24)

mn = mn.Sn.mn (25)
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The field theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS amplitudes!

Bi-Adjoint Scalar model (BAS)

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the maintext. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

and here Sn[1234|1243] = �s/g, where g denotes a scale (and will be identified more
precisely shortly).
Using exactly the same KLT kernel, the KLT formula (1.1) can be used more generally to
double-copy tree amplitudes of other theories with particles in the adjoint representation
of the color-groups GL or GR. Table 1 shows a set of examples of how products of field
theories of massless particles are mapped under KLT. In this table, BAS stands for the
cubic bi-adjoint scalar theory defined by the Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

� gf
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (1.3)

The scalar fields transform in the adjoint of two color-groups GL and GR and the tree
amplitudes mn[↵|�] are single-trace color-ordered for each color-group. Examples are

m4[1234|1234] =
g

s
+

g

u
, m4[1234|1243] = �

g

s
. (1.4)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.5)

Furthermore, one finds that when BAS is double-copied with itself it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.6)

Equations (1.5) and (1.6) are the mathematical statements behind the first column and
first row of Table 1.
We can view the KLT double-copy abstractly as a map on the space of (certain) field
theories and for this map the BAS model is the identity 1: we can summarize (1.5) and
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Tree amplitudes color-ordered wrt both color-factors, e.g.

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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4-point case

=> 

We use these constraints to construct the most general set of higher-derivative corrections
to Yang-Mills with a consistent double-copy. Up to four-derivative order, the most general
left single-copy model of non-abelian gauge bosons takes the form

LL = �
1

4
F

a
µ⌫F

aµ⌫ +
gF 3

⇤2
d
abc

F
a
µ

⌫
F

b
⌫

⇢
F

c
⇢

µ +
aL

⇤4
d
abcd(F 4

ss)
abcd +O

�
F

6
�
, (1.6)

where F
4
ss is the linear combination

d
abcd(F 4

ss)
abcd

⌘ Tr [Fµ
⌫
F⌫

⇢
F⇢

�
F�

µ] + 2Tr [Fµ
⌫
F⇢

�
F⌫

⇢
F�

µ]

�
1

2
Tr [Fµ⌫F

µ⌫
F⇢�F

⇢�]�
1

4
Tr [Fµ⌫F⇢�F

µ⌫
F

⇢�] , (1.7)

appearing in the open superstring effective action [3] but here with a free coefficient. The
result is a vast generalization of both previous attempts to extend the double-copy to higher-
derivative operators and of the open-string scattering amplitudes [4]. In particular, since
the above Yang-Mills deformation contains operators with generic color tensors, we are not
restricted to contractions of fabc.
In the following sub-sections, we give a more technical review of the KLT algebra, followed
by a description of the spurious singularities that arise from a naive choice of zeroth-copy.

1.1 The KLT Algebra

In field theory, the KLT formula (1.1) is well-known for expressing the n-graviton tree
amplitude as a sum over products of gluon tree amplitudes. For example, at 4-point, the
sum in (1.1) only has one term,

A
L⌦R
4 = A

L
4 [1234]S4[1234|1243]A

R
4 [1243] (1.8)

where S4[1234|1243] = �s/g and g denotes a scale which will shortly be identified more
precisely.
Using the same KLT kernel, the KLT formula (1.1) can be used more generally to double-
copy tree amplitudes of other theories with particles in the adjoint representation of the
color-groups GL or GR. Table 1 shows a set of examples of how products of field theories of
massless particles are mapped under KLT. Consider the cubic BAS theory defined by the
Lagrangian in (1.3). The scalar fields transform in the adjoint of two color-groups GL and
GR and the tree amplitudes mn[↵|�] are single-trace color-ordered for each color-group.
Examples are

m4[1234|1234] =
g
2

s
+

g
2

u
, m4[1234|1243] = �

g
2

s
. (1.9)

When BAS is used as input in the KLT formula, one color-group is actively taking part in
the double-copy while the other is inert: specifically one finds that

A
R
n [�] =

X

↵,�

mn[�|↵]Sn[↵|�]A
R
n [�] , A

L
n[�] =

X

↵,�

A
L
n[↵]Sn[↵|�]mn[�|�] . (1.10)
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Strings KLT kernel

1/ sin(⇡↵0
p
2) or 1/ tan(⇡↵0

p
2). For example,

m4[1234|1243] = �
g
2

s
�! m

(↵0)
4 [1234|1243] = �

1

sin(⇡↵0s)
. (1.18)

When one replaces

mn ! m
(↵0)
n and Sn ! S

(↵0)
n = (m(↵0)

n )�1 (1.19)

the relations (1.11) and (1.10) continues to hold, where now An are taken to the color-
ordered open-string amplitudes. (In this context, the KKBCJ relations (1.10) are often
called the monodromy relations [8–12].) This means that for the string theory double-copy,
the model that gives the amplitudes m

(↵0)
n is the identity for the string-version of the KLT

algebra (1.12).
It may be puzzling that m

(↵0)
n are called amplitudes. However, in the ↵

0-expansion this
makes perfect sense. For example, consider the low-energy expansion s ⌧ ↵

0 of (1.18):

m
(↵0)
4 [1234|1243] = �

1

⇡↵0s
�

1

6
⇡↵

0
s�

7

360
(↵0

⇡s)3 + . . . . (1.20)

The leading term matches that in m4[1234|1243] in (1.18) with g = 1/(⇡↵0) and the sub-
leading terms arise from higher-derivative corrections to the BAS model. Schematically, we
can write

L↵0 = LBAS + ↵
0
@
2
�
4 + ↵

03
@
6
�
4 + . . . (1.21)

Thus the amplitudes m(↵0)
n are the re-summed tree amplitudes of an effective field theory of

a bi-adjoint scalar with higher-derivative corrections. The string KLT kernel is the inverse
of a submatrix of these effective field theory amplitudes.
It is clear that the Lagrangian (1.21) describes a model with a very specific set of higher-
derivative corrections. For example, there are no �

4 terms or @
4
�
4 terms. One goal of

this paper is to systematically examine what higher-derivative corrections to BAS give a

well-defined KLT kernel.

As we show below, one immediately runs into trouble with locality in the KLT double-
copy if one modifies the BAS model without imposing any restrictions. For example, it
will become clear why a �

4 modification is not allowed. So the key issue is to understand
what constraints one must impose on a KLT kernel, or equivalently on the amplitudes of
its inverse, in order for the generalized double-copy to yield sensible physical amplitudes
A

L⌦R
n .

We propose to take the “KLT algebra” defined by (1.12) as the fundamental principle for
generalizing the KLT double-copy. For a double-copy map on a (sub)space of field theories,

KLT: (field theory)L ⌦ (field theory)R ! (field theory)L⌦R , (1.22)

to be well-defined, we propose that there must exist an identity 1 for which the KLT algebra
(1.12) holds and the KLT kernel is the inverse of a suitable submatrix of amplitudes of this
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the relations (1.11) and (1.10) continues to hold, where now An are taken to the color-
ordered open-string amplitudes. (In this context, the KKBCJ relations (1.10) are often
called the monodromy relations [8–12].) This means that for the string theory double-copy,
the model that gives the amplitudes m

(↵0)
n is the identity for the string-version of the KLT

algebra (1.12).
It may be puzzling that m
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n are called amplitudes. However, in the ↵
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The leading term matches that in m4[1234|1243] in (1.18) with g = 1/(⇡↵0) and the sub-
leading terms arise from higher-derivative corrections to the BAS model. Schematically, we
can write
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4 + . . . (1.21)

Thus the amplitudes m(↵0)
n are the re-summed tree amplitudes of an effective field theory of

a bi-adjoint scalar with higher-derivative corrections. The string KLT kernel is the inverse
of a submatrix of these effective field theory amplitudes.
It is clear that the Lagrangian (1.21) describes a model with a very specific set of higher-
derivative corrections. For example, there are no �

4 terms or @
4
�
4 terms. One goal of

this paper is to systematically examine what higher-derivative corrections to BAS give a

well-defined KLT kernel.

As we show below, one immediately runs into trouble with locality in the KLT double-
copy if one modifies the BAS model without imposing any restrictions. For example, it
will become clear why a �

4 modification is not allowed. So the key issue is to understand
what constraints one must impose on a KLT kernel, or equivalently on the amplitudes of
its inverse, in order for the generalized double-copy to yield sensible physical amplitudes
A

L⌦R
n .

We propose to take the “KLT algebra” defined by (1.12) as the fundamental principle for
generalizing the KLT double-copy. For a double-copy map on a (sub)space of field theories,

KLT: (field theory)L ⌦ (field theory)R ! (field theory)L⌦R , (1.22)

to be well-defined, we propose that there must exist an identity 1 for which the KLT algebra
(1.12) holds and the KLT kernel is the inverse of a suitable submatrix of amplitudes of this
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The string theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS+ (specific h.d. ) amplitudes!

How to generalize the double-copy kernel? 

Which terms are allowed in BAS+h.d.?



KLT bootstrap

KLT bootstrap equation

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.

Furthermore, one finds that when BAS is double-copied with itself, it gives back BAS:

mn[�|�] =
X

↵,�

mn[�|↵]Sn[↵|�]mn[�|�]. (1.11)

Equations (1.10) and (1.11) are the mathematical statements behind the first column and
first row of Table 1.
We can abstractly view the KLT double-copy as a map on the space of (certain) field
theories and for this map, the BAS model is the identity 1. We can summarize (1.10) and
(1.11) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.12)

If (1.11) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn is itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.13)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though. For example, using (1.9), we find

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg2
,

S4[1234|1243] =
�
m4[1243|1234]

��1
= �

s

g2
.

(1.14)

The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
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Recall that                      means                                         and this implies    
(1.6) as

L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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Written out for rank (4-3)!=1 at 4-point means, for example:

n=4   =>  (n-1)! = 6 single-trace color-orderings:   1234, 1243, 1324, 1342, 1423, 1432



KLT bootstrap

KLT bootstrap equation

R / L BAS �PT YM N = 4 SYM
BAS BAS �PT YM N = 4 SYM
�PT �PT sGal BI N = 4 sDBI
YM YM BI gravity+ N = 4 SG

N = 4 SYM N = 4 SYM N = 4 sDBI N = 4 SG N = 8 SG

Table 1. The table shows the tree-level double-copy L⌦R of a selection of different choices for the
L and R single-color models. BAS is the cubic bi-adjoint scalar model which is described more in
the main text. The important point we want to make here is that BAS acts as the identity under
the KLT map. The other single-color models are �PT = chiral perturbation theory (NLSM), YM =
Yang-Mills theory, and N = 4 super Yang-Mills theory (SYM). For the results for the double-copy,
sGal stands for the special Galileon, BI is Born-Infeld theory, gravity+ is Einstein gravity with a
dilaton and Bµ⌫ , and SG stands for supergravity.
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X

↵,�
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The latter is the kernel given below (1.8).
Equation (1.10) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arises in the color-kinematics duality version of the double-copy
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Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
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So this condition is that a 2x2 minor of the 6x6 matrix of m4[a|b] amplitudes have to vanish:

Similarly, all 2x2 minors must vanish! But that’s just saying that we must have a rank 1 system. Aha!

n=4   =>  (n-1)! = 6 single-trace color-orderings:   1234, 1243, 1324, 1342, 1423, 1432



KLT bootstrap at 4-pt

Imposing the vanishing of all 2x2 minors  =>  

The general 2!⇥ 2! bi-adjoint scalar matrix labeled by the two independent color-orderings
{123, 132} is then

m3 =

 
m3[123|123] m3[123|132]

m3[132|123] m3[132|132]

!
=

 
g + �3 �g + �3

�g + �3 g + �3

!
. (3.5)

and its determinant is
det(m3) = 4g�3 . (3.6)

Thus for non-zero values of g and �3 the matrix m3 has rank 2, however, whenever one of
the two couplings vanishes, the rank is reduced to 1. At 3-point, rank (n � 3)! = 0! = 1

is the minimal-rank condition discussed in section 2.2. Although this indicates that there
are two branches with rank (n�3)! based on the two different 3-point interactions, it turns
out that the solution with g = 0 and �3 6= 0 does not satisfy the minimal-rank condition
at 4-point; see Section 4.4.
In Section 7, we demonstrate that models with �3 6= 0 do not lead to physically sensible
KLT kernels. Hence, the only cubic interaction possible for the zeroth-copy is that of the
BAS model.4

4 KLT Bootstrap at 4-Point

In this section, we derive the most general KLT kernel at n = 4 assuming that m
(0)
4 [↵|�]

corresponds to the double partial amplitudes of cubic BAS (1.3). For this class of generalized
KLT kernels, we find that the minimal rank condition is a sufficient condition for locality
of M4. We derive the explicit form of the polynomial restrictions imposed by the minimal
rank condition, which imposes that Rn = (n� 3)! = 1. We then derive initial ansatzes for
m[↵|�] using cyclicity, re-labelling, and locality. We perturbatively solve the 4-point these
ansatzes up to O(p10).

4.1 4-Point Bootstrap Equations

We now consider the bootstrap of 4-point double partial amplitudes. We define the 6-
dimensional basis of the 4-point bi-adjoint model in terms of

m4[1234|1234] = f1(s, t) with f1(s, t) = f1(�s� t, t) ,

m4[1234|1243] = f2(s, t) ,

m4[1234|1324] = f3(s, t) = f2(�s� t, t) ,

m4[1234|1342] = f4(s, t) = f2(s, t) ,

m4[1234|1423] = f5(s, t) = f2(�s� t, t) ,

m4[1234|1432] = f6(s, t) with f6(s, t) = f6(�s� t, t) ,

(4.1)

4
Models where both g and �3 vanish are also explored in Section 7.
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where we have used cyclic symmetry and momentum relabeling to infer the listed relations,

f3(s, t) = m4[1234|1324] = m4[4123|4132] = m4[1234|1243]
���
1!4!3!2!1

= f2(s, t)
���
1!4!3!2!1

= f2(�s� t, t) .
(4.2)

We allow for the possibility that mn[�|↵] 6= mn[↵|�] and we do not assume reversal sym-
metry, e.g. mn[↵|�T ] is not necessarily related to mn[↵|�].
At 4-point, the minimal rank condition imposes that all 2-by-2 minors of the propagator
matrix must vanish,

m4[↵|�]m4[�|�] = m4[↵|�]m4[�|�], (4.3)

for any choice of ↵,�, �, � 2 {1234, 1243, 1324, 1342, 1423, 1432}.
Suppose we take ↵ = � = 1234 while � = 1432 and � = 1243. Then (4.3) reads,

0 = m4[1234|1234]m4[1243|1432]�m4[1234|1432]m4[1243|1234]

= m4[1234|1234]
⇣
m4[1234|1342]

���
3$4

⌘
�m4[1234|1432]

⇣
m4[1234|1243]

���
3$4

⌘

=
�
f1(s, t)� f6(s, t)

�
f2(u, t) ,

(4.4)

which implies,
f6(s, t) = f1(s, t) . (4.5)

Similarly, taking ↵ = � = 1234, � = 1243, and � = 1324 in (4.3) gives

0 = f1(s, t)f2(t, s)� f2(s, t)f2(�s� t, s) (4.6)

while interchanging the choices of �, and � gives

0 = f1(s, t)f2(t,�s� t)� f2(s,�s� t)f2(�s� t, t) (4.7)

Equation (4.6) allows us to solve for f1 in terms of f2 as

f1(s, t) =
f2(s, t)f2(�s� t, s)

f2(t, s)
, (4.8)

and combining (4.6) and (4.7) gives a final self-consistency condition for f2,

f2(s, t)f2(�s� t, s)f2(t,�s� t) = f2(t, s)f2(�s� t, t)f2(s,�s� t) . (4.9)

Note that the RHS is equal to the LHS with s $ t.
As we shall see, the bootstrap equations are alone not quite sufficient to guarantee that
(4.1) correspond to doubly-color-ordered amplitudes of a local theory. For a choice f2 that
solves (4.9) and is local, the outcome for f1 via (4.8) is not necessarily local. Therefore
locality constraints on f1 may further restrict the solution. This is an important constraint
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Note that the RHS is equal to the LHS with s $ t.
As we shall see, the bootstrap equations are alone not quite sufficient to guarantee that
(4.1) correspond to doubly-color-ordered amplitudes of a local theory. For a choice f2 that
solves (4.9) and is local, the outcome for f1 via (4.8) is not necessarily local. Therefore
locality constraints on f1 may further restrict the solution. This is an important constraint
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4-point KLT bootstrap equations 

Solved by BAS and the strings 
BAS+h.d. amplitudes.

What else solves it?

Cyclic symmetry & momentum relabeling

6 x 6 matrix for these amplitudes has rank 6.



Most general rank (n-3)! kernel at 4-point 

Write the most general ansatz for f2:
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Strings result recovered for
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and all other ai,j = 0



4-point result as BAS + h.d. Lagrangian

1. Write down the most general set of higher dimension operators that could contribute
to cubic BAS.

2. Impose the KLT bootstrap equations to constrain the Wilson coefficients of the higher-
dimension BAS operators. These impose that the double partial amplitudes matrix
is rank (n� 3)!.

3. Choose the single-copy L and R sector models for the double-copy and impose on
them the generalized KKBCJ conditions (2.17) and (2.18). This guarantees that the
result of the double-copy will be basis-independent.

4. Compute the double-copy (2.16) using the rank (n� 3)! KLT matrix and the single-
copy amplitudes that satisfy the generalized KKBCJ relations.

The above steps constitute a very general double copy procedure and we find always yield a
local double copy. However, one could also consider zeroth copy theories where the leading
interaction terms do not correspond to cubic BAS, and hence the rank of their kernel is no
longer is no longer guaranteed to be (n � 3)!. These are considered in section 7. We find
the kernels of such theories generically include spurious singularities, but it is possible for
these spurious singularities to be cancelled by zeros of the partial amplitudes.

3 KLT Bootstrap at 3-Point

Let us begin at 3-point as an informative warm-up for the higher point analysis. 3-particle
kinematics makes it impossible for on-shell 3-point scalar amplitudes to have momentum
dependence, so the amplitudes must be constants. By cyclic symmetry and momentum re-
labeling, there are only two possible doubly-color ordered amplitudes that are independent,
namely

m3[123|123] = g + �3, m3[123|132] = �g + �3. (3.1)

These amplitudes arise from Lagrangian interactions of the form

L3 = �
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0 +

�3

6
d
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
. (3.2)

The first term is the cubic bi-adjoint interaction (1.3) and the second one is its fully sym-
metric counterpart. In terms of generators, we have

i f
abc = Tr

h
T
a[T b

, T
c]
i
, d

abc = Tr
h
T
a
{T

b
, T

c
}

i
. (3.3)

A mixed term like
f
abc

d̃
a0b0c0

�
aa0

�
bb0
�
cc0
, (3.4)

is trivially zero since we are contracting a totally symmetric tensor into a totally anti-
symmetric one. The second group invariant is sometimes called the anomaly coefficient,
and is non-zero for generic representations of SU(N) groups with N > 2.
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• There is no                                                  term: it does not solve the rank 1 bootstrap equations.

• There is no          term;    does not solve the rank 1 bootstrap equations

• The dabc terms modify the U(1) decoupling identities that are part of the field theory KK relations
and generalize the strings monodromy relations.

• Known strings kernel has aL=aR. The generalization allows “heterotic”-type double-copy.

Di↵erent Color Structures at Leading Order

There are many bi-colored scalar theories to choose as zeroth copy:

�

Usual bi-adjoint scalar theory: g f
abc

f
a0b0c 0�aa0�bb0�cc 0

�

3-point: �3 d
abc

d
a0b0c 0�aa0�bb0�cc 0

�

4-point: �4 d
abcd

d
a0b0c 0d 0

�aa0�bb0�cc 0�dd 0

...

where d
a1a2···an = Tr

⇥
T

a1T (a2 · · ·T an)
⇤
.

Shruti Paranjape KLT Bootstrap University of Michigan 6 / 22

YM: trF2 � trF3 � trF4 � trD2F4 � trD4F4 �/� . . . (35)

S4[1234|1243] = � sin(��0s) = ���0s+
1

6
(��0s)3 + . . . (36)

�4 (37)
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Observations

Here Oi ⇠ @
2k(�aa0)n are local scalar operators of dimension �i and the constants ci are

the Wilson coefficients.
The KLT kernel bootstrap equation 1⌦1 = 1 can be understood as a rank-condition on the
matrix of doubly color-ordered zeroth-copy tree amplitudes; we elaborate on this in Sections
1.2 and 2.1. The rank is (n�3)! for n-particle scattering in the BAS and string zeroth copies
[6], but for other zeroth copies it could in principle be different. We argue that in the context
of BAS+h.d., the rank of doubly color-ordered amplitudes should be independent of ⇤; in
particular if the rank changed as ⇤ ! 1, the double-copy procedure would be singular.
Since this is the limit in which the UV physics decouples, our observation is that for finite ⇤

the rank of the associated matrix of scattering amplitudes must be the same as for the BAS
zeroth copy. We call rank (n � 3)! minimal rank. Higher-derivative operators generically
increase the rank, so imposing the minimal rank condition requires delicate cancellations
between contributions of higher-dimension operators with an associated infinite set of non-
trivial constraints on the Wilson coefficients ci.
Our analysis shows that the leading higher-dimension operators compatible KLT bootstrap
equations are

L � �
aL + aR
2⇤4

f
abx

f
cdx

f
a0b0x0

f
c0d0x0

(@µ�
aa0)(@µ

�
bb0)�cc0

�
dd0

+
aL
⇤4

f
abx

f
cdx

d
a0b0x0

d
c0d0x0

(@µ�
aa0)�bb0(@µ

�
cc0)�dd0

+
aR
⇤4

d
abx

d
cdx

f
a0b0x0

f
c0d0x0

(@µ�
aa0)�bb0(@µ

�
cc0)�dd0 + . . . .

(1.6)

The presence of the symmetric tensors d
abc = Tr

⇥
T
a
{T

b
, T

c
}
⇤

modify the U(1) decoupling
identity; a feature familiar from the strings zeroth copy which has aL/⇤4 = aR/⇤4 =

�1/(6⇡↵0). The generalized double-copy kernel, based on (1.6), has arbitrary coefficients
for the L and R sectors and it therefore treats the L and R sector single-copy amplitudes
differently; in this sense, it can be thought of as a “heterotic”-type double-copy. We have
solved for the double-copy kernel up to and including 16-derivative order at 4-point and
6-derivative order at 5-point. These results are valid in general d � 4 dimensions.
We apply the generalized double-copy to several examples, specifically 4d Yang-Mills theory
with higher-derivative terms (YM+h.d.) up to 10-derivative order. Specifically, up to 4-
derivative order, we find that the most general L sector single-copy model of non-abelian
gauge bosons, compatible with the generalized KK and BCJ relations, takes the form

LL = �
1

4
F

a
µ⌫F

aµ⌫ +
g
L
F 3

⇤2
f
abc

F
a
µ

⌫
F

b
⌫

⇢
F

c
⇢

µ +
2aLg

L
YM

g2⇤4
d
abcd(F 4

ss)
abcd + . . . , (1.7)

where the ellipsis indicates that the complete effective action contains higher-derivative
operators of the form D

k
F

n with k > 0 and n � 4. In (1.7), F
4
ss denotes the linear
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The double-copy can be considered a map

(theory)L ⌦ (theory)R = (theory)L⌦R , (1.2)

in which the multiplication rule ⌦ is determined by the double-copy kernel Sn. A key
feature is that both the field theory and string theory KLT double-copy maps contain an
identity element : a model whose tree amplitudes double-copy with the L/R tree amplitudes
of single-copy models to give those same L/R amplitudes as output. This is summarized as
the KLT algebra

L ⌦ 1 = L, 1⌦ R = R, 1⌦ 1 = 1 . (1.3)

We refer to the identity element as the zeroth copy [3]. Intuitively, changing the multiplica-
tion rule (1.3) also changes the identity element, and vice versa. In fact, the tree amplitudes
of the zeroth copy uniquely determine the double-copy kernel.
To systematically explore generalizations of KLT, our fundamental assumption is that any
KLT double-copy has an identity element 1 that satisfies (1.3). Hence, the first question
above can be restated as:

• What are the allowed choices of zeroth copy?

The zeroth copy must have a certain double color-structure, however, not every such choice
of local field theory defines a valid double-copy multiplication rule: important constraints
arise when we demand the absence of spurious singularities in the double-copy amplitudes.
In other words, non-trivial conditions come from requiring that the output of the double-
copy are indeed tree amplitudes of a local field theory.
In this paper, we develop a systematic analysis of the constraints imposed by the KLT
algebra (1.3) and locality on generalizations of the double-copy kernel. In short, the identity
1 ⌦ 1 = 1 becomes a bootstrap equation for the double-copy kernel while the two other
conditions L⌦1 = L and 1⌦R = R determine the generalizations of the Kleiss-Kuijf (KK)
[4] and Bern-Carrasco-Johansson (BCJ) [5] relations.
Let us outline the ideas and some results before diving more into the details. For the field
theory KLT map, the identity element is the cubic bi-adjoint scalar theory (BAS) with
Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

�
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
cc0

, (1.4)

in which the scalar field �
aa0 carries adjoint indices of two groups, say U(N) and U(N 0).

We sometimes call this the BAS zeroth copy. Furthermore, the string theory zeroth copy [6]
can, in the small ↵0-expansion, be viewed as the BAS model with a very particular selection
of higher-derivative corrections, all with coefficients completely fixed in terms of ↵0.
This motivates the study of the class of double-copy kernels that arise from the most general
deformations of the BAS zeroth copy model with local higher-derivative (h.d.) operators,

LBAS+h.d. = LBAS +
X

i

ci

⇤�i�d
Oi . (1.5)
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Here Oi ⇠ @
2k(�aa0)n are local scalar operators of dimension �i and the constants ci are

the Wilson coefficients.
The KLT kernel bootstrap equation 1⌦1 = 1 can be understood as a rank-condition on the
matrix of doubly color-ordered zeroth-copy tree amplitudes; we elaborate on this in Sections
1.2 and 2.1. The rank is (n�3)! for n-particle scattering in the BAS and string zeroth copies
[6], but for other zeroth copies it could in principle be different. We argue that in the context
of BAS+h.d., the rank of doubly color-ordered amplitudes should be independent of ⇤; in
particular if the rank changed as ⇤ ! 1, the double-copy procedure would be singular.
Since this is the limit in which the UV physics decouples, our observation is that for finite ⇤

the rank of the associated matrix of scattering amplitudes must be the same as for the BAS
zeroth copy. We call rank (n � 3)! minimal rank. Higher-derivative operators generically
increase the rank, so imposing the minimal rank condition requires delicate cancellations
between contributions of higher-dimension operators with an associated infinite set of non-
trivial constraints on the Wilson coefficients ci.
Our analysis shows that the leading higher-dimension operators compatible KLT bootstrap
equations are
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identity; a feature familiar from the strings zeroth copy which has aL/⇤4 = aR/⇤4 =

�1/(6⇡↵0). The generalized double-copy kernel, based on (1.6), has arbitrary coefficients
for the L and R sectors and it therefore treats the L and R sector single-copy amplitudes
differently; in this sense, it can be thought of as a “heterotic”-type double-copy. We have
solved for the double-copy kernel up to and including 16-derivative order at 4-point and
6-derivative order at 5-point. These results are valid in general d � 4 dimensions.
We apply the generalized double-copy to several examples, specifically 4d Yang-Mills theory
with higher-derivative terms (YM+h.d.) up to 10-derivative order. Specifically, up to 4-
derivative order, we find that the most general L sector single-copy model of non-abelian
gauge bosons, compatible with the generalized KK and BCJ relations, takes the form
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where the ellipsis indicates that the complete effective action contains higher-derivative
operators of the form D

k
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n with k > 0 and n � 4. In (1.7), F
4
ss denotes the linear
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Double-copy of YM + h.d.Double-copy

1⌦ R = R L⌦ 1 = L (30)

AL⌦R4 = AL4[1234]S4[1234|1243]A
R
4 [1243] = �

1

g2
sAL4[1234]A

R
4 [1243]

(31)

AL⌦R4 = AL4[1234]S4[1234|1234]A
R
4 [1234] = �

1

g2
su

t
AL4[1234]A

R
4 [1234]

(32)

AR4 [1243] =
u

t
AR4 [1234] (33)

A4[1a12a23a34a4 ]tr(Ta1Ta2Ta3Ta4) (34)
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Impose generalized KKBCJ relations  <=>

on a general ansatz for MHV 4-pt YM + h.d. to find

YM at 4-Point

A local ansatz for the 4-point Yang-Mills amplitude is then,

A4[1
+2+3�4�] =

[12]2h34i2
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F 3ut
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r
u
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#
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4
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◆

�
e
L
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⇤6
t +O
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⇤8

◆�
.
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Usual YM Pole term w/ two tr F3 verticestr F4
tr D2F4

Its coefficient is controlled by the generalized KLT kernel

And similarly for the R sector.



Gen. KLT

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)
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FT KLT

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(45)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(46)

with new gen. kernel

YM: trF2 � trF3 � trF4 1� trD2F4 1�1� trD4F4 1�2� . . .
(47)

�PT: tr�2�n � tr�4�4 2� tr�6�4 1�1�

tr�8�4 1�2� tr�10�4 1�2� . . .
(48)
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Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:  

For YM + higher-derivatives

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel. 
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Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:  

For YM + higher-derivatives

For chiPT + higher-derivatives

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel. 
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For FIXED choice of kernel, this LINKS the coefficients of              with that of one of the                   operators. 
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Double-copy of YM + h.d. ->    Gravity+ + h.d.Step 3: Corrections to Gravity

Double-copying the YM EFT amplitudes with themselves give us a gravity
EFT amplitude,
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Single-copy (YM) : Larger class of models can be double-copied using
the new KLT kernel

�

Double-copy (GR) : Same corrections are produced regardless of
which KLT kernel is used

[Chi, Herderschee, Elvang, Jones, SP]

Shruti Paranjape KLT Bootstrap University of Michigan 19 / 22

Usual Einstein gravity Pole term from exchanges of 
dilaton and axion!

local R4 contribution 

In the field theory or strings double copy, there is less freedom in the coefficient of R4.

vanishes in string theory

The result of the double-copy: in all cases checked, same operators produced but with shifts of their coefficients. 



Higher-point
Necessary to test consistency by going to higher point:

What if the KLT bootstrap at 5-point further fixed some of the 4-point kernel coefficients ai,j?
(Then we’d be in trouble!)

For n=5 =>   (n-1)! = 4! = 24   distinct orderings. 

Cyclic symmetry + momentum relabelings =>  parameterized by 8 functions gi(s,t), i=1,2,…,8.

We impose the rank  (n-3)! = 2  conditions equivalent to                      on this 24x24 system and solve.

Found consistent solution for the bootstrapped 5pt (BAS+h.d.) amplitudes; no constraints placed on 4-pt coefficients;
in fact, up to quadratic order in Mandelstams, the amplitudes are completely fixed by 4-pt input. 

Tested for 5pt +++++ YM+h.d. 

(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is

– 3 –



Summary
• We have investigated the algebraic structure of the KLT multiplication rule.
• The KLT algebra gives a systematic way to generalize the double-copy in the KLT form:

the double-copy bootstrap.
• Solved as BAS + most general h.d. terms for minimal rank (n-3)! at 4- and 5-point.
• Tested in examples with YM and chiPT.
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KLT Bootstrap 
EquationGeneralize the KKBCJ / monodromy relations



Outlook
1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR

amplitude, but with some shifted Wilson coefficients: why?  
small multiplicity / low-enough dim effect? or something more fundamental?
=>  Currently studying similarity transformations from ``hybrid” double-copy kernels, finding interesting 

algebraic structures. [Alan Chen & H.E., work in progress].

2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction? 
- Is minimal rank (n-3)! fundamental? 
- Initiated study of non-minimal rank examples in our paper, more to do.



Outlook
1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR

amplitude, but with some shifted Wilson coefficients: why?  
small multiplicity / low-enough dim effect? or something more fundamental?
=>  Currently studying similarity transformations from ``hybrid” double-copy kernels, finding interesting 

algebraic structures. [Alan Chen & H.E., work in progress].

2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction? 
- Is minimal rank (n-3)! fundamental? 
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the BCJ formulation 
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)] 

=> their BCJ-form => BAS + h.d. also with rank (n-3)!   (in the examples we have checked)
=> have translated a few examples to their form to ours
The relationship should be studied more. 



Example of exact kernel solution 

Here Oi ⇠ @
2k(�aa0)n are local scalar operators of dimension �i and the constants ci are

the Wilson coefficients.
The KLT kernel bootstrap equation 1⌦1 = 1 can be understood as a rank-condition on the
matrix of doubly color-ordered zeroth-copy tree amplitudes; we elaborate on this in Sections
1.2 and 2.1. The rank is (n�3)! for n-particle scattering in the BAS and string zeroth copies
[6], but for other zeroth copies it could in principle be different. We argue that in the context
of BAS+h.d., the rank of doubly color-ordered amplitudes should be independent of ⇤; in
particular if the rank changed as ⇤ ! 1, the double-copy procedure would be singular.
Since this is the limit in which the UV physics decouples, our observation is that for finite ⇤

the rank of the associated matrix of scattering amplitudes must be the same as for the BAS
zeroth copy. We call rank (n � 3)! minimal rank. Higher-derivative operators generically
increase the rank, so imposing the minimal rank condition requires delicate cancellations
between contributions of higher-dimension operators with an associated infinite set of non-
trivial constraints on the Wilson coefficients ci.
Our analysis shows that the leading higher-dimension operators compatible KLT bootstrap
equations are

L � �
aL + aR
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f
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f
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(1.6)

The presence of the symmetric tensors d
abc = Tr

⇥
T
a
{T

b
, T

c
}
⇤

modify the U(1) decoupling
identity; a feature familiar from the strings zeroth copy which has aL/⇤4 = aR/⇤4 =

�1/(6⇡↵0). The generalized double-copy kernel, based on (1.6), has arbitrary coefficients
for the L and R sectors and it therefore treats the L and R sector single-copy amplitudes
differently; in this sense, it can be thought of as a “heterotic”-type double-copy. We have
solved for the double-copy kernel up to and including 16-derivative order at 4-point and
6-derivative order at 5-point. These results are valid in general d � 4 dimensions.
We apply the generalized double-copy to several examples, specifically 4d Yang-Mills theory
with higher-derivative terms (YM+h.d.) up to 10-derivative order. Specifically, up to 4-
derivative order, we find that the most general L sector single-copy model of non-abelian
gauge bosons, compatible with the generalized KK and BCJ relations, takes the form

LL = �
1

4
F
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aµ⌫ +
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F 3
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f
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abcd(F 4

ss)
abcd + . . . , (1.7)

where the ellipsis indicates that the complete effective action contains higher-derivative
operators of the form D

k
F

n with k > 0 and n � 4. In (1.7), F
4
ss denotes the linear
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The double-copy can be considered a map

(theory)L ⌦ (theory)R = (theory)L⌦R , (1.2)

in which the multiplication rule ⌦ is determined by the double-copy kernel Sn. A key
feature is that both the field theory and string theory KLT double-copy maps contain an
identity element : a model whose tree amplitudes double-copy with the L/R tree amplitudes
of single-copy models to give those same L/R amplitudes as output. This is summarized as
the KLT algebra

L ⌦ 1 = L, 1⌦ R = R, 1⌦ 1 = 1 . (1.3)

We refer to the identity element as the zeroth copy [3]. Intuitively, changing the multiplica-
tion rule (1.3) also changes the identity element, and vice versa. In fact, the tree amplitudes
of the zeroth copy uniquely determine the double-copy kernel.
To systematically explore generalizations of KLT, our fundamental assumption is that any
KLT double-copy has an identity element 1 that satisfies (1.3). Hence, the first question
above can be restated as:

• What are the allowed choices of zeroth copy?

The zeroth copy must have a certain double color-structure, however, not every such choice
of local field theory defines a valid double-copy multiplication rule: important constraints
arise when we demand the absence of spurious singularities in the double-copy amplitudes.
In other words, non-trivial conditions come from requiring that the output of the double-
copy are indeed tree amplitudes of a local field theory.
In this paper, we develop a systematic analysis of the constraints imposed by the KLT
algebra (1.3) and locality on generalizations of the double-copy kernel. In short, the identity
1 ⌦ 1 = 1 becomes a bootstrap equation for the double-copy kernel while the two other
conditions L⌦1 = L and 1⌦R = R determine the generalizations of the Kleiss-Kuijf (KK)
[4] and Bern-Carrasco-Johansson (BCJ) [5] relations.
Let us outline the ideas and some results before diving more into the details. For the field
theory KLT map, the identity element is the cubic bi-adjoint scalar theory (BAS) with
Lagrangian

LBAS = �
1

2

⇣
@µ�

aa0
⌘2

�
g

6
f
abc

f̃
a0b0c0

�
aa0

�
bb0
�
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, (1.4)

in which the scalar field �
aa0 carries adjoint indices of two groups, say U(N) and U(N 0).

We sometimes call this the BAS zeroth copy. Furthermore, the string theory zeroth copy [6]
can, in the small ↵0-expansion, be viewed as the BAS model with a very particular selection
of higher-derivative corrections, all with coefficients completely fixed in terms of ↵0.
This motivates the study of the class of double-copy kernels that arise from the most general
deformations of the BAS zeroth copy model with local higher-derivative (h.d.) operators,

LBAS+h.d. = LBAS +
X

i

ci

⇤�i�d
Oi . (1.5)
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Here Oi ⇠ @
2k(�aa0)n are local scalar operators of dimension �i and the constants ci are

the Wilson coefficients.
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of BAS+h.d., the rank of doubly color-ordered amplitudes should be independent of ⇤; in
particular if the rank changed as ⇤ ! 1, the double-copy procedure would be singular.
Since this is the limit in which the UV physics decouples, our observation is that for finite ⇤
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zeroth copy. We call rank (n � 3)! minimal rank. Higher-derivative operators generically
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Exact minimal rank solution at 4pt and 5pt 

• L sector unmodified BAS KKBCJ relations
• R sector has modified KKBCJ relations

(see (18) of [9] for a precise definition) that depend on both color tensors and Mandelstam
invariants in such a way that the usual adjoint-type color identities remain true. Taking
such objects, we can construct a natural zeroth-copy by making the usual BCJ replacement
of kinematic numerators with color-factors; at 4-point

m4 =
ĉ
(L)
s ĉ

(R)
s

s
+

ĉ
(L)
t ĉ

(R)
t

t
+

ĉ
(L)
u ĉ

(R)
u

u
. (8.4)

Similar to the output of the KLT bootstrap described in this paper, this can be identified as
a scattering amplitude of a higher-derivative corrected BAS model, though a priori these
two approaches are not obviously related. Curiously, we find that when (8.4) is expressed
as a matrix in L and R color-orderings, the result has rank 1 for all choices of parameters
in the generalized color-weights defined in [9]. Moreover, we have found that up to O

�
p
8
�
,

the parameters in (8.4) can always be chosen to reproduce the general solution to the KLT
bootstrap equations (4.26). In this sense (8.4) provides a closed form solution to the 4-
point bootstrap equations. It remains unknown whether the higher-multiplicity generalized
color-factors described in [10] likewise provide a solution to the bootstrap conditions and
whether a BCJ-like double-copy procedure can be devised to reproduce the results of the
generalized double-copy (5.22) presented in this paper. We leave these and related impor-
tant questions to future work.

Exact Solutions to the Bootstrap Equations: Trunctions
The field theory and string zeroth copies are exact solutions to the rank (n� 3)! bootstrap
equations. We have found generalizations of these that solve the bootstrap equations as
an order-by-order low-energy expansion corresponding to adding higher-derivative terms to
the BAS model. A natural question is if there are new solutions that solve the bootstrap
equations exactly?
To address this, we take the 4-point solution (4.26)-(4.27) as the starting point and examine
if the low-energy expansion truncates for certain choices of coefficients ai,j , i.e. if there are
choices of a finite set of non-zero coefficients such that the rank of the 6⇥6 matrix is
exactly 1, rather than solving this constraint order by order in the low-energy expansion.
Interestingly, such solutions do exist!
For example, setting a1,1 = 0 or a1,1 = a1,0 (equivalently, aL = 0 or aR = 0) while taking
all other ai,j = 0 is an exact solution to the f2 condition (4.10), moreover, they give local
solutions for f1: specifically for aL = 0, we have

f1(s, t) = �
g
2
t

su
� 4

aR
⇤4

t , f2(s, t) = �
g
2

s
� 4

aR
⇤4

u . (8.5)

When this is used as input at 5-point, one finds that the 24⇥ 24 matrix indeed has rank 2,
so the solution truncates consistently; this is true for both solutions aL = 0 and aR = 0.16

When the contribution from aR in (8.5) is regarded as a perturbation of the BAS model and
16Similarly, one can include the contribution with coefficient a2,0 with no further restrictions in the 4-

and 5-point bootstrap. At higher-orders, one finds that certain choices of the ai,j ’s admit finite truncations.
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1.3 Locality Constraints

The requirements of locality impose additional constraints on zeroth-copy solutions to the
bootstrap equation 1⌦ 1 = 1. Moreover, for a given kernel, one must make sure that the
result of the double-copy represents the tree amplitude of some local theory; it must have
the correct simple poles and factorize correctly on each of them, and it must be free of
spurious poles.
Even in the familiar case of the field theory KLT formula, the statement that the double-
copy amplitudes contain the expected physical factorization singularities, and only those
singularities, is not manifest. The problem is three-fold: first, expressions such as (1.1)
naively contain double-poles from the product of single-copy amplitudes with singularities
in the same channel. Second, zeroes of det(mn) may naively produce nonphysical or spurious
singularities in the double-copy via poles in the kernel. Third, since we sum over a restricted
set of (n�3)! orderings, the combined set of singularities in the L and R single-copies could,
in general, not contain all the expected singularities of the double-copy amplitude.
It is instructive to see explicitly how these problems are resolved in the field theory KLT
formula. As a simple example, consider the product of YM tree amplitudes

A
L
4 [1234]A

R
4 [1234] . (1.24)

It has double poles in the s- and u-channels, but is missing the t-channel singularity which
must be present if the double-copy is a model of gravity with graviton exchange in every
channel. However, in the actual field theory KLT formula (1.9), the product (1.24) is
multiplied by the kernel

S4[1234|1234] = (m4[1234|1234])
�1 = �

su

g2t
, (1.25)

which cures all the problems: it reduces the s- and u-channel double-poles to simple poles,
and while det(m4) = �g

2
t/(su) does have a zero at t = 0, rather than generating a spurious

singularity, it provides precisely the “missing” t-channel pole in the double-copy!
In general, to avoid spurious or higher-order singularities, the correspondence between zeros
of determinants and “missing” poles must persist at multiplicity n and for all basis choices
of (n � 3)! color-orderings. The fact that there exists any model with this property is
something of a miracle! It is incredible that such an intricate structure can be provided by
the mundane-looking BAS model.2

To illustrate the delicate nature of the double copy, let us analyze the pole structure again
after making an innocent-looking deformation to the BAS Lagrangian by adding to it

�L = � d
abcd

d̃
a0b0c0d0

�
aa0

�
bb0
�
cc0
�
dd0

, (1.26)

2As a cubic scalar model, its potential is unbounded from below and there is no sign in the Lagrangian
that this model should play as fundamental a role as it does for the double-copy. The BAS model does
however arise naturally from the BCJ or CHY formulations of the double copy by replacing the kinematic
numerator factors in a single-copy amplitude in color-kinematic form by a set of color-factors.
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Kernel

YM + h.d.

the kernel is expanded in small sij/⇤2, no spurious poles arise, because this is just like the
general perturbative solution in Section 4.3. However, if we attempt to regard the solution
(8.5) as an exact solution with no expansion in sij/⇤2, we have to beware of potential
spurious poles in the kernel (e.g. in 1/f1(s, t)). It is clear that f1 in (8.5) in addition to
the zero at t = 0 (which provides the missing t-channel pole in the double-copy) also has
a zero that cannot be a physical pole (it is not even a massive pole). This means that
amplitudes A

L/R
4 that are double-copied with this kernel must have zeros that cancel the

spurious poles; this is similar to the discussion of potential cancellation of spurious poles in
Section 7.3. Something nice can indeed happen to cancel these poles. To see this, consider
the L and R amplitudes for YM+h.d. in (5.15) and (5.17). Setting aL = 0 (i.e. a1,1 = a1,0),
gF 3 = 0 and all other higher-derivative contributions to zero, one finds

A
L
4 [1

+2+3�4�] = [12]2h34i2
(gL

YM)2

su
, A

R
4 [1

+2+3�4�] = (gR
YM)2[12]2h34i2


1

su
+

4aR
g2⇤4

�

(8.6)
When these amplitudes are double-copied using (5.22) with f1 given by (8.5), the entire aR

dependence cancels and the result is simply the pure Einstein gravity amplitude

M4(1
+2+3�4�) = 

2 [12]
4
h34i4

stu
. (8.7)

Here (5.6) was used to identify . In a sense this is a version of the similarity transformations
(8.1) at work for a finite (i.e. non-perturbative) modification of the zeroth and single-copy
models. In particular, this example shows that for the choice of kernel given by (8.5), it
possible at 4-point to double-copy YM with YM+F

4 to give Einstein gravity
p
�gR without

higher-derivative terms!
Finally, let us note that the solution (8.5) can be written in the form (8.4) with manifestly
local generalized color-factors ĉs/t/u. The exact solutions to the KLT bootstrap equations,
their relation to the BCJ-like formulation [9, 10], and the issues of spurious poles deserve
further investigation.

Exact Solutions to the Bootstrap Equations: Z-theory
Any function of the form

f
ansatz
2 (s, t) =

1

s

G1(s)G2(t)

G3(s+ t)
, (8.8)

for general G1, G2, and G3 solves the 4-point KLT bootstrap equation (4.10). Equation
(8.8) is not the most general ansatz to the bootstrap equations, but is curious nonetheless.
For example, the string solution is of the form (8.8) with G2(t) = G3(s + t) = 1 and
G1(s) = s/ sin(↵0

s). Furthermore, there is another solution to (8.8) motivated by string
theory; the double partial amplitudes of non-abelian Z-theory take the form of (8.8) [62–64]:

Z1234[1243] =
1

s

�(1 + ↵
0
s)�(1 + ↵

0
u)

�(1 + ↵0s+ ↵0u)
. (8.9)
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Double-copy:

the kernel is expanded in small sij/⇤2, no spurious poles arise, because this is just like the
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So: GR = YM x (YM + F4)     !!!



Outlook
1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR

amplitude, but with some shifted Wilson coefficients: why?  
small multiplicity / low-enough dim effect? or something more fundamental?
=>  Currently studying similarity transformations from ``hybrid” double-copy kernels, finding interesting 

algebraic structures. [Alan Chen & H.E., work in progress].

2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction? 
- Is minimal rank (n-3)! fundamental? 
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the BCJ formulation 
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)] 

=> their BCJ-form => BAS + h.d. also with rank (n-3)!   (in the examples we have checked)
=> have translated a few examples to their form to ours
The relationship should be studied more. 

4) Positivity constraints? EFT-hedron? UV completability? What makes the strings kernel special?



Outlook

5) The double-copy also has a celestial version   Casali + Puhm 2007

Is there a celestial formulation of the double-copy bootstrap? 
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