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Celestial Amplitudes from Soft Limits

When p! — ep” with € —0

g0 g(1) S
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©) ) @) EFT operators
SO St S oy Jones, Naculich, HE (2016)
Gravity Ai]fxlf = ( 3= T —5 + )An n +O(€) _ _
€ € € Motivated by the question of
/' v loop-corrections:
_ The effect of massive particles
Weinb 1965 :
einberg ( ) Cachazo & Strominger (2014) are encoded in EFT operators.

The soft factors are UNIVERSAL.




Divergent Soft Limit Master Formula

In 4d, the universal soft limits can be derived from a Master Formula Jones, Naculich, HE (2016)
) gm, [sk]2=—2(X s)1=2 AP (2) 0
An—Fl(ZaE): . +O(€) aEhs_hk_hP+1
6Za—1<8k>2—a(1 _z <Xk7>)
k,hp,c e (sk)
where we use 4d spinor helicity formalism p = —|p)[p| and a positive-helicity particle s is taken soft holomorphically:
ps = —|s)[s| = —¢[s)[s| with |s) —¢ls) and |s] = [s]

The formula is derived from very basic principles (locality & unitarity)

S /\4
- Only cubic interactions can give rise to divergent soft limits >(> Kn/\

- Tree amplitudes factorize on their simple poles k
- 3-pt amplitudes of massless particles are uniquely fixed by the particle helicities h

Above X is a reference spinor and z is an auxiliary variable.




Divergent Soft Limit Master Formula

There can be no poles at z=0

=>

: Jones, Naculich, HE (2016)
* charge conservation

* equivalence principle

* Massless spin > 2 cannot couple consistently gravitons

* Massless spin 3/2 must couple supersymmetrically to gravitons

Well-known statements, but derived from same compact formula.

The order O(z°) terms in the Master Formula
=>
the universal soft theorems
and
specify precisely which 3-field EFT operators contribute at subleading order to the soft photon theorem
and at subsubleading order to the soft graviton theorem




Soft behavior

ﬁnder the holomorphic shift of a massless soft particle, \

ps = —|s)[s| with |s) — €|s)

a (tree) amplitude generally behaves as

Q/here O is the soft weight

and [s] > |3

)

/ We saw divergent soft limits

Photons: o = —2
Gravitons: 0 = —3
Also

\ Gluons: o= —2
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Soft behavior

m\der the holomorphic shift of a massless soft particle, \ / We saw divergent soft limits \

ps = —|s)[s| with [s) = €ls) and |s] — |s] Photons: o = —2

a (tree) amplitude generally behaves as Gravitons: o = —3
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where O is the soft weight / \ Gluons: o= —2 /

When o > 0 the amplitude has vanishing soft limits.
Often (but not always) the case for Goldstone bosons (Adler zeros)

Examples:  NLSM (such as chiral perturbation theory) o = 1
DBI (Dirac-Born-Infeld) 0o = 2

k Special Galileon o = 3 /
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where O is the soft weight / \ Gluons: o= —2 /

When o > 0 the amplitude has vanishing soft limits. \ / \
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Examples:  NLSM (such as chiral perturbation theory) o = 1




Soft behavior

m\der the holomorphic shift of a massless soft particle, \ / We saw divergent soft limits \

ps = —|s)[s| with |s) —€|s) and |s] — |§] Photons: o

a (tree) amplitude generally behaves as ¢ Gravitons: o =
An — O(€J> Also

—
-3
where O is the soft weight / @ o ZD /

A 4 N

Also models with 0 = 0 e.g.

When o > 0 the amplitude has vanishing soft limits.
Often (but not always) the case for Goldstone bosons (Adler zeros)

Examples:  NLSM (such as chiral perturbation theory) 0 = 1 Born-Infeld (BI)
N=2 SUSY CP1 NLSM

DBI (Dirac-Born-Infeld) 0 = 2 Conformal-DBI

K Special Galileon o0 = 3 j \_ J




Double-Copy

The double-copy maps gluon amplitudes to gravity amplitudes

gravity* = ( Yang-Mills ) x ( Yang Mills)

So.... How can it be that  Gravitons: ¢ = —3 When naively one might have expected

I
|
N

Gluons: O Ograv | =! OYM + OyM




Double-Copy

The double-copy maps gluon amplitudes to gravity amplitudes

gravity* = ( Yang-Mills ) x ( Yang Mills)

So.... How can it be that  Gravitons: ¢ = —3 When naively one might have expected

Gluons: 0 = —2 Ograv | =! OYyM + OvM

Answer: DOUBLE-COPY KERNEL Mandelstam variables

_ 2

Ms =(5A4[1234] A4[1243] -;Epl +pz;2
=(P1 + P3

Ograv — L+ 0ym + oym U=(p1 + pa)?




The double-copy in field theory: KLT form

Color-ordered tree amplitudes

—
ALeR — > " AL[a] Sy[alb] AR[b]
fa,b ‘\

a and b are choices of (n-3)! color orderings

[Kawai-Lewellen-Tye 1985]

KLT kernel a function of Mandelstams
it
Exdpt: Ay = ATM[1234]54[1234|1243]ATM[1243]

with Sa[1234[1243] = —s




It remarkable that this works!!

2

Color-ordered YM gluon amplitudes: A;[1234] has simple poles in s and u, but not t. jj(”l“’z)z
A4[1243] has simple poles in s and t, but not u. u;ig:ii;z

Graviton amplitudes have no color-structure, so M,(1234) has simple poles in the s, t and u channels.

How can a product of A,’s possibly get even the pole structure of M, right??? And avoid double-poles?




It remarkable that this works!!

Color-ordered YM gluon amplitudes: A;[1234] has simple poles in s and u, but not t. jj(”l“’z)z
A4[1243] has simple poles in s and t, but not u. u;ig:ii;z

Graviton amplitudes have no color-structure, so M,(1234) has simple poles in the s, t and u channels.

How can a product of A,’s possibly get even the pole structure of M, right??? And avoid double-poles?
Answer:
Mg :@A4[1234]A4[1243]

My = A4[1234]A4[1234]




It remarkable that this works!!

Color-ordered YM gluon amplitudes: A;[1234] has simple poles in s and u, but not t. jj“’l“’z)z
A4[1243] has simple poles in s and t, but not u. u;ig:ii;z

Graviton amplitudes have no color-structure, so M,(1234) has simple poles in the s, t and u channels.

How can a product of A,’s possibly get even the pole structure of M, right??? And avoid double-poles?

Answer:
M, — 12341A4[1243 The double-copy kernel:
4 @A4[ | Aal ] 1) Eliminates double-poles from A; * A,
2) Provides “missing” poles
My = A4[1234]A4[1234]




Another important aspect of field theory KLT: KKBCJ relations
My = —5A4[1234]A4[1243] and My = —STUA4[1234]A4[1234]
then their difference must be zero, i.e.
0 = A4[1243]— %A4[1234]

And this is true for YM amplitudes.

This is an example of a BCJ (Bern-Carrasco-Johansson) relation at 4-point.

_

Kleiss-Kuijf Trace-reversal: A4[1432] = A4[1234], etc
U(1)-decoupling;: Aq[1234] + A4[1243] + A4[1423] =0, L «KKBCJ relations”

BCJ:  Ag[1234] — £A4[1243] ~0.

7




A n-point

ALeR =" Al[a] S,[alb] AR[b]

a,b D
choices of (n-3)! color orderings 2
and associated KKBCJ relations that ensure that the result of the double-copy is

independent of the choice of (n-3)! color-orders out of the (n-1)! possible in the KLT sum.

Field theory double-copy ‘selection criterium’
In order to be “double-copyable”, a theory’s tree amplitudes must obey the

<KK and BCJ relations.
* 

reduces the number of color-orderings from (n-1)! to (n-2)! reduces the number of color-orderings from (n-2)! to (n-3)!




Which theories obey the field theory KK&BCJ relations?

YM theory v Chiral perturbation theory v

Super YM theory v




Which theories obey the field theory KK&BCJ relations?

YM theory v Chiral perturbation theory v
/ Double-copy multiplication table \
Super YM theory v
FT® FT YM N =4 SYM XPT
YM gravity+ N =4 SG BI
N=4SYM | N=45SG N =8S5G N =4 sDBI
XPT BI N =4 sDBI  sGalileon
NLgR = NLNR \ /
Helicity mapsas  hpgor = hr + hr

Example: all 70 scalars of N=8 supergravity have vanishing

Softnessmapsas oOrLgr = 1+ oL +0R soft limits with o = 1




Does FT x FT -> FT have an identity element? L=L®1l, R=1®R, 1=1®1.




Does FT x FT -> FT have an identity element? L=L®1l, R=1®R, 1=1®1.
Color structure

ALeR =" AL[a] Sy[alb] AR[b]

foomN S

no color single color

structure




Does FT x FT -> FT have an identity element? L=L®1l, R=1®R, 1=1®1.

Color structure

T

ALR = S ALfa] Splalb] ARD] s mn[Y]6] = > mn[y]e] Splal 8] ma[B]0]

/< a,b \ / o,
no color single color
structure

double color-structure




Does FT x FT -> FT have an identity element? L=L®1l, R=1®R, 1=1®1.

Color structure

T

AR = AL[a]Splalb] ARD] ———— M, [Y[0] = Zm" v|a] Sn [ayﬁ man[5|0]
SN S 0
no color single color

structure

double coIor-structure

Spectrum has to map to self
=> only allow a single scalar in double-adjoint rep P

/

Helicity mapsas  hygor = hr + hAr

Softnessmapsas orLgr = 14 oL +O0R

oc=1+4 20 — o= —1
T q§3 interaction




Does FT x FT -> FT have an identity element? L=L®1l, R=1®R, 1=1®1.

Color structure

T

AR = AL[a]Splalb] ARD] ———— M, [Y[0] = Zm" [v|a] Sn | B] man[B]9]

/ a.b \ / &/
no color single color \
structure
@ coIor-stru@
. . Spectrum has to map to self ~
Helicity maps as hL®R = hL + hR => only allow a single scalar in double-adjoint r

Softnessmapsas orLgr = 14 oL +O0R

oc=1+ 20 — o=—1

q53 interaction




Which model is it? L=L®1l, R=1®R, 1=1®1.

¢3 e fabcfa’b’c’¢aa’ ¢bb’¢cc’ ? dabcd'a’b’c’¢aa’¢bb’¢cc’ ?

i foe = To [TO[°, T ae = Tr | T{T", T}




Which model is it?
¢3 araction pabe Fa't( gaa (bt e’ o
i fabe — Ty [T“ T, TC]}
Cubic Bi-Adjoint Scalar model (BAS)

/ 2 ~ 11/ ./ / / /
) b
(8 (baa) gfa Cfabc¢aa ¢bb ¢cc

N | =

LBAs = —

structure
constants

Scalar in adjoint of (say) U(N) and U(N’)

L=L®l, R=1®R, 1=1®1.

/

dabc d’a ¢cc ?

dabc _

]

So that takescareof 1=1®1

What about the rest of the algebra?




The double-copy isamap FT x FT ->FT

The kernel defines the multiplication rule of this map

FT®FT YM N =4 SYM xPT BAS
YM gravity+ N =45SG Bl YM
N=4SYM | N=4S5G N =8SG N =4sDBI | N=4SYM
xPT BI N =4 sDBI sGalileon xPT
BAS YM N =4 SYM xPT BAS
String KLT also has an identity element:
BAS + very specific higher-derivative operators
KLT algebra

L=L®1l, R=1®R, 1=1®1.




Consider now the double-copy in EFT contexts




Which theories obey the field theory KKBCJ relations?

YM theory v Chiral perturbation theory v
Super YM theory v/  Bi-adjoint scalar model v

What about higher-derivative operators in EFTs?

YM: trF2 v trF3 v trF*1X trD?F*1v1X trD*F*1v2x...
T Dixon & Br/(;edel




Which theories obey the field theory KKBCJ relations?
YM theory v Chiral perturbation theory v
Super YM theory v/  Bi-adjoint scalar model v
What about higher-derivative operators in EFTs?

YM: trF2 v trF3 v trF*1X trD?F*1v1X trD*F*1v2x...

XPT: tra2¢” v  tra*e? 2x trab¢* 1v1x trade* 1v2x tralf%*1v2x. ..

Why are some operators allowed and not others? Is this the most general story?




YM + h.d. YM + h.d.

Gravity*" + h.d. \ /

> AR AL[a] Splalb] AR[b]
a,b




YM + h.d. YM + h.d.

Gravity*" + h.d. \‘ /

> AR AL[a] Splalb] AR[b]

a,b /

Include higher-derivative
corrections in the double-copy kernel

\

String theory does that!




String theory KLT

KLT originally came from closed string = (open string)? at tree-level

TN

ALeR = " Al[a] S [alb] AR[b]
,b
i N string KLT kernel

The KLT kernel is deeply linked with the open string amplitudes to ensure correct pole structure in the closed string amps.

Upon expansion in alpha’, this translates to very particular higher-derivative corrections of the kernel:
not the most general options and tuned exactly to the alpha’ corrections in the open string.

1
Example:  S4[1234|1243] = —sin(na’s) = —na’s + —(na’s)3 +. ..

Only s-d d ,hot ; why? :
nly s-dependence, no toru; why Only odd powers in s; why?




ALeR = " Al[a] S,[alb] AR[b]

a,b /‘

[ What are the rules for generalizing the KLT kernel? }

a N

The generalized double-copy kernel should
1) eliminate double-poles

2) provide “missing” poles

3) notintroduce spurious poles

AU )




We propose a new framework for systematically analyzing generalizations
of the double-copy kernel: the KLT bootstrap

2106.12600 with Chi, A. Herderschee, C. Jones, S. Paranjape

The proposal is based on the KLT algebra




KLT algebra

L=L®l, R=1®R, 1=1®1.

\ }
|

KLT Bootstrap
Equation

When the multiplication rule is changed,
the identity element is changed, and vice versa:
The kernel and the identity model are uniquely linked!




KLT algebra

L=L®l, R=1®R, 1=1®1.

\ J | }
| |

KLT Bootstrap
Equation

Generalize the KKBCJ / monodromy relations

\(will not derive here; see 2106.12600)

When the multiplication rule is changed,
the identity element is changed, and vice versa:
The kernel and the identity model are uniquely linked!




Bi-Adjoint Scalar model (BAS) Lons =~ (9u0%) — gf ™ Fo oo o g

Statement BAS = BAS x BAS ---or 1=1®1 can be written as

M, ’7|5 Zmn fﬂa 04’6] mn[5|5] or in matrix form m, = m,,.S,,.m,,

(n-3)! x (n-3)! submatrices

Double-sum over (n-3)! color orderings




. .« . 1 N 2 S Y S AR VRN,
Bi-Adjoint Scalar model (BAS) Lias = =5 (0,0 ) " = gf e fre oo g g

Statement BAS = BAS x BAS ---or 1=1®1 can be written as

mn[y|0] = E :’mn [v|a] Snla|B] mn[B]0] orin matrix form  m, = m,.S,.m,
-1
So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives Sp = (mn)

[ The field theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS amplitudes! }




. .« . 1 N 2 S Y S AR VRN,
Bi-Adjoint Scalar model (BAS) Lias = =5 (0,0 ) " = gf e fre oo g g

Statement BAS = BAS x BAS ---or 1=1®1 can be written as

Mo, ’7|5 E M, 7’(1 [@’6] mn[ﬁw] orin matrixform m, = m,.S5,.m,
-1
So multiplying from both the left and right with inverses of matrices of BAS amplitudes gives Sp = (mn)

[ The field theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS amplitudes! }

4-point case

Tree amplitudes color-ordered wrt both color-factors, e.g.

2 g P $4[1234|1234] = (m4[1234]1234]) " = _;%,

mya[1234]1234] = = + =,  my[1234|1243] = —=— => . :
s u s 54[1234[1243] = (m4[1243]1234]) " = ——;.

g




Strings KLT kernel

[ The string theory KLT kernel is the inverse of an (n-3)! x (n-3)! submatrix of BAS+ (specific h.d. ) amplitudes! }

[Mizera]
(o) 1 1 I T3
1234|1243 = ————— = — - — — —
my [1234]1243] sin(wa/s) rals 607 360(a ms)" S+
V\
BAS

How to generalize the double-copy kernel?

Which terms are allowed in BAS+h.d.?




KLT bootstrap

n=4 => (n-1)! = 6 single-trace color-orderings: 1234, 1243,1324, 1342, 1423, 1432

Recallthat 1 =1® 1 means M, = M,.S,.m, and this implies Sy = (mn)_1

Written out for rank (4-3)!=1 at 4-point means, for example:
KLT bootstrap equation

mn[1234|1234] = m,[1234|1243] mn[12431234]

m4[1243]1243]

—  m,[1234]1234]m,[1243]1243] — m,[1234|1243]m,[1243|1234] = 0




KLT bootstrap

n=4 => (n-1)! = 6 single-trace color-orderings: 1234, 1243, 1324, 1342, 1423, 1432

Recallthat 1 =1® 1 means M, = M,.S,.m, and this implies Sy = (mn)_1

Written out for rank (4-3)!=1 at 4-point means, for example:
KLT bootstrap equation

mn[1234|1234] = m,[1234|1243] mn[12431234]

m4[1243]1243]

—  m,[1234]1234]m,[1243]1243] — m,[1234|1243]m,[1243|1234] = 0

So this condition is that a 2x2 minor of the 6x6 matrix of m,[a|b] amplitudes have to vanish:

ma[1234/1234]  m4[1234|1243]
ma[1243|1234]  m4[1243|1243]

Similarly, all 2x2 minors must vanish! But that’s just saying that we must have a rank 1 system. Ahal!




KLT bootstrap at 4-pt

ma[1234]1234]
m4[1234]1243

[ with  fi(s,t) = fi(—=s —t,t),
[
[
[
[
[

1234(1324 = —t,t
i ’ f2( ° ) . ——————— Cyclic symmetry & momentum relabeling
my = fa(s,1),
my[1234]1423] = f5(s,t) = fa(—s —t,1),

] (s,1)
] (s,1)
| = f3(s:t)
1234]1342] = f4(s,t)
] (s, 1)
] (s,1)

ma[1234]1432 with  fs(s,t) = fo(—s —t,1),

6 x 6 matrix for these amplitudes has rank 6.

4-point KLT bootstrap equations
Imposing the vanishing of all 2x2 minors => /

fa(s,t) fo(—s —t,s) Solved by BAS and the strings
fa(t, s) | fels: ) = fils 1) BAS+h.d. amplitudes.

f1 (8, t) =

fa(s,t) fa(=s —t,8) fa(t, —s — t) = fa(t, 8) fa(—5 — t, 1) fa(s, —s — 1).




Most general rank (n-3)! kernel at 4-point

272 N
; . _ & A ak,r r k—r
Write the most general ansatz for f5: B(s,t) = — ; + ; (2 oS t
= r= s

Solve the KLT bootstrap equations order by order. Impose locality. Result:

2/\2
f2(57 t) - - g

1 a2
+ p(al,ot +a115) + /\—;t(s + 1)

1 1
+ F [33,01“3 + 337151'2 + 3372521' + 337353} + O (E)

Strings result recovered for
New double-copy kernel much more general.

1 7
a1 =—— az3=———\,...
1,1 6 3,3 360’

and all other a;;=0




4-point result as BAS + h.d. Lagrangian
a

r - 1 ( 9, ¢aa’)2 9 fabc Fa¥e gaal g o

a T OR qbe ca:a’a:’c” aa’ N\ ec! !
—or S T (9,00 (0" )

il adalal / / / ’ abc — Qa b C
A4fabacfcd;cdabac dcd ( uqbaa )(bbb (au¢cc )(bdd d Tr [T {T ,T }i|

k A4 dabxdcd:n fa’b’a: fc’d’ac’ (au(baa')qsbb’ (au¢cc')¢dd’ +

Observations

)

* Thereisno dabcdalblc/¢aa,¢bbl¢cc/ term: it does not solve the rank 1 bootstrap equations.
« Thereisno ¢* term; does not solve the rank 1 bootstrap equations

* The d?c terms modify the U(1) decoupling identities that are part of the field theory KK relations
and generalize the strings monodromy relations.

* Known strings kernel has a;=ag. The generalization allows “heterotic”-type double-copy.




Double-copy of YM + h.d.

Impose generalized KKBCJ relations <=> 1aR=R L®1l-=L

on a general ansatz for MHV 4-pt YM + h.d. to find

Af[17273747] =[121(34)° [M -~ ((gYLM)2aL * (g#)f) o <%) ]

su N4 g2 MO
/ / \ \ tr D2F4
Usual YM Pole term w/ two tr F3 vertices

-

Its coefficient is controlled by the generalized KLT kernel

And similarly for the R sector.




Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:

For YM + higher-derivatives

FTKIT YM: trF2 v trF3 v trF*1X trD?F*1v1X trD*F*1v2X...
Gen.KLT YM: trF2 v trFP v trF*1v trD?F*1v1X trD*F*1v2v ...

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.




Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:

For YM + higher-derivatives

FTKIT YM: trF2 v trF3 v trF*1X trD?F*1v1X trD*F*1v2X...
Gen.KLT YM: trF2 v trFP v trF*1v trD?F*1v1X trD*F*1v2v ...

For chiPT + higher-derivatives

FTKLT XPT: tra2e” v tro*e* 2X trab¢* 1v1x troSe* 1v2x trotV* 1v2x
Gen.KIT xPT: tra2¢" v tra%¢? 2X trab¢* 1,1, tro®e* 12X tra'®* 12~

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.




Summarizing the difference between admissible operators in ordinary field theory KLT vs. the new generalized KLT:

For YM + higher-derivatives

FTKIT YM: trF2 v trF3 v trF*1X trD?F*1v1X trD*F*1v2X...
Gen.KLT YM: trF2 v trFP v trF*1v trD?F*1v1X trD*F*1v2v ...

For chiPT + higher-derivatives

FTKLT XPT: tra2e” v tro*e* 2X trab¢? tvilx troSe* 1v2x trotV* 1v/2x
Gen.KIT xPT: tra2¢" v tra%¢? 2X trab¢* 1,1, tro®e* 12X tra'®* 12~

Green checkmark: operator allowed with arbitrary coefficient.
Blue checkmark: operator allowed with coefficient fixed by the parameters in the KLT kernel.

For FIXED choice of kernel, this LINKS the coefficients of tr F* with that of one of the tr 3%¢* operators.




Double-copy of YM + h.d. -> Gravity* + h.d.

Usual Einstein gravity Pole term from exchanges of
dilaton and axion!

M, (17273747) =[12]*(34)* /
% [ . (gym)’(gvw)’ 1 n ((gem)?(85)? + (g8)?(85)?) 1
g2N\2 stu g2/\6 S

1 [ (gvm)*(g¥m)° 1
+ F( o P M a50 + ?((gf,\,l)ze?f’l + (gém)%ﬁl)

1
+0 (—1 ) ] \ \
A0 : L
vanishes in string theory

local R# contribution

In the field theory or strings double copy, there is less freedom in the coefficient of R4.

The result of the double-copy: in all cases checked, same operators produced but with shifts of their coefficients.




Higher-point
Necessary to test consistency by going to higher point:

What if the KLT bootstrap at 5-point further fixed some of the 4-point kernel coefficients a;;?

Forn=5 => (n-1)! =4!=24 distinct orderings.
Cyclic symmetry + momentum relabelings => parameterized by 8 functions g(s,t), i=1,2,...,8.
We impose the rank (n-3)! =2 conditions equivalentto 1 =1 ® 1 on this 24x24 system and solve.

Found consistent solution for the bootstrapped 5pt (BAS+h.d.) amplitudes;
in fact, up to quadratic order in Mandelstams, the amplitudes are completely fixed by 4-pt input.

Tested for 5pt +++++ YM+h.d.




Summary

* We have investigated the algebraic structure of the KLT multiplication rule.
* The KLT algebra gives a systematic way to generalize the double-copy in the KLT form:

the double-copy bootstrap.
* Solved as BAS + most general h.d. terms for minimal rank (n-3)! at 4- and 5-point.
* Tested in examples with YM and chiPT.

C h

L=L®1l, R=1®R, 1=101.

\ J | }
| !

KLT Bootstrap

Generalize the KKBCJ / monodromy relations

Equation
AU /




Outlook

1) To the orders checked, the generalized double-copy produces the same h.d. operators in the double-copy LxR
amplitude, but with some shifted Wilson coefficients: why?
small multiplicity / low-enough dim effect? or something more fundamental?
=> Currently studying similarity transformations from “hybrid” double-copy kernels, finding interesting
algebraic structures. [Alan Chen & H.E., work in progress].

2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank (n-3)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.
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2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank (n-3)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the BCJ formulation
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)]
=> their BCJ-form => BAS + h.d. also with rank (n-3)!
=> have translated a few examples to their form to ours
The relationship should be studied more.




Example of exact kernel solution
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amplitude, but with some shifted Wilson coefficients: why?
small multiplicity / low-enough dim effect? or something more fundamental?
=> Currently studying similarity transformations from “hybrid” double-copy kernels, finding interesting
algebraic structures. [Alan Chen & H.E., work in progress].

2) The method is more than BAS+hd. It is a framework for exploring more general forms of the double-copy:
- Does there exist other form of the double-copy without the cubic BAS interaction?
- Is minimal rank (n-3)! fundamental?
- Initiated study of non-minimal rank examples in our paper, more to do.

3) Also, recent work on higher-derivative terms in the color-factors in the BCJ formulation
[Carrasco, Rodina, Zekioglu, Z.Yin (2019+2021)]
=> their BCJ-form => BAS + h.d. also with rank (n-3)!
=> have translated a few examples to their form to ours
The relationship should be studied more.

4) Positivity constraints? EFT-hedron? UV completability? What makes the strings kernel special?




Outlook

5) The double-copy also has a celestial version Casali + Puhm 2007

Is there a celestial formulation of the double-copy bootstrap?
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