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Models of interest

« Radiatively generated minima (eg SM at large field
strength)
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* Run-away potentials (moduli of stringy models),
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* Models of strong first-order phase transitions - colliding
bubbles (thermal effects play a role)
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Models of interest

Monodromy axion models, relaxion

Vmonodromy(¢) — m2¢2 + A* [1 o8 (?)]

V;ela,xion(qb) — g¢ + A4 [1 - Oo8 (_)]
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SM Effective potential

Standard Model Effective potential
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For large field values m?* << ¢* and pu = ¢ the potential is very well
approximated by
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SM Metastability

Aeff < 0 = Metastability
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See lectures by G. Degrassi Corfu 2014
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New Physics at the scale M

Magnitude of the suppression scale

Approximate lifetime:
T 1 _8r2
= e3|>‘min| .

Ty 14 (Amin) Té
Positive A\g and A\g — stabilizing the potential

r T ]
L | |
0.02 - c .
: | 5
0.01; /“’s‘ *: o M=1016
> I g ] 12
S 000; 1 — M=10
> r A
: 1 M=108
-0.01} ]
[ ] —— Standard Model
~0.02f ]
10° 108 10! 104 10Y7 1020

U

Figure: Scale dependence of % = <f>_v4 with A = Ag = 1 for different values of

suppression scale M. The lifetimes corresponding to suppression scales
M = 108,10%,10% are, respectively, logo( ;) = 00,1302, 581 while for the
Standard Model log,,( ;) = 540.



Magnitude of the suppression scale

Positive Ag and negative \¢ — New Minimum
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Figure: Scale dependence of % = ¢—V4 with A\¢ = —1 and A\g = 1 for

different values of suppression scale M. The lifetimes corresponding to
suppression scales M = 108,102, 10%°, are, respectively,
logyo( ;) = —45,—90, —110 while for the Standard Model



SM + dilaton



See talks by G.G. Ross

Quantum scale symmetric effective lagrangian and D. Ghilencea
No scale anomaly in ,dynamical”
regulator
g
LO(¢,0) = 5 (09)" + 5(00)* — p*(0) | V($,0) + D A,
~ n=0
renormalizable, 72 x 17
classicaly scale-invariant O — —¢
go to broken phase o— —0

0 / /
LO (g +¢' 00+ ¢)
compute loop corrections (in momentum expansion) & RGE functions S, y

,Ceff(¢,0) = — eﬁ'(gb,a) 4+ ...
*

« Homogenous function (no mass-parameters, only vev’s)

« 72 x 72 sym.

» Satisfies Callan-Symanzik eq.




Quantum scale symmetric effective lagrangian

RG-improvement:

, . 5 Choose
A(t
647 eto
to avoid large logs.
S W(6)
Spontanous scale-symmetry breaking: € —
(Cb) _ M(sm@) V= MAW(6), E
o cos 6 N

-~ » flat direction in V.g =
J9—g, W (o) = W’(@O) =0

0
. . . >
renormalization condition, &
similar to choosing C.C.

b0

 Hierarchy of scales via aligning the flat direction J_ o > Oy~ — < 1
00

* New perspective on naturalness: is this alignement stable wrt. embedding in a UV completion?




Quantum scale symmetric SM + O

0
H=| 4
V2 (electroweak vacuum — » electroweak flat direction)
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Summary SM + dilaton

1) You may use a field as the scale uy
In Dim-Reg to preserve scale symmetry at the quantum level.

2) The price to pay: infinitely many nonpolynomial ¢/c operators
and corresponding couplings: nhonrenormalizability.

3) Minimal subtraction scheme involves evanescent interactions.
4) Presence of a flat direction — tuning.
5) Naturalness: aligning the flat direction perpendicular to Higgs

6) Instability = unboundedness below



Gravity Corrections in Curved Space



Coleman-De Luccia bounces
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Figure 1. Our toy model potential for different values of b parameter. In this example vacuum
energy vanishes ¢ = 0. Different choices of vacuum energy, we will discuss, simply mean adding a
constant to the potential.
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Transition probability

[ = Ae™®

ScoL = S|pcpL] — S|ps]

2472
Slgn] = —7—, (for dS)

Sloe] =0, (for Minkowski)

ds? = dr? + r(1)%(dQ)?

1. 1
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Equations of motion

b+306="7

p'z\/1+’§(;gb2v)

Boundary conditions

)
p(0) =0
p(Tena) =0, (for dS)
P(Tend) = Pena 7 0, (for Minkowski)
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Hawking-Moss solution

Simpler HM solution sw. Hawking. 16. Moss. Prys.Lett. 8 110 1982y describes the probability for a whole

spacetime volume to transition simultaneously to the top of the barrier (max) and

continue by a classical roll-down:
"4

(¢max ’ Vmax)
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__ 24r'(1—ré¢n,)’ 4 241%(1—kEPA,)°
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including the modification coming from &
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Conclusions CDL
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The influence of non-minimal coupling to gravity is very different in cases of Minkowski
and dS vacua:
@ dS - the decay probability quickly decreases as the coupling grows,
vacuum can be made absolutely stable
@ Minkowski - effect is much weaker, the decay rate increases for small values, TW
approximation works worse significantly overestimating the increase in action due
to &
Even though TW approximation may not give a precise result in a specific model, the

order of magnitude is right (especially in dS case where gravitational correction
decreases the stability).



Domain walls



Network of walls prefers the true vacuum!
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About our simulation

e We modeled the Higgs field with a positive, real scalar ¢.
* The evolution of ¢ is given by EOM:

0?¢p «a (dlna\ 0¢ OV
8—772+5(d|n77)077_m__a ¢’

with a potential V(¢) equal to the RG improved potential of the
SM Higgs Vsm(|hl).
e The PRS algorithm? (with o = 3, 5 = 0) was used.

e We used the optimization of a time stepS.

e Qur simulations were run on a lattice of the size 5123,

2William H. Press, Barbara S. Ryden, and David N. Spergel. “Dynamical Evolution of Domain Walls in
an Expanding Universe”. In: Astrophys. J. 347 (1989), pp. 590-604. DOI: 10.1086/168151.

37. Lalak, S. Lola, and P. Magnowski. “Dynamics of domain walls for split and runaway potentials”. In:
Phys. Rev. D78 (2008), p. 085020. DOI: 10.1103/PhysRevD.78.085020. arXiv: 0710.1233 [hep-ph].
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Initial conditions

Following the general considerations* we assumed that the initial

distribution of field strength is given by probability distribution:

Y

P(h) _ ;e_(h%e%) vINH;

— op ~ ~—— L
V2o 2T

We considered various combinations of values of ¢ and 6 in order to
cover the set of initial conditions which can be predicted by models of
the early Universe.

Our simulations were initialized at different conformal times g4/t
ranging from 1071* GeV~1! to 10710 GeV 1.

47. Lalak et al. “Large scale structure from biased nonequilibrium phase transitions: Percolation theory
picture”. In: Nucl. Phys. B434 (1995), pp. 675—696. DOI: 10.1016/0550-3213(94)00557-U. arXiv:
hep-ph/9404218 [hep-ph].
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Dependence on the initialization time

For nearly equal contributions of both vacua at the initialization, late
domain walls decay longer leading to domination of the EW vacuum
even if the fraction of lattice sites occupied by this vacuum decreases

initially.
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Dependence on the initialization time

The decay of domain walls ending in the state without the EW
vacuum is possible even for the initial configuration with a slight
dominance of the EW vacuum.
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Higgs domain walls after reheating
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Higgs domain walls after reheating

o After reheating the early Universe was very hot and dense and it
was better described that time by the thermal state with
temperature T, than by the vacuum state.

* The dynamics of Higgs domain walls in the background of this
thermal state could be different than in the vacuum state.

® The evolution of the domain walls in the cooling down Universe can
be determined reliably only in lattice simulations.
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Position of the local maximum
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Figure : The position hggx of the local maximum separating two minima of the RG improved effective

potential as a function of the temperature of thermal bath T.
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Width of Higgs domain walls
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The width of domain walls w as a function of the temperature T.

Figure :
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Evolution in the thermal background
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Figure : The fraction —EW. as a function of conformal time 7 for values of standard deviation o of
initialization distribution.
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Summary - thermal bath

« SM thermal corrections to the effective potential
enlarge the basin of attraction of the EWSB vacuum

* Higgs domain walls in the thermal bath are highly
unstable
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Gravitational waves from domain walls
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Gravitational waves from domain walls

Energy density generated by one mode pg4.,(n, k) can be expressed as:

2

/ " dn' cos (|k| (n —n')) a(n)TTT ;(n', k)
ni
2]

dp w — a("?dec)4 dp w
. (7707 k) = (]‘ + zEQ) 4a(nEQ)4 le; |k| (ﬂdec, k)a

1
w(n, k) =
20K e e PV

77f —_—
dn'sin (k| (n —n")) a(n')TTT4 (7', k)
yp

+

after redshift
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Expectations:

N. Kitajima and F. Takahashi, Gravitational waves from Higgs domain walls, Phys. Lett. B745
(2015) 112-117, [1502.03725].
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Fig. 3. The typical spectrum of the gravitational waves is shown by the solid (red)
lines. We have taken ¢ =2 x 10° GeV and (V/Vmax)'/4 =5 x 107> for the left
line and ¢ =2 x 10'2 GeV and (V/Vmax)/4 =1073 for the right line. 36



Numerical simulations:

(d)

Figure 11: Visualization of the isosurface of the field strength ¢ corresponding

the value v,,,, at four different conformal times: n = 1079 GeV! (a) and n = 37
1.2x 107 GeV~! (b), =13 x 10" GeV~! (c), n=1.4x 107° GeV~!(d). Lengths

are given in units of the lattice spacing i.e. 10710 GeV~!.



Spectrum of GWs after emission
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Figure: Spectrum of gravitational waves Qg, emitted from SM domain walls at the time of the decay.
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Present spectrum of GWs
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Figure: Predicted sensitivities (dashed) for future[ G\]Ns detectors: aLIGO, ET, LISA, LISA:TNG, DECIGO
and BBO compared with the spectrum of GWs (solid) calculated in lattice simulations for the initial values

of o = 108, 10° GeV and the standard cosmology.
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New Physics and domain walls
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New physics
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(© (@)

Figure 10: Visualization of the isosurface of the field strength ¢ corresponding to the value
Rumaz at four different conformal times: 7 = 1.41x 1078 GeV~® (a) and n = 2.11x10~% GeV !

(b), n = 2.51 x 1078 GeV~! (c), n = 3.02 x 10~ GeV~1(d). Lengths are given in units of
the lattice spacing i.e. 10710 GeV~1.
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Figure 11: Present day spectrum of gravitational waves (24, emitted from Higgs domain

walls in the case of the Higgs potential with nearly degenerate minima with the difference
in values of potential in minima of the order of §V ~ 109 GeV* (red) and §V ~ 1026 GeV*

(green).

43



ngh2

1.x10°5
1.x107"°
1.x1072°

1.x1073° |

1.x10755

e

— A =1.88 x 10" GeV, 6V ~ 10'° GeV*

— A =1.88 x 10" GeV, 6V ~ 10% GeV*
— A=
0.01 100 106

f|Hz]

44




Summary |

1. New Physics at scales higher than 103 GeV does not influence
Higgsa domain walls.

2. Networks of domain walls initialized with o < 3.25 x 1010 GeV
decay to the EWSB vacuum.

3. For lower values of the scale A lifetimes of Higgs domain walls are
still §hort fe\nd smaller than 10~% G—Z’V for generic inital
configurations.

4. Thermal corrections to the effective potential stabilize the Higgs
field by enlarging the basing of attraction of EWSB vacuum.

5. Higgs domain walls in the thermal background are highly unstable.

6. Gravitational waves produced from generic initial configurations are
too weak to be detected in the planned detectors.
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Generic asymmetric domain walls
and gravitational waves



Models of interest

« Radiatively generated minima (eg SM at large field
strength)

e

;I(U yp Mp

* Run-away potentials (moduli of stringy models),
Quantum Scale Symmetric SM
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* Models of strong first-order phase transitions - colliding
bubbles (thermal effects play a role)
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Models of interest

Monodromy axion models, relaxion

Vmonodromy(¢) — m2¢2 + A* [1 o8 (?)]

V;ela,xion(qb) — g¢ + A4 [1 - Oo8 (_)]

500 -

400 +

300 A

200 A

100 A

Vmonodromy (¢) /m2 f2

0 ) 10 15 20 25 30



Generic potential

Vas(¢) = X—ggb (15¢° (e* (2d(a + b+ c) + ab+ ac+ bc + d°) + 1) — 60abc (d*e® + 1)

—20¢? (€ (d*(a + b+ ¢) + 2d(a(b + ¢) + bc) + abe) +a+b+c) — 12¢*¢*(a + b + ¢ + 2d)
+30¢ (de*(ad(b + c) + 2abc + bed) + ab + ac + be) + 10e°¢°) . (3.6)

03V s
O3

(¢) = 2Vo (¢°(a — @) (¢ — b)(c + 2d — 39)
+(—a—b+2¢) (e2(d—¢)(2c+d—3¢) +1) + (¢ —c) (e*(d— #)* + 1)) (3.

a, b - positions of minima, c - position of maximum

OV = Vas(b) — Vas(a),
o3V
d3V = ?&(C),

5 =w,
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Quanties of interest: energy density and peak frequency

1 dpew
Qaw(n) = n, k).
() pc(n)dloglkl( )
0 - Eew Aoy’
GW(ndec)‘peak o 247THd 2Mpl47
ecC

) = () )" (Bl )
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Quanties of interest: energy density and peak frequency

eaw efficiency parameter between 0.7 and 1

Owalls> Ndec - taken from simulations

A a(t)Swau _ a(l)
V H-3 t
A _1
V — ATI )

stable DW: A in the range 0.8 0.1
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Quanties of interest: energy density and peak frequency

more generally

log (é) = —vlogn +log A

scaling regime: obtained v ranges from 0.81 to 1.0

meta-stable DW: A in the range 0.08 — 0.34
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Scaling regime
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Figure 9: The evolution of conformal surface area of domain walls per unit volume é in
function of conformal time n (blue) and the fitted scaling behavior defined by eq. (5.8)
(orange) for the best (left panel) and the worst (right panel) fits obtained by procedure
described in the main text. Vertical dashed lines correspond to the estimated beginning and
end of the scaling regime.
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Quanties of interest: energy density and peak frequency
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Quanties of interest: energy density and peak frequency

We have estimated overall factors present in eqs. (6.7) and (6.7) basing on values of
A, Ngec obtained in simulations in which networks entered scaling regime and previously
computed 0y4y. The maximal value of the prefactor in eq. (6.7) obtained in this way is

equal to:

w w

4 1
_ 1£ max 1% ’
TGn%(nO)'peak =0.1 x 10 66 (M> ) fO |peak =0.7 ( & V) HZ7 (69)

where the frequency of the peak for this network is denoted as fj***. On the other hand, the
minimal prefactor computed from data from simulations is equal to:

4 1
min( ) — 0.6 X 10—68 1% min —1.3 1% : H (6 10)
GW T’O |peak - Y w ) 0 |peak — 4. T Z. .
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Figure 10: Hypothetical peak amplitudes of GWs emitted from cosmological domain walls
as a function of the peak frequency f compared to predicted sensitivities of current and
planned detectors LIGO [59-62|, LISA [63, 64|, AEDGE [65], AION-1km [66], ET [67, 68] as
well as upper bound induced by the CMB/BBN [69, 70].
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Summary |l

For a strong signal and a low frequency peak a period of
stable evolution is needed

Bias of the initial distribution easily destabilises the
network

Asymmetry of the potential destabilises the network for
symmetric distributions

Short living networks may give a strong signal if the
energy scale is very large - but this produces a high
frequency peak, beyond current sensitivity

Decaying networks of domain walls produce a signal in
the form of gravitational waves - too weak to be detected
anytime soon - if a signal is detected then either fine-
tuning or non-standard cosmology have occurred
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