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1. Introduction
BMN Matrix Model (aka Plane Wave Matrix Model)

[Berenstein-Maldacena-Nastase '02]

1D super quantum mechanics (SU(N) gauge)
16 supersymmetries (32 if you include kinematical susy)
e mass parameter (many discrete vacua)

«dimensional reduction of
N'=4 Super Yang-Mills on R x S3to 1D

(should reproduce /=4 SYM around a special vacuum)

_ [Ishiki-Shimasaki-Takayama-Tsuchiya ’06, ...]
Action:
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Symmetry: R x SO(3) x SO(6)
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e Gauge/Gravity dual to 11D/IIA bubbling geometry

BMN matrix model ﬁ 11D/IIA SUGRA

[Lin-Lunin-Maldacena ’04, Lin-Maldacena ’05]




1. Introduction

o .
DO-branes

(or supergravitons
on plane-wave B.G.)

BMN matrix model {-} 11D/1IA SUGRA

U(2/4

symmetry: RxSO(3)xSO(6 isometry: RxSO(3)xSO(6)

vacua (SU rep) bubbling geometries

[Lin-Lunin-Maldacena ’04, Lin-Maldacena ’05]



2. Emergent Geometries

Fuzzy sphere vacuum M-brane solution
BMN matrix model 11D SUGRA

BMN Matrix Model

blown-up
gravitons (or DOs)



2. Emergent Geometries

Realisation of geometries was found by susy localisation
calculation of the BPS sector in which ¢ is invariant:

o(t) = X3 (t) 4+ i(sin(t) X3 (t) + cos(t) X (1))
Fuzzy sphere vacuum M-brane solution
BMN matrix model ﬁ 11D SUGRA

BMN Matrix Model

blown-up
gravitons (or DOs)



2. Emergent Geometries

Realisation of geometries was found by susy localisation
calculation of the BPS sector in which ¢ is invariant:

o(t) = X>(t) +i(sin(t) X°(t) + cos(t) X (1))

A BPS operator can be calculated by a simpler matrix integral:

<H Tr f1(¢(t1))> = <H Tr f1(G(—2L3 + Z'M))>

M M

where < >um is a vev computed by an integral of matrix M,

L. is proportional to the SO(3) matrices in the vacuum,
and L, and M satisfy  |L,, Ly| = t€qpeLe L., M| =0
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2. Emergent Geometries

Realisation of geometries was found by susy localisation
calculation of the BPS sector in which ¢ is invariant:

o) = X3(t) + i(sin(t) X3(t) + cos(t) X°(t))

(D Part of Einstein’s eq. was obtained by the eigenvalue density of ¢
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On the gravity side,
the metric is written only by a single function f(x).

The Killing spinor eq. for the geometry reduces to
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2. Emergent Geometries

Realisation of geometries was found by susy localisation
calculation of the BPS sector in which ¢ is invariant:

P(t) = X>(t) +i(sin(t) X°(t) + cos(t) X7 (t))

(D Part of Einstein’s eq. was obtained by the eigenvalue density of ¢
nontrivial part in terms of the symmetry [Y.A.-Okada-Ishiki-Shimasaki "14]

@ It reproduces M2 & M5 geometries with the correct radii.
[Y.A.-Ishiki-Shimasaki-Terashima *17]
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2. Gauge/Gravity Duality & Emergent Geometries
E.g. vacuum corresponding to a stack of M5s

p(q) : eigenvalue dist. of M , where ¢ ~ (1/6)(—2L3 + iM)

@ a solution to the saddle point eq.:
_ 3

8 q 7 1
o) = g {1 (L) - 57 = =50 (71— 41
- S5 radius

SO(6) symmetric uplift to 6 dim.

Spherical shell distribution
with the expected radius




2. Emergent Geometries
We now have a fairly good picture of emergent geometries.

(D The infinitely many discrete vacua in the large-N BMN
model correspond to gravity solutions characterised by
droplets of smeared M2 and M5 charges.

The gravity solution, Lin—-Maldacena geometry, is described
by a single function. This function is equivalent to the
eigenvalue density of the BPS operator ¢ on the gauge-

theory side. [Y.A.-Okada-Ishiki-Shimasaki '14]

@ The eigenvalue density of this BPS operator also reproduces
the spheres wrapped by M2 & M5 in the brane picture.
[Y.A.-Ishiki-Shimasaki-Terashima ’17]
% A set of matrices that gives M5’s S5 as a non-commutative
sphere has not been obtained yet. But the BPS operator ¢
describes the S5 and M2’s 52 by its eigenvalues in a consistent
way.
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3. Thermal BMN Matrix Model

BMN matrix model H

gauge/gravity
ITemperature Temperature ‘

?
Finite T | [IA SUGRA
BMN matrix model h'

perturbatively computed in the
case where the black hole horizon
has the simplest topology

IIA SUGRA

on bubbling geometries

with thermal geom.

[Costa-Greenspan-Penedones-Santos ’14]
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[Costa-Greenspan-Penedones-Santos '14]

At small © & high T" = non-extremal black 0-brane

~ RxS0(3)xS0(6) plane-wave geom. at infinity

trivial vac. X,=0

Sly x S8 horizon (w SO(3)xS50(6) sym.
A1

\ plane-wave geometry

5

F(T,p) = —c1T5 f(u/T)
BFSS free energy

Critical temperature (gravity side) /7 4 ™\
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4. Lattice Slmulauon‘ (45, A=24, N—11)
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[Y.A.-Filev-Kovacik-O’Connor 18]



Polyakov loop:
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4. Lattice Sitmulation
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4. Lattice Simulation (A=24 N—8)

red curve: Padé extrapolation

! {
0.8
: . L o ¢
gauge/gravity prediction ; i ;
¢
g : \
é
. ¢ ¢
¢ 5 deconfinement phase transition

that exists at large p

blue points: deconfinement transition
purple points: Myers transition

46 8 10y

The simulation results AGREE with theoretical predictions.
[Y.A.-Filev-Kovacik-O’Connor 18]



4. Lattice Simulation

~ Tr[X:X]/N (u=6, B=1.45, A=24, N=8)

Fluctuating between different Levels, y=6.0, T= 1/1.45
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4. Lattice Sitmulation

Large-N extrapolation of the critical T (u=2, A=24)
T, for large N, u=2.0
T
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[Y.A.-Filev-Kovacik-O’Connor 18]



5. Summary

« Observed two phase transitions:
deconfinement transition and Myers transition
They are consistent with the gravity prediction so far, and

don’t merge at least on the lattice with finite Nat 3 < u < 6.

Geometrical interpretation
« Myers transition looks like “no geometry = geometry’.

Gauge/Gravity duality

« We found the critical temperature of the deconfinement
transition is dependent on SU(2) representations.

Keep the state at the trivial vac. under the transition
Much closer to the gravity prediction

« Since the gravity dual at zero temperature is the droplet
solutions, we expect a richer structure at lower temperatures,

which should reflect geometrical information.



5. Summary

Bosonic BMN model

« There are some interesting things found about the transitions
in the bosonic version. :
Samuel’s talk

Longitudinal M5-branes

« M5-branes appearing in the BMN model are transverse to the
M-theory direction. To study longitudinal M5-branes
properly, we can tackle the Berkooz-Douglas model, which is
the BFSS model (DOs) probing D4-branes. [Berkooz-Douglas '96]

« There have been numerical results of the BD model.
The simulations showed the agreement in the gauge/gravity

dual itY- [Filev-O’Connor ’15, Y.A.-Filev-Kovacik-O’Connor ’16]

 And furthermore, a BMN-like mass-deformed version of the
BD model exists, namely membranes on the plane-wave
background. [Kim-Lee-Yi '02]
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5. Summary

Other remarkable points

« The Polyakov loop shows a sharp, narrow transition at
u 2 6.0, while it gets wider and non-monotonic of T, due to

the Myers transition; different fuzzy spheres give different
critical T of the deconfinement transition.

Polyakov loop , y=2.0, N=6

<|P|>

1.0+
0.8 -

0.6 -

0.4

0.2

| L L
0.2 0.4 0.6 0.8 1.0

« The Myers term has a finite value at x = 2.0 in the large-N
extrapolation. This is realised e.g. when the dimension of a

typical fuzzy sphere representation is finite and fixed: a state
of 5-branes.



4. Lattice Sitmulation

The transitions are of the first order. (u=2, A=24)
E vs T for y=2.0, N=8
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[Y.A.-Filev-Kovacik-O’Connor 18]
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[Localisation
1) Identify the appropriate BPS sector.

Emergence of S2 and S° is rather trivial.

What is the scalar field corresponding to the r» and z direction?

¢(1) = 2(—X3(7) + i(—isinh(7) Xg(7) + cosh(7)Xg(7)))
z-direction r-direction

— .

Appropriate BPS sector: ¢ is invariant under 4 SUSY

fiber space

RxS50(3)x50(6)
— SO(2)xS0(5)




Perform the localisation method.

Applying the localisation method to the BMN model

L _ [Y.A.-Ishiki-Okada-Shimasaki " 12]
— SUSY: quarter BPS sector such that ¢ is invariant.

- B.C.: all fields approach to the same vacuum configurations at 7—+oo.
- Deformation 6:7": SUSY-invariant and positive-definite.

Z(t) := /DX R Rl
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Perform the localisation method.

Applying the localisation method to the BMN model

L _ [Y.A.-Ishiki-Okada-Shimasaki " 12]
— SUSY: quarter BPS sector such that ¢ is invariant.

- B.C.: all fields approach to the same vacuum configurations at 7—+oo.
- Deformation 6:7": SUSY-invariant and positive-definite.

Z(t) = /DX e~ SIX]=tosV

Z(t
:>d— /DX(S (Ve dXIZt0:Vy —

— /DX e °Xl = Z(0) = Z(0)

Localised around 6:7"=0 !



— o — &
supergravitons
on plane-wave B.G.

or DO-branes [Lin-Lunin-Maldacena '04, Lin-Maldacena ‘05]

BMN matrix model “ 11D/IIA SUGRA

symmetry: RxSO(3)xSO(6) U2 isometry: RxSO(3)xSO(6)
vacua (SU rep) bubbling geometries

M r,2)

2- & 5-brane charges are located on /\
the edge g



Duality of M2 in Matrix Model

blown-up gravitons (or DOs)

M?2-branes
on plane-wave B.G.

Large fuzzy S° vacuum Smeared M2 solution

BMN matrix model 11D SUGRA

NB: The limit to obtain M2-brane theory
Decoupling limit: Large Ns
Strong coupling of D2 theory: 1/(u3Ns)> Ns




