O(d, d) transformations
preserve
classical mtegrablllty

. Yuta Sekiguchi

'University of Bern (AEC, ITP)

Recent Developments
in Strings and Gravity
11.Sep 2019@ Mon-Repos, Corfu

Based on 1907.03759 with
Domenico Orlando (INFN, Turin), Susanne Reffert (University of Bern), and

Kentaroh Yoshida (Kyoto University)



The plan of my talk

1. Motivation

2. Classical integrability of WZW models
3. Apply doubled formalism

4. Example (, time permitting)

5. Conclusions and outlook






1.1 Integrability of string theory

e AdSd4/CFTad-1: attractive examples of gauge/grawty(strmg) duallty

. pios o R T e A R D N S A e e I e S m I A e i i s e Gias o o L IS R ooe

d 5. [Maldacena-1998]

type IIB string on AdS5xS5 " 4d V=4 SUN) SYM (N — o0)

- Intriguing: integrable structures

allows us to determine physical quantities exactly,
even at finite coupling, without relying on supersymmetries.

e.g. scattering amplitudes, conformal dims. of composite ops.
spectrum of strings etc...

— Many directions of applications of integrability techniques!

A comprehensive review:
[Beisert et al-2010]

An ongoing series of

winter schools
of integrability (=YRISW)



1.1 Integrability of string theory

e AdSd/CFTad-1: attractive examples of gauge/grawty(strmg) duality

d 5. ” mtegrable mtegrable )

[various examples] i:
deformed deformed

type lIB string on AdS5xS5 " 4d /=4 SUN) SYM (N — o0) |

- Intriguing: integrable structures

allows us to determine physical quantities exactly,
even at finite coupling, without relying on supersymmetries.

e.g. scattering amplitudes, conformal dims. of composite ops.
spectrum of strings etc...

- On string theory side: integrable deformations

construct a variety of examples of Tdualities keeping integrability

— Want to follow a systematic approach for such deformations.

— Yang-Baxter (YB) deformation



~ .. [Delduc,Magro,Vicedo-2013]
1 @ 2 YB d efo rm atl o n [Klimcik-2002, 2014] [Kawaguchi,Matsumoto,Yoshida-2014]

* The YB deformed sigma model is characterized by a classical r-matrix,
linear operator solving the (modified) YB equation

with a linear R-operator: R(X) = Trao[ri2(1® X)] = ) (a;Tr (;X) — b;Tr (a;X))

o T12 = a; \b; = (a¢®bi—bi®ai)
and a const. deformation parameter: 7] > -

X,a;,b; €9



~ .. [Delduc,Magro,Vicedo-2013]
1 @ 2 YB d efo rm atl o n [Klimcik-2002, 2014] [Kawaguchi,Matsumoto,Yoshida-2014]

* The YB deformed sigma model is characterized by a classical r-matrix,
linear operator solving the (modified) YB equation

with a linear R-operator: R(X) = Trao[ri2(1® X)] = ) (a;Tr (;X) — b;Tr (a;X))

)

and a const. deformation parameter: 7]

e Given some r-matrix, read off the corresp. deformed background
via comparison with the canonical form of string sigma model.

— So systematic that lots of integrable deformed backgrounds produced.



1.3 YB deformation = O(d, d)

¥¢ Some YB deformed backgrounds closely related to O(d, d) transformations

e IsT tra nsformations e.g. [Matsumoto,Yoshida-2014] [Osten,van Tongeren-2016]

T-duality - angular shift - T-duality on the U(1) X U(1) directions [Maldacena,Russo] [Hashimoto,ltzhaki]
[Alday,Aryutunov,Frolov,] etc... [Maldacena,Lunin]

e T-fold backgrounds [Mmelgarejo-2017]

Non-geometric backgrounds, solutions in the generalized supergravity
[Arutyunov,Frolov,Hooare,Roiban,Tseytlin]

* Non-Abelian T-dual backgrounds [Borsato,wulff-2018] [Lust,Osten-2018]




1.3 YB deformation = O(d, d)

¥¢ Some YB deformed backgrounds closely related to O(d, d) transformations
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e T-fold backgrounds [Mmelgarejo-2017]

Non-geometric backgrounds, solutions in the generalized supergravity
[Arutyunov,Frolov,Hooare,Roiban,Tseytlin]

* Non-Abelian T-dual backgrounds [Borsato,wulff-2018] [Lust,Osten-2018]
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v Current-current deformations (as YB-def. [Borsato,Wulfi-2018] )

- marginal deformations of 2d CFTs 0L -
== ~ Jn(2)Jy(Z)
- generated by global O(d, d; R) transf. on

- traditional but related to the “recent” TT-deformation

e.g. [Hassan,Sen-1992] e.g. [Cavaglia et al-2016]
[Giveon,Kiritsis-1994] [Giveon,Itzhaki,Kutasov,2017]...
[Forste-1994]

[Forste,Roggenkamp-2003]
[Israel,Kounnas,Petropoulos,-2005]...

|
|
|
|




1.4 In my work, O(d, d) — Integrability

¥¢ Without YB, extract integrable structures of ANY global O(d, d; R) transf.
(bottom-up approach = complimentary to YB, or my collaborator)

v¢ Construct the Lax pairs of O(d, d) deformed models (see later—)

(—whose existence define the classical integrability)

10
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1.4 In my work, O(d, d) — Integrability

¥¢ Without YB, extract integrable structures of ANY global O(d, d; R) transf.
(bottom-up approach = complimentary to YB, or my collaborator)

¥¢ Construct the Lax pairs of O(d, d) deformed models (see later—)

< 0(d, d) transformations “rotate” the generalized metric: e.g. [Hassan,sen-1992]

[Blumenhagen, Deser,Plauschinn,Deser,Schmid,2013]

B —1 —1

Given H = (G _g_ciB B BGG_1 ) , the deformed bgr. data via field redefinition

[ )
undeformed c O(d, d) transformed deformed

H(G,B) - * hH(G,B)h = H(G',B)

Nowadays, the gen.metric is a crucial object in the O(d, d)-inv. formalisms

— 0(d, d) transf. well-controlled in the doubled formalism, why not use it!?

4 Integrable deformations and doubled formalism [Demulder,Hassler,Thompson-2018]...
4 also, developments in the doubled sigma model [Marotta Pezzella,vitale-2018,2019]...



1.5 Upshot

v¢ | studied how to construct Lax pairs (=def. of classical integrability)
in the O(d, d) deformed models using the doubled formalism.

[Hull-2004]

v¢ The resulting Lax pairs form the algebra of symmetries
hidden by deformations.

4+ ~ Revisit the traditional using a modern language.

— Return to the basics

12



2. Classical integrability
of WZW models



2 o 1 Te rmino I Ogy cf: conventions in [Ricci,Tseytlin,Wolf-2007]

e Having an infinite number of conserved charges (generated e.g. by Lax pairs)
is referred to as classical integrability.

14
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2 o 1 Te rmino I Ogy cf: conventions in [Ricci,Tseytlin,Wolf-2007]

e Having an infinite number of conserved charges (generated e.g. by Lax pairs)
is referred to as classical integrability.

. o B B spectral
Given a J satisfying dxJ =0and dJ+JAJ =0, parameter!
Lax pairs given by 1

ay = = (1 —cosh\),

[LZ@)\J—I—[?)\*JJ %

b)\ — 5 sinh A

w Lax pairsare flat AL + L AN L =0 on-shell.
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2 o 1 Te rmino I Ogy cf: conventions in [Ricci,Tseytlin,Wolf-2007]

e Having an infinite number of conserved charges (generated by Lax pairs)
is referred to as classical integrability.

spectral
parameter

e Givena ,J satisfying dxJ =0and dJ+JAJ =0,

Lax pairs given by ay = 1 (1— cosh\){)

[L:a,\Jer/\*J] 2

b)\ 5 sinh A

w Lax pairsare flat AL + L AN L =0 on-shell.

e An infinite number of charges generated by the monodromy matrix T(t; )\)

T(t; A) = Pexp {—/daﬁ’ﬁx(x’)} B A
. (n) (+) —
> — t) =0
=1+ Ao . TR _
n=0

Vn € ZZO




2.
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1 Te rmino I Ogy cf: conventions in [Ricci,Tseytlin,Wolf-2007]

e Having an infinite number of conserved charges (generated by Lax pairs)
is referred to as classical integrability.

\.

1

00 — 5 /dx Ji(t, x)

1
Q(l)Z—Z/da:J /da:/ da’ J, (t, ) J, (t, )

.. infinitely many non-local charges

S/

e An infinite number of charges generated by the monodromy matrix T(t; )\)

T (t; \) = Pexp {—/daﬁ’ﬁx(x’)} 4 A
. (n) (4} —
> — t) =20
— 14 A R
n=0

Vn € ZZO




2.2 Basics of SU(2) WZNW on S° w/ H-flux

e The WZNW action

4

Slg] = —1/ Tr |g~ 'dg A xg~'dg| + %/ Tr (g_ldg)/\3
> V3

18



2.2 Basics of SU(2) WZNW on S° w/ H-flux

e The WZNW action

1 (

Slg] = ——/ Ir [g_ldg /\*g_ldg} - —/ 1r (g_ldg)/\g
P 3L v,

4

has conserved and flat currents

JL=(1—ix) g 'dg, Jr=(1+ix) (—dgg™")

e For g € SU(2) , six Lax pairs can be constructed.

19

e Monodromy matrix, and then non-local charges.....



2.3 Gauged Lax pairs

e Lax connections are equivalent up to gauge transformations:

L L=h"YLh+htdh

20



2.3 Gauged Lax pairs
e Lax connections are equivalent up to gauge transformations:

L L=h"YLh+htdh

e For aspecific g = e~ “lz it 212 with [T, 18| = €ap, 1
_ 6—(Z1—|-Z2)T26YT1 €—|-(Z1—Z2)T2

21

i th . hy, = e (Z1=22)T> tarti it
n n '
using the gaugings {hR itz our proper starting point s

L2 = —F(\)[dZ — dZy — cosY (dZ1 + d25)] — (dZ1 — dZs),
£3 — —|—F1 ()\) sin Y (le —+ dZQ) ; Fl()\) _ [(’ib>\ . CL>\) + (ia>\ . b)\)*]
n Fs5(X) = [(ib ] b
£ = 4B (MY, 2(A) = [(ibx + ax) + (iax + by) x|
L2 = 4+Fo(\) [dZ) +dZy — cosY (dZ) — dZ,)] — (dZ; + dZ5)
L3 =4+F,(\)sinY (dZ; — dZ,)

No explicit dep. on (Z;, Z,)
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2.3 Gauged Lax pairs and O(2,2) deformed Lax pairs
("

\
e Lax pairs should depend on th CrrdXTdXT = idyz +sin” (%) A7} + cos® (%) 473
only through their derivatives ( Bod X" A dX” = cos? (%) A2, A dZs.
OO

L1 =4+F (MY,

L3 = —F(\)[dZ, —dZy —cosY (A7, + d25)] — (A2, — dZs),

L3 =+F(\N)sinY (dZ, +dZ,),

Lk = +F2(MN)dY,

L2 = +F,(\) [dZ, + dZy — cosY (A2, — dZ5)] — (dZy 4+ d2Z)

L3 =+F,(\)sinY (dZ, —dZ,)

v¢ The strategy at O(2,2) (in the basis of (Z,, Z,)) deformed Lax pairs:

1. Build a map (O(2,2) transf. rule) for (dZ,,dZ,): { _— [:(dZ — @(dZ’))}

2. Check the flatness (on-shell = EoMs in the deformed model).



23
2.3 Gauged Lax pairs and O(2,2) deformed Lax pairs

cf: [Ricci, Tseytlin, Wolf-2007]
e Lax pairs should depend on the U(1) isometric directions

only through their derivatives (cf: T-duality, Buscher rule).

L1 =+F(\)dY,

L3 = —F(\)[dZ, —dZy —cosY (A7, + d25)] — (A2, — dZs),
L3 =+F(\)sinY (47, +dZ,),

L =+F(N)dY,

L2 = +F,(\) [dZ, + dZy — cosY (A2, — dZ5)] — (dZy 4+ d2Z)
L3 =4+F>(\)sinY (dZ; —dZ,)

v¢ The strategy at O(2,2) (in the basis of (Z,, Z,)) deformed Lax pairs:

1. Build a map (O(2,2) transf. rule) for (dZ,,dZ,): [ _— [:(dZ — @(dZ’))}

2. Check the flatness (on-shell = EoMs in the deformed model).



3. Apply doubled formalism



25
3.1 Action and constraint of the doubled sigma model

[Hull-2004]
e Doubled formalism based on the doubled torus fibration over a base manifold.

To T fiber of the physical sigma model description, we add a dual torus T7¢

so the fiber becomes the doubled torus 7%¢.

~

e For the doubled coords. X' = (X*, X,) . the doubled sigma

model reads

1
S:/§H1JdX1A*dXJ+£(Y)

O(d,d) invariance: H — h'Hh, dX — A~ 1dX
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3.1 Action and constraint of the doubled sigma model

[Hull-2004]
e Doubled formalism based on the doubled torus fibration over a base manifold.

To T fiber of the physical sigma model description, we add a dual torus T7¢

so the fiber becomes the doubled torus 7%¢.

~

e For the doubled coords. X' = (X*, X,) . the doubled sigma

model reads

1
S:/§”H”dX1/\*dXJ+[,(Y)

O(d,d) invariance: H — h'Hh, dX — A~ 1dX

0 1y4
1, O

e |t is equipped with the self-duality constraint:
r

.
L

dX" = L H j i % X"

N —

truncates the doubled formalism to the standard sigma model.
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3.2 Winding coords and O(d, d) map (ormiretenys. veshica- 2019
e Unpackaging the self-duality constraint, the winding coords.

dXz — % (G’&J + B,,;j*) dX7 = *Jj

turn into (dual of) Noether currents for U(1)-isometry: dQXi =0=dxJ;
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3.2 Winding coords and O(d, d) map (ormireterys.vostias2019
e Unpackaging the self-duality constraint, the winding coords.
dXz — % (GZJ -+ Bz'j‘k) dX’/ = *Ji

turn into (dual of) Noether currents for U(1)-isometry: dQX'i =0=dxJ;

e Therefore, the O(d, d) transformation by g = ((;é ?) leads to

O(d,d) map: | dX* = ozijdX/j + ﬁm xJ, | = @(dX/)

(undeformed) = (deformed)
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3.2 Winding coords and O(d, d) map (ormireterys.vostias2019
e Unpackaging the self-duality constraint, the winding coords.

dXZ = % (GZJ -+ Bij‘k) dX] = *Jf,;

turn into (dual of) Noether currents for U(1)-isometry: dQXi =0=dxJ;

e Therefore, the O(d, d) transformation by g = ((;é ?) leads to

O(d, d) map: ' dX" Zozijd)(/j—I—ﬁik*J,{C l = @(dX/)

(undeformed) = (deformed)

e This map results in the O(d d) deformed Lax palrs as

L (dX ) ﬁ(dX — @(dX ))

— Flatness ON-SHELL (=EoMs in the deformed model) to be checked —
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3.4 Maps for On-She" Condltlons [Orlando,Reffert,Y.S.,Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

AL+ L A L Z (EoMs for dX,Y),
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3,4 Maps for on-she" COndlthnS [Orlando,Reffert,Y.S.,Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

dL + LA L Z (EoMs for dX,Y),
LX) = £(dX — D(AX) g
AL + L' AL x Z(EOMS for dX',Y);

J
1. The O(d, d) transformation for the (diff. of) winding coords. by g = (?; g) is

dX; = v;;d X" + 6;*d X},
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3,4 Maps for on-she" COndlthnS [Orlando,Reffert,Y.S.,Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

dL + LA L Z (EoMs for dX,Y),
LX) = £(dX — D(AX) g
AL + L' AL x Z(EOMS for dX',Y);

J
1. The O(d, d) transformation for the (diff. of) winding coords. by g = (Q 5) is

v 0
*Ji — "yijdX/j -+ 5@1@ * J;/C
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3.4 Maps for on-shell conditions (orando.reffert,.s..Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

dL + LA L Z (EoMs for dX,Y),
LX) = £(dX — D(AX)) g
AL + L' AL x Z(EOMS for dX',Y);

J
1. The O(d, d) transformation for the (diff. of) winding coords. by g = (?; g) is




.. 34
3,4 Maps for on-she" COndlthnS [Orlando,Reffert,Y.S.,Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

dL + LA L Z (EoMs for dX,Y),
L£'(dX') = L(dX — D(dX)) ¢ unchanged
AL’ + £/ AL o Y (EoMs for dX',Y);

J
1. The O(d, d) transformation for the (diff. of) winding coords. by g = (?; g) is

2. Using the O(d, d) invariance of the doubled action
and the self-duality constraint,

6S[dX,Y] 69'[dX',Y]
oY N oY
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3,4 Maps for on-she" COndlthnS [Orlando,Reffert,Y.S.,Yoshida-2019]

e Start from the undeformed (gauged) Lax pairs fadazted cgords.
x = Ox

d£+£/\£ocz (EoMs for dX,Y),

L£'(dX') = L(dX — D(dX)) //_unchanged
v )
dﬁ' L LOAL Z (EoMs for dX',Y);
J

1. The O(d, d) transformation for the (diff. of) winding coords. by g = (?; g) is

2. Using the O(d, d) invariance of the doubled action
and the self-duality constraint,

{55[&(, Y] 55'[dX/,yH — Flat on-shell
oy 8y after O(d, d)




[Orlando,Reffert,Y.S.,Yoshida-2019]

3 ° 5 ReCI pe summari zed extended from [Ricci, Tseytlin,Wolf-2007]

Recipe for O(d, d) deformed Lax pairs

-

\.

1. Find flat Noether currents J to construct Lax pairs [ .
2. Find gauged Lax pairs £ explicitly indep. of adapted coords.

3. Apply the O(d, d) map from the doubled formalism to ,CA to obtain [’.

% Flatness guaranteed.

36



4. Example

(,time permitting)



4.1 Examples of 0J(2,2) deformations *

4 A

e Imagine the S° background 1 1% %
J J G, dXHdX" = ZdYZ + sin? (5> dZ7 + cos? <§> dZ3

Y
B, dX" NdX" = cos? (5) dZ; ANdZs.

U

e Gauged Lax pairs are given by

e Use the doubled formalism based on Z = (Z,, Z,, Zp Zz)
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4.2 Examples of 0J(2,2) deformations

e Whatever 0(2,2) element you choose, e.g.,

/ 1 0 0 tan «
1 n o
O 1+tan o o 1:C|—a£an 6" O
g= (current-current deformation)
0 1 1 0
1+tan o 1+tan o
\=1 0 0 1)

e Write down the O(2,2) map dZ; = ©,(dZ') =1-dZ, + tana % J,

1 t
dzZ; — i * Jy

1 4+ tan o

423 = D,(dZ') = 1 + tan o

[@1( ) QQ(dZ ) —cosY (Ql(dZ’) + gg(dZ,))] — (@1((12/) — QQ(dZ’)) ,
sinY (D1(dZ") + D5(dZ")),

[@1( ) + @g(dZ’) —cosY (@1((12/) — @g(dZ’))] — (@1((12/) -+ @g(dZ’)) ,

sinY (9,(dZ7) - D2(d2)) . dL + L' A L =0 still holds.



5. Conclusions and Outlook



6. Conclusions and outlook: O(d,d) is not odd “

v¢ This work completed the classical integrability of ANY global
O(d, d) transformation using the doubled formalism from the bottom.

— 0(d, d) deformed Lax pairs involve windings = U(1) currents

— All the current-current deformations are integrable.

— Using our recipe, we can extract all the Lax pairs for the symmetry
hidden by the O(d, d) deformations. cf: [Beisert-2009]

v Some (technical) things to do:
[work in progress]

4+ Algebra of non-local charges...  |kawaguchi,yoshida-2010]...

4+ 0(d, d) map interpreted as deformations on the spectral parameter?

4+ Local O(d, d) deformations...

s% Doubled formalism based on the Abelian isometries

— Any extension?

[I'm just saying] (What would be a collective T-duality invariant framework...(if any) ?)



Thank you!

Euxapiotw




