## Scalar Leptoquark Matching onto SMEFT A functional approach

Athanasios Dedes

Department of Physics University of Ioannina, Greece

Workshop on BSM physics, Corfu 2021

- 1 Introduction to Functional Matching
- **2** Universal One-Loop Matching for Scalar Leptoquarks
- **3** Demonstration: the LQ-model  $S_1 + \tilde{S}_2$
- 4 Conclusions

#### 1 Introduction to Functional Matching

Our Universal One-Loop Matching for Scalar Leptoquarks

**③** Demonstration: the LQ-model  $S_1 + \tilde{S}_2$ 

Occusion

• EFT is a robust way in searching for BSM physics Weinberg's QFT Vol.1; Callan, Coleman, Wess and Zumino, Phys. Rev. (1969)

- EFT is a robust way in searching for BSM physics Weinberg's QFT Vol.1; Callan, Coleman, Wess and Zumino, Phys. Rev. (1969)
- Heavy fields are integrated out from a *known* UV-theory Appelquist and Carazzone, PRD (1975)

- EFT is a robust way in searching for BSM physics Weinberg's QFT Vol.1; Callan, Coleman, Wess and Zumino, Phys. Rev. (1969)
- Heavy fields are integrated out from a *known* UV-theory Appelquist and Carazzone, PRD (1975)
- Information about the UV-theory encoded in higher dimensional operators at lower energies

Buchmuller, Wyler, NPB (1985); Grzadkowski, Iskrzynski, Misiak and Rosiek JHEP (2010)

- EFT is a robust way in searching for BSM physics Weinberg's QFT Vol.1; Callan, Coleman, Wess and Zumino, Phys. Rev. (1969)
- Heavy fields are integrated out from a *known* UV-theory Appelquist and Carazzone, PRD (1975)
- Information about the UV-theory encoded in higher dimensional operators at lower energies
   Buchmuller, Wyler, NPB (1985); Grzadkowski, Iskrzynski, Misiak and Rosiek JHEP (2010)
- Until recently, the matching technique was mainly Feynman diagrammatic

Bilenky and Santamaria, NPB (1994); J. de Blas, Criado, Perez-Victoria, Santiago JHEP (2018); Gherardi, Marzocca, and Venturini JHEP (2021)

- EFT is a robust way in searching for BSM physics Weinberg's QFT Vol.1; Callan, Coleman, Wess and Zumino, Phys. Rev. (1969)
- Heavy fields are integrated out from a *known* UV-theory Appelquist and Carazzone, PRD (1975)
- Information about the UV-theory encoded in higher dimensional operators at lower energies
   Buchmuller, Wyler, NPB (1985); Grzadkowski, Iskrzynski, Misiak and Rosiek JHEP (2010)
- Until recently, the matching technique was mainly Feynman diagrammatic

Bilenky and Santamaria, NPB (1994); J. de Blas, Criado, Perez-Victoria, Santiago JHEP (2018); Gherardi, Marzocca, and Venturini JHEP (2021)

Last decade, an old functional matching technique [Gaillard, NPB (1986), Cheyette NPB (1988), L-H Chan, PRL (1986)] has seen a renewed interest Henning, Lu and Murayama, JHEP (2016,2018)

 First Universal results for the One-Loop Effective Action (UOLEA) [Drozd, J. Ellis, Quevillon, You, JHEP (2016); S. Ellis, Quevillon, You, Zhang, PLB (2016); JHEP (2017)] did not account for mixed statistics and open covariant derivatives.

- First Universal results for the One-Loop Effective Action (UOLEA) [Drozd, J. Ellis, Quevillon, You, JHEP (2016); S. Ellis, Quevillon, You, Zhang, PLB (2016); JHEP (2017)] did not account for mixed statistics and open covariant derivatives.
- Recent advances in UOLEA [Kramer, Summ, Voigt, JHEP (2020); S. Ellis, Quevillon, Vuong, You, Zhang, JHEP (2020); Angelescu, Huang, 2006.16532] still do not capture the full picture.

- First Universal results for the One-Loop Effective Action (UOLEA) [Drozd, J. Ellis, Quevillon, You, JHEP (2016); S. Ellis, Quevillon, You, Zhang, PLB (2016); JHEP (2017)] did not account for mixed statistics and open covariant derivatives.
- Recent advances in UOLEA [Kramer, Summ, Voigt, JHEP (2020); S. Ellis, Quevillon, Vuong, You, Zhang, JHEP (2020); Angelescu, Huang, 2006.16532] still do not capture the full picture.
- Covariant diagrams [Zhang, JHEP (2017)] are at all steps gauge covariant and make use of the expansion by regions [Beneke, Smirnov NPB (1998); Jantzen, JHEP (2011)] and a simpler matching framework [Fuentes-Martin, Portoles, Ruiz-Femenia, JHEP (2016); S. Dittmaier, C. Grosse-Knetter, PRD (1995)]

- First Universal results for the One-Loop Effective Action (UOLEA) [Drozd, J. Ellis, Quevillon, You, JHEP (2016); S. Ellis, Quevillon, You, Zhang, PLB (2016); JHEP (2017)] did not account for mixed statistics and open covariant derivatives.
- Recent advances in UOLEA [Kramer, Summ, Voigt, JHEP (2020); S. Ellis, Quevillon, Vuong, You, Zhang, JHEP (2020); Angelescu, Huang, 2006.16532] still do not capture the full picture.
- Covariant diagrams [Zhang, JHEP (2017)] are at all steps gauge covariant and make use of the expansion by regions [Beneke, Smirnov NPB (1998); Jantzen, JHEP (2011)] and a simpler matching framework [Fuentes-Martin, Portoles, Ruiz-Femenia, JHEP (2016); S. Dittmaier, C. Grosse-Knetter, PRD (1995)]
- SuperTrace functional technique [Cohen, Lu, Zhang, 2011.02484] establishes a cleaner way to display covariant diagrams for matching. Automated tools exist [STream, 2012.07851; SuperTracer, 2012.08506]. It is this approach we follow in our work.

Advances on this topic include: Finn, Karamitsos, Pilaftsis, EPJC (2021)

The Basic formula for functional matching:

 $\mathsf{\Gamma}_{\rm EFT}[\phi] \;=\; \mathsf{\Gamma}_{\rm L,UV}[\phi]$ 

where  $\phi$  denotes light-fields.

The Basic formula for functional matching:

 $\mathsf{\Gamma}_{\rm EFT}[\phi] \;=\; \mathsf{\Gamma}_{\rm L,UV}[\phi]$ 

where  $\phi$  denotes light-fields.

• **Tree-level:** 
$$\mathcal{L}_{EFT}^{(tree)}[\phi] = \mathcal{L}_{UV}[S,\phi] \Big|_{S=S_c[\phi]}$$
 with S being heavy-fields.

The Basic formula for functional matching:

 $\Gamma_{\rm EFT}[\phi] = \Gamma_{\rm L,UV}[\phi]$ 

where  $\phi$  denotes light-fields.

• Tree-level:  $\mathcal{L}_{EFT}^{(tree)}[\phi] = \mathcal{L}_{UV}[S,\phi] \Big|_{S=S_c[\phi]}$  with S being heavy-fields.

• One-loop:

$$\left. \Gamma_{\mathrm{L,UV}}[\phi] \right|_{\mathrm{hard}} = \left. \frac{i}{2} \mathrm{STr} \log \mathsf{K} \right|_{\mathrm{hard}} - \left. \frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \mathrm{STr}[(\mathcal{K}^{-1} X)^n] \right|_{\mathrm{hard}}$$

The Basic formula for functional matching:

 $\Gamma_{\rm EFT}[\phi] = \Gamma_{\rm L,UV}[\phi]$ 

where  $\phi$  denotes light-fields.

• Tree-level:  $\mathcal{L}_{EFT}^{(tree)}[\phi] = \mathcal{L}_{UV}[S,\phi] \Big|_{S=S_c[\phi]}$  with S being heavy-fields.

• One-loop:

$$\left. \Gamma_{\mathrm{L,UV}}[\phi] \right|_{\mathrm{hard}} = \left. \frac{i}{2} \mathrm{STr} \log \mathsf{K} \right|_{\mathrm{hard}} - \left. \frac{i}{2} \sum_{n=1}^{\infty} \frac{1}{n} \mathrm{STr}[(\mathcal{K}^{-1}X)^n] \right|_{\mathrm{hard}}$$

The expansion in  $(K^{-1}X)$  can be graphed (STr diagrams), e.g., n = 3



1 Introduction to Functional Matching

**②** Universal One-Loop Matching for Scalar Leptoquarks

**③** Demonstration: the LQ-model  $S_1 + \tilde{S}_2$ 

4 Conclusions

In a recent study [A.D., K. Mantzaropoulos, 2108.10055] we derived

• A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis

- A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis
- Matching up-to  $d \le 6$  operators at 1-loop (and d = 7 at tree level)

- A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis
- Matching up-to  $d \le 6$  operators at 1-loop (and d = 7 at tree level)
- Demonstrate the usefulness of the result by calculating several observables such as leptonic magnetic and electric dipole moments, neutrino masses, proton decay rate in a model with two heavy LQ fields

- A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis
- Matching up-to  $d \le 6$  operators at 1-loop (and d = 7 at tree level)
- Demonstrate the usefulness of the result by calculating several observables such as leptonic magnetic and electric dipole moments, neutrino masses, proton decay rate in a model with two heavy LQ fields
- LQs' decoupling produce 54/60 operators in Warsaw basis (all but bosonic CP-violating ones)

- A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis
- Matching up-to  $d \le 6$  operators at 1-loop (and d = 7 at tree level)
- Demonstrate the usefulness of the result by calculating several observables such as leptonic magnetic and electric dipole moments, neutrino masses, proton decay rate in a model with two heavy LQ fields
- LQs' decoupling produce 54/60 operators in Warsaw basis (all but bosonic CP-violating ones)
- This is the first study of functional matching with multiple heavy-field decoupling.

- A universal one-loop effective action after decoupling all scalar Leptoquarks (LQs) in Green basis
- Matching up-to  $d \le 6$  operators at 1-loop (and d = 7 at tree level)
- Demonstrate the usefulness of the result by calculating several observables such as leptonic magnetic and electric dipole moments, neutrino masses, proton decay rate in a model with two heavy LQ fields
- LQs' decoupling produce 54/60 operators in Warsaw basis (all but bosonic CP-violating ones)
- This is the first study of functional matching with multiple heavy-field decoupling.
- Support the usefulness of STr functional matching over other methods

# **1** Find the tree level EFT, $\mathcal{L}_{EFT}^{(tree)}[\phi]$

For LQs only four fermion interactions appear at tree level

## **1** Find the tree level EFT, $\mathcal{L}_{EFT}^{(tree)}[\phi]$

2 Find the X = [ $U + P_{\mu}Z^{\mu} + \overline{Z}^{\mu}P_{\mu} + ...$ ] matrices

- **1** Find the tree level EFT,  $\mathcal{L}_{EFT}^{(tree)}[\phi]$
- 2 Find the X =  $[U + P_{\mu}Z^{\mu} + \bar{Z}^{\mu}P_{\mu} + ...]$  matrices
- S Enumerate UOLEA-terms (19) and STr diagrams (15) up-to d = 6 e.g.,

$$S_{j_{2},z_{2}} = -\frac{i}{2} \operatorname{STr} \left[ \frac{1}{P^{2} - M_{i}^{2}} U_{S_{i}S_{j}} \frac{1}{P^{2} - M_{j}^{2}} U_{S_{j}f} \frac{1}{I^{p}} U_{ff'} \frac{1}{I^{p}} U_{ff'} \frac{1}{I^{p}} U_{f'S_{i}} \right]_{\text{hard}}$$

#### Steps for functional matching

- **1** Find the tree level EFT,  $\mathcal{L}_{EFT}^{(tree)}[\phi]$
- 2 Find the X =  $[U + P_{\mu}Z^{\mu} + \bar{Z}^{\mu}P_{\mu} + ...]$  matrices
- Senumerate UOLEA-terms (19) and STr diagrams (15) up-to d = 6
   Evaluate L<sup>(1-loop)</sup><sub>EFT</sub>[φ] using dim-reg, MS in Feynman gauge e.g.,

$$S_{j} = -\frac{i}{2} \operatorname{STr} \left[ \frac{1}{P^2 - M_i^2} U_{S_i S_j} \frac{1}{P^2 - M_j^2} U_{S_j f} \frac{1}{I^{p}} U_{f f'} \frac{1}{I^{p}} U_{f' S_i} \right] \Big|_{\text{hard}}$$

$$= \frac{i}{2} \frac{\log M_i^2 / M_j^2}{M_i^2 - M_j^2} \operatorname{tr} \{ U_{S_i S_j} U_{S_j f} U_{ff'} U_{f' S_i} \}$$

- **1** Find the tree level EFT,  $\mathcal{L}_{\rm EFT}^{
  m (tree)}[\phi]$
- **2** Find the X =  $[U + P_{\mu}Z^{\mu} + \overline{Z}^{\mu}P_{\mu} + ...]$  matrices
- **③** Enumerate UOLEA-terms (19) and STr diagrams (15) up-to d = 6
- Evaluate  $\mathcal{L}_{EFT}^{(1-\text{loop})}[\phi]$  using dim-reg,  $\overline{MS}$  in Feynman gauge

The effective Lagrangian is the sum:  $\mathcal{L}_{\rm EFT}^{(\rm tree)}[\phi] + \mathcal{L}_{\rm EFT}^{(1-{\rm loop})}[\phi]$ 

1 Introduction to Functional Matching

Our Universal One-Loop Matching for Scalar Leptoquarks

**3** Demonstration: the LQ-model  $S_1 + \tilde{S}_2$ 

4 Conclusions

#### Lets consider two (out of five), heavy LQs with masses $M_1$ and $\tilde{M}_2$ :

| Field/Group   | SU(3)     | SU(2) | U(1)          |
|---------------|-----------|-------|---------------|
| $S_1$         | $\bar{3}$ | 1     | $\frac{1}{3}$ |
| $\tilde{S}_2$ | 3         | 2     | $\frac{1}{6}$ |

Lets consider two (out of five), heavy LQs with masses  $M_1$  and  $\tilde{M}_2$ :

| Field/Group   | SU(3) | SU(2) | U(1)          |
|---------------|-------|-------|---------------|
| $S_1$         | 3     | 1     | $\frac{1}{3}$ |
| $\tilde{S}_2$ | 3     | 2     | $\frac{1}{6}$ |

New Interactions with Quarks and Leptons:

$$\begin{split} \mathcal{L}_{\text{S-f}} &= \left[ \left( \lambda_{pr}^{\text{IL}} \right) \bar{q}_{pi}^c \cdot \epsilon \cdot \ell_r + \left( \lambda_{pr}^{\text{IR}} \right) \bar{u}_i^c e_r \right] S_{1i} + \text{h.c.} \\ &+ \left( \lambda_{pr}^{\not BL} \right) S_{1i} \, \epsilon^{ijk} \, \bar{q}_{pj} \cdot \epsilon \cdot q_{rk}^c + \left( \lambda_{pr}^{\not BR} \right) S_{1i} \, \epsilon^{ijk} \bar{d}_{pj} \, u_{rk}^c + \text{h.c.} \\ &+ \left( \tilde{\lambda}_{pr} \right) \bar{d}_{pi} \tilde{S}_{2i}^T \cdot \epsilon \cdot \ell_r + \text{h.c.} \; , \end{split}$$

Lets consider two (out of five), heavy LQs with masses  $M_1$  and  $\tilde{M}_2$ :

| Field/Group   | SU(3)     | SU(2) | U(1)          |
|---------------|-----------|-------|---------------|
| $S_1$         | $\bar{3}$ | 1     | $\frac{1}{3}$ |
| $\tilde{S}_2$ | 3         | 2     | $\frac{1}{6}$ |

New Interactions with the Higgs:

$$\mathcal{L}_{\text{S-H}} = -\left(M_{1}^{2} + \lambda_{H1}|H|^{2}\right)|S_{1}|^{2} - \left(\tilde{M}_{2}^{2} + \tilde{\lambda}_{H2}|H|^{2}\right)|\tilde{S}_{2}|^{2} + \lambda_{\tilde{2}\tilde{2}}\left(\tilde{S}_{2i}^{\dagger} \cdot H\right)\left(H^{\dagger} \cdot \tilde{S}_{2i}\right) - A_{\tilde{2}1}\left(\tilde{S}_{2i}^{\dagger} \cdot H\right)S_{1i}^{\dagger} + \frac{1}{3}\lambda_{3}\epsilon^{ijk}\left(\tilde{S}_{2i}^{T} \cdot \epsilon \cdot \tilde{S}_{2j}\right)\left(H^{\dagger} \cdot \tilde{S}_{2k}\right) + \text{h.c.}$$
(3.3)

Lets consider two (out of five), heavy LQs with masses  $M_1$  and  $M_2$ :

| Field/Group   | SU(3)     | SU(2) | U(1)          |
|---------------|-----------|-------|---------------|
| $S_1$         | $\bar{3}$ | 1     | $\frac{1}{3}$ |
| $\tilde{S}_2$ | 3         | 2     | $\frac{1}{6}$ |

**New Self-Interactions:** 

$$\begin{aligned} -\mathcal{L}_{\mathrm{S}} &= \frac{c_{1}}{2} \left( S_{1}^{\dagger} S_{1} \right)^{2} + \frac{\hat{c}_{2}}{2} \left( \tilde{S}_{2}^{\dagger} \cdot \tilde{S}_{2} \right)^{2} + c_{1\tilde{2}}^{(1)} \left( S_{1}^{\dagger} S_{1} \right) \left( \tilde{S}_{2}^{\dagger} \cdot \tilde{S}_{2} \right) + c_{1\tilde{2}}^{(2)} \left( \tilde{S}_{2\alpha}^{\dagger} S_{1} \right) \left( S_{1}^{\dagger} \tilde{S}_{2\alpha} \right) \\ &+ c_{\tilde{2}}^{(8)} \left( \tilde{S}_{2i}^{\dagger} \cdot \tilde{S}_{2j} \right) \left( \tilde{S}_{2j}^{\dagger} \cdot \tilde{S}_{2i} \right) + \left[ A' S_{1i}^{\dagger} \epsilon^{ijk} \left( \tilde{S}_{2j}^{T} \cdot \epsilon \cdot \tilde{S}_{2k} \right) + \text{h.c.} \right] . \end{aligned}$$

# $\overline{\text{Tree-level}} (S_1 + \tilde{S}_2 \text{ model})$

There are 12 baryon number conserving operators (semileptonic + four-quark)

$$\begin{split} \left[ G_{\ell q}^{(1)} \right]_{prst}^{(0)} &= \frac{(\lambda_{sp}^{1L})^* (\lambda_{tr}^{1L})}{4M_1^2} \,, \\ \left[ G_{lequ}^{(1)} \right]_{prst}^{(0)} &= \frac{(\lambda_{sp}^{1L})^* (\lambda_{tr}^{1R})}{2M_1^2} \,, \\ \left[ G_{eu} \right]_{prst}^{(0)} &= \frac{(\lambda_{sp}^{1R})^* (\lambda_{tr}^{1R})}{2M_1^2} \,, \\ \left[ G_{qu}^{(1)} \right]_{prst}^{(0)} &= \frac{(\lambda_{sp}^{\beta L})^* (\lambda_{sp}^{\beta L})}{2M_1^2} \,, \\ \left[ G_{ud}^{(1)} \right]_{prst}^{(0)} &= \frac{(\lambda_{tr}^{\beta R})^* (\lambda_{sp}^{\beta R})}{3M_1^2} \,, \\ \left[ G_{qudd}^{(1)} \right]_{prst}^{(0)} &= \frac{4}{3} \frac{(\lambda_{ts}^{\beta R})^* (\lambda_{pr}^{\beta L})}{M_1^2} \,, \end{split}$$

$$\begin{split} \left[ G^{(3)}_{\ell q} \right]^{(0)}_{prst} &= -\frac{(\lambda^{\mathrm{1L}}_{sp})^* (\lambda^{\mathrm{1L}}_{tr})}{4M_1^2} \;, \\ \left[ G^{(3)}_{\ell equ} \right]^{(0)}_{prst} &= -\frac{(\lambda^{\mathrm{1L}}_{sp})^* (\lambda^{\mathrm{1R}}_{tr})}{8M_1^2} \;, \\ \left[ G_{\ell d} \right]^{(0)}_{prst} &= -\frac{(\tilde{\lambda}_{sp})^* (\tilde{\lambda}_{sr})}{2\tilde{M}_2^2} \;, \\ \left[ G^{(3)}_{qq} \right]^{(0)}_{prst} &= -\frac{(\lambda^{\sharp L}_{rt})^* (\lambda^{\sharp BL}_{sp})}{2M_1^2} \;, \\ \left[ G^{(8)}_{ud} \right]^{(0)}_{prst} &= -\frac{(\lambda^{\sharp R}_{tr})^* (\lambda^{\sharp RR}_{sp})}{M_1^2} \;, \\ \left[ G^{(8)}_{quud} \right]^{(0)}_{prst} &= -4\frac{(\lambda^{\sharp R}_{ts})^* (\lambda^{\sharp RL}_{sp})}{M_1^2} \;, \end{split}$$

#### and (all) 4 baryon number violating operators

$$\begin{split} & [G_{qqq}]_{prst}^{(0)} = -2 \frac{(\lambda_{pr}^{\beta L})^* (\lambda_{st}^{1\mathrm{L}})}{M_1^2} , \qquad \qquad [G_{qqu}]_{prst}^{(0)} = \frac{(\lambda_{pr}^{\beta L})^* (\lambda_{st}^{1\mathrm{R}})}{M_1^2} , \\ & [G_{duq}]_{prst}^{(0)} = \frac{(\lambda_{pr}^{\beta R})^* (\lambda_{st}^{1\mathrm{L}})}{M_1^2} , \qquad \qquad [G_{duu}]_{prst}^{(0)} = \frac{(\lambda_{pr}^{\beta R})^* (\lambda_{st}^{1\mathrm{R}})}{M_1^2} . \end{split}$$

usually not discussed or killed by extra (ad-hoc?) discrete symmetries.

 $\begin{array}{l} \mbox{Only four-fermion operators} \rightarrow \mbox{suitable for explaining possible anomalies} \\ \mbox{in meson decays} \\ \mbox{Bauer and Neubert, PRL (2016); A. Crivellin, C. Greub, D. Müller and F. Saturnino, JHEP} \\ \mbox{(2021); A. Angelescu, D. Bečirević, D.A. Faroughy, F. Jaffredo and O. Sumensari, 2103.12504.} \end{array}$ 

Also talks by Steve King, S. Trifinopoulos, N. Mahmoudi and J. Kumar earlier in this workshop.

**Renormalizable operators:** e.g corrections to the Higgs mass,  $\delta m^2/16\pi^2$ 

$$(\delta m^2) = N_c \left[ \lambda_{H1} M_1^2 (1+L_1) + (2\tilde{\lambda}_{H2} - \lambda_{\tilde{2}\tilde{2}}) \tilde{M}_2^2 (1+L_2) \right. \\ \left. + |A_{\tilde{2}1}|^2 \left( 1 + \frac{M_1^2 \log \mu^2 / M_1^2 - \tilde{M}_2^2 \log \mu^2 / \tilde{M}_2^2}{\Delta_{12}^2} \right) \right] .$$

where

$$L_i = \log \frac{\mu^2}{M_i^2}$$
,  $\Delta_{12}^2 = M_1^2 - \tilde{M}_2^2$ ,

and  $\mu$  is the renormalization scale.

**Renormalizable operators:** e.g corrections to the Higgs mass,  $\delta m^2/16\pi^2$ 

$$\begin{split} \left(\delta m^2\right) &= N_c \left[\lambda_{H1} M_1^2 (1+L_1) + (2\tilde{\lambda}_{H2} - \lambda_{\tilde{2}\tilde{2}}) \tilde{M}_2^2 (1+L_2) \right. \\ &+ |A_{\tilde{2}1}|^2 \left(1 + \frac{M_1^2 \log \mu^2 / M_1^2 - \tilde{M}_2^2 \log \mu^2 / \tilde{M}_2^2}{\Delta_{12}^2}\right) \right] \,. \end{split}$$

Perturbation theory instability is evident. The Higgs field is part of the light fields so it should be of the order of EW scale. Otherwise EFT does not make sense!

**Renormalizable operators:** e.g corrections to the Higgs mass,  $\delta m^2/16\pi^2$ 

$$(\delta m^2) = N_c \left[ \lambda_{H1} M_1^2 (1+L_1) + (2\tilde{\lambda}_{H2} - \lambda_{\tilde{2}\tilde{2}}) \tilde{M}_2^2 (1+L_2) \right. \\ \left. + |A_{\tilde{2}1}|^2 \left( 1 + \frac{M_1^2 \log \mu^2 / M_1^2 - \tilde{M}_2^2 \log \mu^2 / \tilde{M}_2^2}{\Delta_{12}^2} \right) \right] .$$

Possible solutions:

- **1** LQ masses  $M_1, \tilde{M}_2$  of the order of the TeV scale and O(1) couplings
- **2** LQ masses at a high scale (>>  $m_w$ ) but Higgs sector couplings tiny
- **③** Choose a renorm scale  $\mu$  such that  $L_1 = L_2 = -1$ : Then  $\delta m^2 = 0$  !
- ④ Supersymmetrize the LQ-model

or combinations of the above four cases...

# One-loop $(S_1+ ilde{S}_2 ext{ model})$ cont'd

Non-Renormalizable operators:  $\mathcal{L}_{EFT} \supset G_{\ell d} \mathcal{O}_{\ell d}$ 

$$[G_{\ell d}]_{prst} \propto -\frac{\tilde{\lambda}_{tp}^* \tilde{\lambda}_{sr}}{2\tilde{M}_2^2} \left( 1 + \frac{1}{16\pi^2} \frac{M_1^2}{\tilde{M}_2^2} (N_c c_{1\tilde{2}}^{(1)} + c_{1\tilde{2}}^{(2)})(1 + L_1) \right) .$$

$$\mathcal{O}_{\ell d} \qquad (\bar{\ell} \gamma^{\mu} \ell) (\bar{d} \gamma_{\mu} d)$$

Perturbative instability for large hierarchy of  $M_1$  and  $\tilde{M}_2$ .

This tunning is not usually quoted in the literature. Same solutions as before may be admitted. No problem when masses are close to each other.

# One-loop $(S_1 + \tilde{S}_2 \text{ model})$ : Neutrino masses

Weinberg operator is radiatively induced:  $\mathcal{L}_{EFT} \supset \frac{G_{\nu\nu}}{16\pi^2} \mathcal{O}_{\nu\nu}$ 

$$[G_{\nu\nu}]_{pr}^{(1)} = N_c A_{\tilde{2}1} \left( (\lambda^{1L})^T y_D \tilde{\lambda} \right)_{pr} \frac{\log M_1^2 / M_2^2}{M_1^2 - \tilde{M}_2^2} \,.$$

#### $\mathcal{O}_{\nu\nu} \left[ \epsilon^{lphaeta} \epsilon^{lpha_1eta_1} H^{lpha} H^{lpha_1} ar{\ell}^c_{peta} \ell_{reta_1} \right]$

Physical neutrino masses: (in mass basis of 1704.03888)  $(m_{\nu}/16\pi^2)$ 

$$m_{\nu} = -\sqrt{2} \frac{v A_{\tilde{2}1}}{M_1^2 - \tilde{M}_2^2} \left[ U_{\rm MNS}^T \, (\hat{\lambda}^{1L})^T \, K_{\rm CKM} \, m_d \hat{\tilde{\lambda}} \, U_{\rm MNS} \right] \log \left( \frac{M_1^2}{\tilde{M}_2^2} \right)$$

See also, Mahanta, PRD (2000); Dorsner, PRD (2012); A. Crivellin, C. Greub, D. Müller and F. Saturnino, 2010.06593; Zhang, 2105.08670

# One-loop $(S_1 + \tilde{S}_2 \text{ model})$ : $(g - 2)_\ell$

A recent 4.2 $\sigma$  anomaly  $\Delta \alpha_{\mu} = (251 \pm 59) \times 10^{-11}$  [BNL collab., 2104.03281] has re-warmed up all BSM physics enthusiasts around the globe.

Two d = 6 operators are responsible in SMEFT (Warsaw basis),

$$\begin{array}{|c|c|c|c|c|} \mathcal{O}_{eW} & (\bar{\ell}\sigma^{\mu\nu}e)\sigma^{I}HW^{I}_{\mu\nu} \\ \mathcal{O}_{eB} & (\bar{\ell}\sigma^{\mu\nu}e)HB_{\mu\nu} \end{array}$$

$$\begin{split} [C_{eB}]^{(1)}(\mu) &= \frac{g'N_c}{16\pi^2} \left\{ \frac{5}{24} \left[ \log\left(\frac{\mu^2}{M_1^2}\right) + \frac{5}{2} \right] \frac{Y_{1U}^{1L}}{M_1^2} - \frac{1}{24} \frac{y_E \cdot \Lambda_e}{M_1^2} + \frac{1}{16} \frac{\tilde{\Lambda}_\ell \cdot y_E}{\tilde{M}_2^2} \right\} \\ [C_{eW}]^{(1)}(\mu) &= \frac{gN_c}{16\pi^2} \left\{ -\frac{1}{8} \left[ \log\left(\frac{\mu^2}{M_1^2}\right) + \frac{1}{2} \right] \frac{Y_{1U}^{1L}}{M_1^2} + \frac{1}{24} \frac{\Lambda_\ell \cdot y_E}{M_1^2} - \frac{1}{48} \frac{\tilde{\Lambda}_\ell \cdot y_E}{\tilde{M}_2^2} \right\} \\ \downarrow \end{split}$$

# One-loop $(S_1 + \tilde{S}_2 \text{ model})$ : $(g - 2)_\ell$

To leading-log approximation, just set  $\mu = m_t$ 

#### OR

From  $\mu = M_1$  run down to  $m_t$  with RGEs Jenkins, Manohar, Trott, 1310.4838

#### ∜

and plug it into

$$\Delta a^{\ell} = \frac{4m_{\ell}v}{\sqrt{2}} \left[ \frac{1}{g'} \Re e[\mathcal{C}_{eB}] - \frac{1}{g} \Re e[\mathcal{C}_{eW}] \right]_{\ell\ell}$$

see A.D., Materkowska, Paraskevas, Suxho, Rosiek, 1704.03888

# One-loop $(S_1 + \tilde{S}_2 \text{ model})$ : $(g - 2)_\ell$

$$\begin{split} \Delta a_{\ell}^{(S_1+\tilde{S}_2)} &= \sum_{q=u,c,t} \frac{m_{\ell}}{4\pi^2} \frac{m_q}{M_1^2} \left[ \log\left(\frac{m_{\ell}^2}{M_1^2}\right) + \frac{7}{4} \right] \Re e(\hat{\lambda}_{q\ell}^{1L*} \hat{\lambda}_{q\ell}^{1R}) \\ &- \frac{m_{\ell}^2}{32\pi^2 M_1^2} \left( \hat{\lambda}_{q\ell}^{1L*} \hat{\lambda}_{q\ell}^{1L} + \hat{\lambda}_{q\ell}^{1R*} \hat{\lambda}_{q\ell}^{1R} \right) \ + \ \frac{m_{\ell}^2}{32\pi^2 \tilde{M}_2^2} \hat{\bar{\lambda}}_{q\ell}^* \hat{\bar{\lambda}}_{q\ell} \hat{\bar{\lambda}}_{q\ell} \end{split}$$

in agreement with fixed order calculations, e.g. Bauer and Neubert, PRL (2016)

A chiral enhancement of  $O(m_t/m_\mu)$  can solve the anomaly for a TeV  $S_1$ -mass and O(1) couplings. See talk by M. Tammaro in this workshop

However, the same covariant diagram results in large contributions to the muon mass as well.

1 Introduction to Functional Matching

Our Universal One-Loop Matching for Scalar Leptoquarks

**③** Demonstration: the LQ-model  $S_1 + \tilde{S}_2$ 



• Functional techniques to matching  $\Rightarrow$  Universal results

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework
- In our study [2108.10055] we found all seeds for universal matching of scalar LQs
- Technical discussion on evanescent operators and RGE checks

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework
- In our study [2108.10055] we found all seeds for universal matching of scalar LQs
- Technical discussion on evanescent operators and RGE checks
- Application to a two-heavy field model: all one-loop matching up to d = 6 operators. Almost all operators appear (1+53 / 1+59).

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework
- In our study [2108.10055] we found all seeds for universal matching of scalar LQs
- Technical discussion on evanescent operators and RGE checks
- Application to a two-heavy field model: all one-loop matching up to d = 6 operators. Almost all operators appear (1+53 / 1+59).
- Demonstration of EFT matching in several physical observables. Rich phenomenology.

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework
- In our study [2108.10055] we found all seeds for universal matching of scalar LQs
- Technical discussion on evanescent operators and RGE checks
- Application to a two-heavy field model: all one-loop matching up to d = 6 operators. Almost all operators appear (1+53 / 1+59).
- Demonstration of EFT matching in several physical observables. Rich phenomenology.
- Future prospects: From model files to observables automatically? This work provides a serious benchmark for testing coming codes ...

#### Conclusions

- Functional techniques to matching  $\Rightarrow$  Universal results
- STr-functional + UOLEA matching  $\Rightarrow$  simple framework
- In our study [2108.10055] we found all seeds for universal matching of scalar LQs
- Technical discussion on evanescent operators and RGE checks
- Application to a two-heavy field model: all one-loop matching up to d = 6 operators. Almost all operators appear (1+53 / 1+59).
- Demonstration of EFT matching in several physical observables. Rich phenomenology.
- Future prospects: From model files to observables automatically? This work provides a serious benchmark for testing coming codes ...

Thank you for your attention

## Backup: Feynman diagrammatic vs. functional matching

Figure taken from Cohen, Lu, Zhang, 2011.02484



Advantages of functional approach: a systematic approach, no EFT basis needed, no guess of effective operators, no calculating twice amplitudes.