O(d, d) transformations preserve classical integrability

Yuta Sekiguchi

SWISS NATIONAL SCIENCE FOUNDATION

University of Bern (AEC, ITP)

Recent Developments
in Strings and Gravity
11.Sep 2019@ Mon-Repos, Corfu

^b UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER OR FUNDAMENTAL PHYSICS

Based on 1907.03759 with

Domenico Orlando (INFN, Turin), Susanne Reffert (University of Bern), and Kentaroh Yoshida (Kyoto University)

The plan of my talk

- 1. Motivation
- 2. Classical integrability of WZW models
- 3. Apply doubled formalism
- 4. Example (, time permitting)
- 5. Conclusions and outlook

1. Motivation

1.1 Integrability of string theory

AdS_d/CFT_{d-1}: attractive examples of gauge/gravity(string) duality

d=5: [Maldacena-1998]

type IIB string on AdS5xS5 '4d $\mathcal{N}=4$ SU(N) SYM ($N \to \infty$)

- Intriguing: integrable structures

allows us to determine physical quantities exactly, even at finite coupling, without relying on supersymmetries.

> e.g. scattering amplitudes, conformal dims. of composite ops. spectrum of strings etc...

→ Many directions of applications of integrability techniques!

A comprehensive review: [Beisert et al-2010]

An ongoing series of winter schools of integrability (=YRISW)

1.1 Integrability of string theory

• AdSd/CFTd-1: attractive examples of gauge/gravity(string) duality

d=5: [various examples] integrable deformed type IIB string on AdS5xS5 integrable deformed $\mathcal{N}=4$ SU(N) SYM ($N\to\infty$)

- Intriguing: integrable structures

allows us to determine physical quantities exactly, even at finite coupling, without relying on supersymmetries.

e.g. scattering amplitudes, conformal dims. of composite ops. spectrum of strings etc...

- On string theory side: integrable deformations construct a variety of examples of †dualities keeping integrability
- → Want to follow a systematic approach for such deformations.
- → Yang-Baxter (YB) deformation

1.2 YB deformation [Klimcik-2002, 2014] [Delduc, Magro, Vicedo-2013] [Kawaguchi, Matsumoto, Yoshida-2014]

 The YB deformed sigma model is characterized by a classical r-matrix, linear operator solving the (modified) YB equation

$$[R(X), R(Y)] + R([R(X), Y] + [X, R(Y)]) = [X, Y]$$
 $X, Y \in \mathfrak{g}$

ullet The YB sigma model reads for $\,g \in G\,$

$$S = -\frac{T}{2} \int d^2 \xi \left(\eta^{\alpha\beta} - \epsilon^{\alpha\beta} \right) \operatorname{Tr} \left[\left(g^{-1} \partial_{\alpha} g \right) \frac{1}{1 - \eta R} \left(g^{-1} \partial_{\beta} g \right) \right]$$

with a linear
$$R$$
-operator: $R(X) = \operatorname{Tr}_2[r_{12}(1 \otimes X)] \equiv \sum_i \left(a_i\operatorname{Tr}\left(b_iX\right) - b_i\operatorname{Tr}\left(a_iX\right)\right)$

and a const. deformation parameter: η

$$r_{12} = \sum_{i} a_i \wedge b_i \equiv \sum_{i} (a_i \otimes b_i - b_i \otimes a_i)$$

$$X, a_i, b_i \in \mathfrak{g}$$

1.2 YB deformation [Klimcik-2002, 2014] [Delduc, Magro, Vicedo-2013] [Kawaguchi, Matsumoto, Yoshida-2014]

 The YB deformed sigma model is characterized by a classical r-matrix, linear operator solving the (modified) YB equation

$$[R(X), R(Y)] + R([R(X), Y] + [X, R(Y)]) = [X, Y]$$

ullet The YB sigma model reads for $\,g \in G\,$

$$S = -\frac{T}{2} \int d^2 \xi \left(\eta^{\alpha\beta} - \epsilon^{\alpha\beta} \right) \operatorname{Tr} \left[\left(g^{-1} \partial_{\alpha} g \right) \frac{1}{1 - \eta R} \left(g^{-1} \partial_{\beta} g \right) \right]$$

with a linear
$$R$$
-operator: $R(X) = \operatorname{Tr}_2[r_{12}(1 \otimes X)] \equiv \sum_i (a_i \operatorname{Tr}(b_i X) - b_i \operatorname{Tr}(a_i X))$

and a const. deformation parameter: η

- Given some *r*-matrix, read off the corresp. deformed background via comparison with the canonical form of string sigma model.
- → So systematic that lots of integrable deformed backgrounds produced.

1.3 YB deformation $\rightarrow O(d, d)$

- \precsim Some YB deformed backgrounds closely related to O(d,d) transformations
 - TsT transformations e.g. [Matsumoto, Yoshida-2014] [Osten, van Tongeren-2016]

T-duality - angular shift - T-duality on the $U(1) \times U(1)$ directions [Maldacena,Russo] [Hashimoto,Itzhaki] [Maldacena,Lunin]

T-fold backgrounds [Melgarejo-2017]

Non-geometric backgrounds, solutions in the generalized supergravity [Arutyunov,Frolov,Hooare,Roiban,Tseytlin]

Non-Abelian T-dual backgrounds [Borsato, Wulff-2018] [Lust, Osten-2018]

1.3 YB deformation $\rightarrow O(d, d)$

- \gtrsim Some YB deformed backgrounds closely related to O(d,d) transformations
 - TsT transformations e.g. [Matsumoto, Yoshida-2014] [Osten, van Tongeren-2016]

T-duality - angular shift - T-duality on the $U(1) \times U(1)$ directions [Maldacena,Russo] [Hashimoto,Itzhaki] [Maldacena,Lunin]

T-fold backgrounds [Melgarejo-2017]

Non-geometric backgrounds, solutions in the generalized supergravity [Arutyunov,Frolov,Hooare,Roiban,Tseytlin]

• Non-Abelian T-dual backgrounds [Borsato, Wulff-2018] [Lust, Osten-2018]

★ Current-current deformations (as YB-def. [Borsato, Wulff-2018])

- marginal deformations of 2d CFTs
- $rac{\partial L}{\partial \eta} \sim J_{\eta}(z) ar{J}_{\eta}(ar{z})$
- generated by global $O(d,d;\mathbb{R})$ transf.
- traditional but related to the "recent" $Tar{T}$ -deformation

e.g. [Hassan,Sen-1992] e.g. [Giveon,Kiritsis-1994] [Forste-1994] [Forste,Roggenkamp-2003] [Israel,Kounnas,Petropoulos,-2005]...

e.g. [Cavaglia et al-2016] [Giveon, Itzhaki, Kutasov, 2017]...

1.4 In my work, $O(d, d) \rightarrow$ Integrability

- \Leftrightarrow Without YB, extract integrable structures of ANY global $O(d, d; \mathbb{R})$ transf. (bottom-up approach = complimentary to YB, or my collaborator)
- \Leftrightarrow Construct the Lax pairs of O(d,d) deformed models (see later \rightarrow)

(→whose existence define the classical integrability)

1.4 In my work, $O(d, d) \rightarrow$ Integrability

- \Leftrightarrow Without YB, extract integrable structures of ANY global $O(d,d;\mathbb{R})$ transf. (bottom-up approach = complimentary to YB, or my collaborator)
- \Leftrightarrow Construct the Lax pairs of O(d,d) deformed models (see later \rightarrow)
- O(d,d) transformations "rotate" the generalized metric: e.g. [Hassan, Sen-1992]

Given $\mathcal{H}=\begin{pmatrix}G-BG^{-1}B&BG^{-1}\\-G^{-1}B&G^{-1}\end{pmatrix}$, the deformed bgr. data via field redefinition

Nowadays, the gen.metric is a crucial object in the O(d, d)-inv. formalisms

- $\rightarrow O(d,d)$ transf. well-controlled in the doubled formalism, why not use it!?
- ♦ Integrable deformations and doubled formalism [Demulder, Hassler, Thompson-2018]...
- ♦ also, developments in the doubled sigma model [Marotta,Pezzella,VItale-2018,2019]...

1.5 Upshot

 \gtrsim I studied how to construct Lax pairs (=def. of classical integrability) in the O(d,d) deformed models using the doubled formalism.

[Hull-2004]

- The resulting Lax pairs form the algebra of symmetries hidden by deformations.
- **♦** ~ Revisit the traditional using a modern language.
 - → Return to the basics

2. Classical integrability of WZW models

2.1 Terminology cf: conventions in [Ricci, Tseytlin, Wolf-2007]

• Having an infinite number of conserved charges (generated e.g. by Lax pairs) is referred to as classical integrability.

2.1 Terminology

cf: conventions in [Ricci, Tseytlin, Wolf-2007]

- Having an infinite number of conserved charges (generated e.g. by Lax pairs) is referred to as classical integrability.
- ullet Given a J satisfying $\mathrm{d}\star J=0$ and $\mathrm{d}J+J\wedge J=0$, Lax pairs given by

$$\mathcal{L} = a_{\lambda}J + b_{\lambda} \star J$$

$$\mathcal{L} = a_{\lambda} J + b_{\lambda} \star J \qquad a_{\lambda} = \frac{1}{2} (1 - \cosh \lambda),$$

$$b_{\lambda} = \frac{1}{2} \sinh \lambda$$

spectral

parameter

 $\stackrel{\wedge}{\sim}$ Lax pairs are flat $\mathrm{d}\mathcal{L} + \mathcal{L} \wedge \mathcal{L} = 0$ on-shell.

2.1 Terminology

cf: conventions in [Ricci, Tseytlin, Wolf-2007]

- Having an infinite number of conserved charges (generated by Lax pairs) is referred to as classical integrability.
- ullet Given a J satisfying $\mathrm{d}\star J=0$ and $\mathrm{d}J+J\wedge J=0$,

spectral parameter

Lax pairs given by

$$\mathcal{L} = a_{\lambda}J + b_{\lambda} \star J$$

$$\mathcal{L} = a_{\lambda}J + b_{\lambda} \star J \qquad a_{\lambda} = \frac{1}{2}\left(1 - \cosh\lambda\right),$$

$$b_{\lambda} = \frac{1}{2}\sinh\lambda$$

- $\stackrel{\wedge}{\approx}$ Lax pairs are flat $\mathrm{d}\mathcal{L} + \mathcal{L} \wedge \mathcal{L} = 0$ on-shell.
- ullet An infinite number of charges generated by the monodromy matrix $\,\mathcal{T}(t;\lambda)$

$$\mathcal{T}(t;\lambda) = \mathcal{P}\exp\left[-\int dx' \mathcal{L}_x(x')\right]$$
$$= 1 + \sum_{n=0}^{\infty} \lambda^{n+1} \mathcal{Q}^{(n)}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{Q}^{(n)}(t) = 0$$

 $\forall n \in \mathbb{Z}_{>0}$

 $\forall n \in \mathbb{Z}_{\geq 0}$

2.1 Terminology

cf: conventions in [Ricci, Tseytlin, Wolf-2007]

Having an infinite number of conserved charges (generated by Lax pairs)
is referred to as classical integrability.

$$\mathcal{Q}^{(0)} = \frac{1}{2} \int dx J_t(t, x)$$

$$\mathcal{Q}^{(1)} = -\frac{1}{4} \int dx J_x(t, x) + \frac{1}{2} \int dx \int^x dx' J_t(t, x) J_t(t, x')$$

... infinitely many non-local charges

ullet An infinite number of charges generated by the monodromy matrix $\,\mathcal{T}(t;\lambda)$

$$\mathcal{T}(t;\lambda) = \mathcal{P}\exp\left[-\int dx' \mathcal{L}_x(x')\right]$$

$$= 1 + \sum_{n=0}^{\infty} \lambda^{n+1} \mathcal{Q}^{(n)}(t)$$

$$\frac{d}{dt} \mathcal{Q}^{(n)}(t) = 0$$

2.2 Basics of SU(2) WZNW on S^3 w/ H-flux

• The WZNW action

$$S[g] = -\frac{1}{4} \int_{\Sigma_2} \operatorname{Tr} \left[g^{-1} dg \wedge \star g^{-1} dg \right] + \frac{i}{3!} \int_{\mathcal{V}_3} \operatorname{Tr} \left(g^{-1} dg \right)^{\wedge 3}$$

2.2 Basics of SU(2) WZNW on S^3 w/ H-flux

The WZNW action

$$S[g] = -\frac{1}{4} \int_{\Sigma_2} \operatorname{Tr} \left[g^{-1} dg \wedge \star g^{-1} dg \right] + \frac{i}{3!} \int_{\mathcal{V}_3} \operatorname{Tr} \left(g^{-1} dg \right)^{\wedge 3}$$

has conserved and flat currents

$$J_{\rm L} = (1 - i\star) g^{-1} dg, \quad J_{\rm R} = (1 + i\star) (-dgg^{-1})$$

- For $g \in SU(2)$, six Lax pairs can be constructed.
 - Monodromy matrix, and then non-local charges.....

2.3 Gauged Lax pairs

• Lax connections are equivalent up to gauge transformations:

$$\mathcal{L} \to \hat{\mathcal{L}} = h^{-1}\mathcal{L}h + h^{-1}dh$$

2.3 Gauged Lax pairs

• Lax connections are equivalent up to gauge transformations:

$$\mathcal{L} \to \hat{\mathcal{L}} = h^{-1}\mathcal{L}h + h^{-1}dh$$

• For a specific $g=e^{-Z_+T_2}e^{YT_1}e^{+Z_-T_2}$ with $[T_\alpha,T_\beta]=\epsilon_{\alpha\beta\gamma}T_\gamma$, $=e^{-(Z_1+Z_2)T_2}e^{YT_1}e^{+(Z_1-Z_2)T_2}$

using the gaugings $\begin{cases} h_{\rm L}=e^{-(Z_1-Z_2)T_2}\\ h_{\rm R}=e^{-(Z_1+Z_2)T_2} \end{cases}$, our proper starting point is

$$\hat{\mathcal{L}}_{L}^{1} = +F_{1}(\lambda)dY,$$

$$\hat{\mathcal{L}}_{L}^{2} = -F_{1}(\lambda)\left[dZ_{1} - dZ_{2} - \cos Y\left(dZ_{1} + dZ_{2}\right)\right] - \left(dZ_{1} - dZ_{2}\right),$$

$$\hat{\mathcal{L}}_{L}^{3} = +F_{1}(\lambda)\sin Y\left(dZ_{1} + dZ_{2}\right),$$

$$F_{1}(\lambda) = \left[\left(ib_{\lambda} - a_{\lambda}\right) + \left(ia_{\lambda} - b_{\lambda}\right) \star\right]$$

$$F_{2}(\lambda) = \left[\left(ib_{\lambda} + a_{\lambda}\right) + \left(ia_{\lambda} + b_{\lambda}\right) \star\right]$$

$$\hat{\mathcal{L}}_{R}^{2} = +F_{2}(\lambda) \left[\frac{dZ_{1}}{dZ_{1}} + \frac{dZ_{2}}{dZ_{2}} - \cos Y \left(\frac{dZ_{1}}{dZ_{1}} - \frac{dZ_{2}}{dZ_{2}} \right) \right] - \left(\frac{dZ_{1}}{dZ_{1}} + \frac{dZ_{2}}{dZ_{2}} \right)$$

$$\hat{\mathcal{L}}_{\mathrm{R}}^{3} = +F_{2}(\lambda)\sin Y\left(\frac{\mathrm{d}Z_{1}}{\mathrm{d}Z_{2}}\right)$$

No explicit dep. on (Z_1, Z_2)

2.3 Gauged Lax pairs and O(2,2) deformed Lax pairs

 Lax pairs should depend on th only through their derivatives (

$$G_{\mu\nu} dX^{\mu} dX^{\nu} = \frac{1}{4} dY^2 + \sin^2\left(\frac{Y}{2}\right) dZ_1^2 + \cos^2\left(\frac{Y}{2}\right) dZ_2^2$$
$$B_{\mu\nu} dX^{\mu} \wedge dX^{\nu} = \cos^2\left(\frac{Y}{2}\right) dZ_1 \wedge dZ_2.$$

$$\hat{\mathcal{L}}_{L}^{1} = +F_{1}(\lambda)dY,
\hat{\mathcal{L}}_{L}^{2} = -F_{1}(\lambda) \left[dZ_{1} - dZ_{2} - \cos Y \left(dZ_{1} + dZ_{2} \right) \right] - \left(dZ_{1} - dZ_{2} \right),
\hat{\mathcal{L}}_{L}^{3} = +F_{1}(\lambda) \sin Y \left(dZ_{1} + dZ_{2} \right),
\hat{\mathcal{L}}_{R}^{1} = +F_{2}(\lambda)dY,
\hat{\mathcal{L}}_{R}^{2} = +F_{2}(\lambda) \left[dZ_{1} + dZ_{2} - \cos Y \left(dZ_{1} - dZ_{2} \right) \right] - \left(dZ_{1} + dZ_{2} \right)
\hat{\mathcal{L}}_{R}^{3} = +F_{2}(\lambda) \sin Y \left(dZ_{1} - dZ_{2} \right)$$

- Arr The strategy at O(2,2) (in the basis of (Z_1,Z_2)) deformed Lax pairs:
- 1. Build a map (O(2,2) transf. rule) for $(\mathrm{d}Z_1,\mathrm{d}Z_2)$: $\mathcal{L}'=\hat{\mathcal{L}}(\mathrm{d}Z\to\mathfrak{D}(\mathrm{d}Z'))$
- 2. Check the flatness (On-shell = EoMs in the deformed model).

2.3 Gauged Lax pairs and O(2,2) deformed Lax pairs

cf: [Ricci, Tseytlin, Wolf-2007]

 Lax pairs should depend on the U(1) isometric directions only through their derivatives (cf: T-duality, Buscher rule).

$$\hat{\mathcal{L}}_{L}^{1} = +F_{1}(\lambda)dY,
\hat{\mathcal{L}}_{L}^{2} = -F_{1}(\lambda) \left[\frac{dZ_{1} - dZ_{2} - \cos Y (dZ_{1} + dZ_{2})}{(dZ_{1} + dZ_{2})} \right] - (dZ_{1} - dZ_{2}),
\hat{\mathcal{L}}_{L}^{3} = +F_{1}(\lambda) \sin Y (dZ_{1} + dZ_{2}),
\hat{\mathcal{L}}_{R}^{1} = +F_{2}(\lambda)dY,
\hat{\mathcal{L}}_{R}^{2} = +F_{2}(\lambda) \left[\frac{dZ_{1} + dZ_{2} - \cos Y (dZ_{1} - dZ_{2})}{(dZ_{1} - dZ_{2})} \right] - (dZ_{1} + dZ_{2}),
\hat{\mathcal{L}}_{R}^{3} = +F_{2}(\lambda) \sin Y (dZ_{1} - dZ_{2})$$

 \rightleftharpoons The strategy at O(2,2) (in the basis of (Z_1,Z_2)) deformed Lax pairs:

- 1. Build a map (O(2,2) transf. rule) for $(\mathrm{d}Z_1,\mathrm{d}Z_2)$: $\mathcal{L}'=\hat{\mathcal{L}}(\mathrm{d}Z\to\mathfrak{D}(\mathrm{d}Z'))$
- 2. Check the flatness (On-shell = EoMs in the deformed model).

3. Apply doubled formalism

3.1 Action and constraint of the doubled sigma model

[Hull-2004]

- Doubled formalism based on the doubled torus fibration over a base manifold. To T^d fiber of the physical sigma model description, we add a dual torus \tilde{T}^d so the fiber becomes the doubled torus T^{2d} .
- \bullet For the doubled coords. $\mathbb{X}^I=(X^i,\tilde{X}_i)$, the doubled sigma model reads

$$S = \int \frac{1}{2} \mathcal{H}_{IJ} dX^I \wedge \star dX^J + \mathcal{L}(Y)...$$

O(d,d) invariance: $\mathcal{H} \to h^t \mathcal{H} h$, $d\mathbb{X} \to h^{-1} d\mathbb{X}$

3.1 Action and constraint of the doubled sigma model

[Hull-2004]

- Doubled formalism based on the doubled torus fibration over a base manifold. To T^d fiber of the physical sigma model description, we add a dual torus \tilde{T}^d so the fiber becomes the doubled torus T^{2d} .
- \bullet For the doubled coords. $\mathbb{X}^I=(X^i,\tilde{X}_i)$, the doubled sigma model reads

$$S = \int \frac{1}{2} \mathcal{H}_{IJ} dX^I \wedge \star dX^J + \mathcal{L}(Y)...$$

O(d,d) invariance: $\mathcal{H} \to h^t \mathcal{H} h$, $d\mathbb{X} \to h^{-1} d\mathbb{X}$

• It is equipped with the self-duality constraint:

$$dX^I = L^{IJ} \mathcal{H}_{JK} \star dX^K$$

$$L = \begin{pmatrix} 0 & \mathbf{1}_d \\ \mathbf{1}_d & 0 \end{pmatrix}$$

truncates the doubled formalism to the standard sigma model.

3.2 Winding coords and O(d,d) map [Rennecke-2014] [Orlando,Reffert,Y.S.,Yoshida-2019]

Unpackaging the self-duality constraint, the winding coords.

$$d\tilde{X}_i = \star (G_{ij} + B_{ij} \star) dX^j = \star J_i$$

turn into (dual of) Noether currents for U(1)-isometry: $\mathrm{d}^2 \tilde{X}_i = 0 = \mathrm{d} \star J_i$

3.2 Winding coords and O(d,d) map [Rennecke-2014] [Orlando,Reffert,Y.S.,Yoshida-2019]

Unpackaging the self-duality constraint, the winding coords.

$$d\tilde{X}_i = \star (G_{ij} + B_{ij} \star) dX^j = \star J_i$$

turn into (dual of) Noether currents for U(1)-isometry: $\mathrm{d}^2 \tilde{X}_i = 0 = \mathrm{d} \star J_i$

• Therefore, the O(d,d) transformation by $\ g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ leads to

$$O(d,d)$$
 map:

$$O(d,d)$$
 map: $\left(dX^i = \alpha^i{}_j dX'^j + \beta^{ik} \star J'_k \right) = \mathfrak{D}(dX')$

(undeformed) = (deformed)

3.2 Winding coords and O(d,d) map [Rennecke-2014] [Orlando,Reffert,Y.S.,Yoshida-2019]

• Unpackaging the self-duality constraint, the winding coords.

$$d\tilde{X}_i = \star (G_{ij} + B_{ij} \star) dX^j = \star J_i$$

turn into (dual of) Noether currents for U(1)-isometry: $\mathrm{d}^2 \tilde{X}_i = 0 = \mathrm{d} \star J_i$

• Therefore, the O(d,d) transformation by $\ g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ leads to

$$O(d,d)$$
 map:
$$\left(\mathrm{d}X^i = \alpha^i{}_j\mathrm{d}X'^j + \beta^{ik}\star J'_k\right) = \mathfrak{D}\big(\mathrm{d}X'\big)$$

(undeformed) = (deformed)

• This map results in the O(d, d) deformed Lax pairs as

$$\mathcal{L}'(dX') = \hat{\mathcal{L}}(dX \to \mathfrak{D}(dX'))$$

 \rightarrow Flatness ON-SHELL (=EoMs in the deformed model) to be checked \rightarrow

• Start from the undeformed (gauged) Lax pairs

adapted coords.

$$\mathrm{d}\hat{\mathcal{L}} + \hat{\mathcal{L}} \wedge \hat{\mathcal{L}} \propto \sum_{i} \left(\mathrm{EoMs \ for \ d}X, Y \right)_{i}$$

Start from the undeformed (gauged) Lax pairs

adapted coords.

$$d\hat{\mathcal{L}} + \hat{\mathcal{L}} \wedge \hat{\mathcal{L}} \propto \sum (\text{EoMs for } dX, Y)_i$$

$$\mathcal{L}'(\mathrm{d}X') = \hat{\mathcal{L}}(\mathrm{d}X \to \mathfrak{D}(\mathrm{d}X'))$$

$$\mathrm{d}\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' \overset{?}{\propto} \sum_{j} (\mathrm{EoMs\ for\ d}X', Y)_{j}$$

1. The O(d,d) transformation for the (diff. of) winding coords. by $g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is

$$d\tilde{X}_i = \gamma_{ij} dX^{\prime j} + \delta_i^{\ k} d\tilde{X}_k^{\prime}$$

• Start from the undeformed (gauged) Lax pairs

adapted coords.

$$\mathrm{d}\hat{\mathcal{L}} + \hat{\mathcal{L}} \wedge \hat{\mathcal{L}} \propto \sum \left(\mathrm{EoMs\ for\ d}X, Y \right)_i$$

 $\mathcal{L}'(\mathrm{d}X') = \hat{\mathcal{L}}(\mathrm{d}X \to \mathfrak{D}(\mathrm{d}X'))$

$$\mathrm{d}\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' \overset{?}{\propto} \sum_{j} (\mathrm{EoMs\ for\ d}X', Y)_{j}$$

1. The O(d,d) transformation for the (diff. of) winding coords. by $g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is

$$\star J_i = \gamma_{ij} dX^{\prime j} + \delta_i^{\ k} \star J_k^{\prime}$$

Start from the undeformed (gauged) Lax pairs

adapted coords.

$$\mathrm{d}\hat{\mathcal{L}} + \hat{\mathcal{L}} \wedge \hat{\mathcal{L}} \propto \sum \left(\mathrm{EoMs\ for\ d}X, Y \right)_i$$

$$\mathcal{L}'(\mathrm{d}X') = \hat{\mathcal{L}}(\mathrm{d}X \to \mathfrak{D}(\mathrm{d}X'))$$

$$\mathrm{d}\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' \overset{?}{\propto} \sum_{j} (\mathrm{EoMs\ for\ d}X', Y)_{j}$$

1. The O(d,d) transformation for the (diff. of) winding coords. by $g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is

$$d \star J_i = \delta_i^{\ k} d \star J_k'$$

• Start from the undeformed (gauged) Lax pairs

adapted coords.

$$k_X = \partial_X$$

$$\mathrm{d}\hat{\mathcal{L}}+\hat{\mathcal{L}}\wedge\hat{\mathcal{L}}\propto\sum_{i}\left(\mathrm{EoMs\ for\ d}X,Y\right)_{i}$$
 unchanged

$$\mathcal{L}'(\mathrm{d}X') = \hat{\mathcal{L}}(\mathrm{d}X \to \mathfrak{D}(\mathrm{d}X'))$$

$$d\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' \stackrel{!}{\propto} \sum_{j} (\text{EoMs for } dX', Y)_{j}$$

1. The O(d,d) transformation for the (diff. of) winding coords. by $g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is

$$d \star J_i = \delta_i^{\ k} d \star J_k'$$

2. Using the O(d, d) invariance of the doubled action and the self-duality constraint,

$$\frac{\delta S[\mathrm{d}X,Y]}{\delta Y} = \frac{\delta S'[\mathrm{d}X',Y]}{\delta Y}$$

• Start from the undeformed (gauged) Lax pairs

adapted coords.

$$k_X = \partial_X$$

$$\mathrm{d}\hat{\mathcal{L}} + \hat{\mathcal{L}} \wedge \hat{\mathcal{L}} \propto \sum_{i} \left(\mathrm{EoMs\ for\ d}X, Y \right)_{i}$$

$$\mathcal{L}'(\mathrm{d}X') = \hat{\mathcal{L}}(\mathrm{d}X \to \mathfrak{D}(\mathrm{d}X'))$$

unchanged

$$\mathrm{d}\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' \overset{!}{\propto} \sum_{j} (\mathrm{EoMs\ for\ d}X', Y)_{j}$$

1. The O(d,d) transformation for the (diff. of) winding coords. by $g=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ is

$$d \star J_i = \delta_i^{\ k} d \star J'_k$$

2. Using the O(d, d) invariance of the doubled action and the self-duality constraint,

$$\frac{\delta S[\mathrm{d}X,Y]}{\delta Y} = \frac{\delta S'[\mathrm{d}X',Y]}{\delta Y}$$

→ Flat on-shell after O(d, d)

Recipe for O(d, d) deformed Lax pairs

- 1. Find flat Noether currents $\, J \,$ to construct Lax pairs ${\cal L} \,$.
- 2. Find gauged Lax pairs $\hat{\mathcal{L}}$ explicitly indep. of adapted coords.
- 3. Apply the O(d,d) map from the doubled formalism to $\hat{\mathcal{L}}$ to obtain \mathcal{L}' .
- **★** Flatness guaranteed .

4. Example (,time permitting)

4.1 Examples of O(2,2) deformations

• Imagine the S^3 background

$$G_{\mu\nu} dX^{\mu} dX^{\nu} = \frac{1}{4} dY^2 + \sin^2\left(\frac{Y}{2}\right) dZ_1^2 + \cos^2\left(\frac{Y}{2}\right) dZ_2^2$$
$$B_{\mu\nu} dX^{\mu} \wedge dX^{\nu} = \cos^2\left(\frac{Y}{2}\right) dZ_1 \wedge dZ_2.$$

Gauged Lax pairs are given by

$$\hat{\mathcal{L}}_{L}^{1} = +F_{1}(\lambda)dY,
\hat{\mathcal{L}}_{L}^{2} = -F_{1}(\lambda) \left[\frac{dZ_{1} - dZ_{2} - \cos Y (dZ_{1} + dZ_{2})}{(dZ_{1} + dZ_{2})} \right] - (dZ_{1} - dZ_{2}),
\hat{\mathcal{L}}_{L}^{3} = +F_{1}(\lambda) \sin Y (dZ_{1} + dZ_{2}),
\hat{\mathcal{L}}_{R}^{1} = +F_{2}(\lambda)dY,
\hat{\mathcal{L}}_{R}^{2} = +F_{2}(\lambda) \left[\frac{dZ_{1} + dZ_{2} - \cos Y (dZ_{1} - dZ_{2})}{(dZ_{1} - dZ_{2})} \right] - (dZ_{1} + dZ_{2})
\hat{\mathcal{L}}_{R}^{3} = +F_{2}(\lambda) \sin Y (dZ_{1} - dZ_{2})$$

• Use the doubled formalism based on $\mathbb{Z}=(Z_1,Z_2,\tilde{Z}_1,\tilde{Z}_2)$

4.2 Examples of O(2,2) deformations

• Whatever O(2,2) element you choose, e.g.,

$$g = \begin{pmatrix} 1 & 0 & \tan \alpha \\ 0 & \frac{1}{1+\tan \alpha} & -\frac{\tan \alpha}{1+\tan \alpha} & 0 \\ 0 & \frac{1}{1+\tan \alpha} & \frac{1}{1+\tan \alpha} & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$
 (current-current deformation)

• Write down the O(2,2) map $dZ_1 = \mathfrak{D}_1(dZ') = 1 \cdot dZ'_1 + \tan \alpha \star J'_2$ $dZ_2 = \mathfrak{D}_2(dZ') = \frac{1}{1 + \tan\alpha} dZ_2' - \frac{\tan\alpha}{1 + \tan\alpha} \star J_1'$

Then,

$$\begin{split} \mathcal{L}_{\mathrm{L}}^{\prime 1} &= +F_{1}(\lambda)\mathrm{d}Y, \\ \mathcal{L}_{\mathrm{L}}^{\prime 2} &= -F_{1}(\lambda)\left[\mathfrak{D}_{1}(\mathrm{d}Z') - \mathfrak{D}_{2}(\mathrm{d}Z') - \cos Y\left(\mathfrak{D}_{1}(\mathrm{d}Z') + \mathfrak{D}_{2}(\mathrm{d}Z')\right)\right] - \left(\mathfrak{D}_{1}(\mathrm{d}Z') - \mathfrak{D}_{2}(\mathrm{d}Z')\right), \\ \mathcal{L}_{\mathrm{L}}^{\prime 3} &= +F_{1}(\lambda)\sin Y\left(\mathfrak{D}_{1}(\mathrm{d}Z') + \mathfrak{D}_{2}(\mathrm{d}Z')\right), \\ \mathcal{L}_{\mathrm{R}}^{\prime 1} &= +F_{2}(\lambda)\mathrm{d}Y, \\ \mathcal{L}_{\mathrm{R}}^{\prime 2} &= +F_{2}(\lambda)\left[\mathfrak{D}_{1}(\mathrm{d}Z') + \mathfrak{D}_{2}(\mathrm{d}Z') - \cos Y\left(\mathfrak{D}_{1}(\mathrm{d}Z') - \mathfrak{D}_{2}(\mathrm{d}Z')\right)\right] - \left(\mathfrak{D}_{1}(\mathrm{d}Z') + \mathfrak{D}_{2}(\mathrm{d}Z')\right), \\ \mathcal{L}_{\mathrm{R}}^{\prime 3} &= +F_{2}(\lambda)\sin Y\left(\mathfrak{D}_{1}(\mathrm{d}Z') - \mathfrak{D}_{2}(\mathrm{d}Z')\right). \end{split}$$

$$\mathrm{d}\mathcal{L}' + \mathcal{L}' \wedge \mathcal{L}' = 0 \quad \text{still holds.}$$

5. Conclusions and Outlook

6. Conclusions and outlook: O(d,d) is not odd

- \Rightarrow This work completed the classical integrability of ANY global O(d,d) transformation using the doubled formalism from the bottom.
 - $\rightarrow O(d,d)$ deformed Lax pairs involve windings = U(1) currents
 - → All the current-current deformations are integrable.
 - \rightarrow Using our recipe, we can extract all the Lax pairs for the symmetry hidden by the O(d,d) deformations. cf: [Beisert-2009]
 - ☆ Some (technical) things to do:
 - ◆ Algebra of non-local charges... [work in progress]
 [Kawaguchi, Yoshida-2010]...
 - \bullet O(d,d) map interpreted as deformations on the spectral parameter?
 - **♦** Local O(d, d) deformations...
 - ☆ Doubled formalism based on the <u>Abelian</u> isometries
 - → Any extension?

[I'm just saying] (What would be a collective T-duality invariant framework...(if any)?)

Thank you! Ευχαριστώ