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Brief review on AdS/CFT correspondence

{ N = 4 supersymmetric U(N) Yang-Mills }

A. Tsuchiya's talk

Conformal invariance: SO (4,2)

Gauge multiplet: (4, ®4, 1Y), a=1.-,6, i=1,,4

|

Global R-symmetry: SO(6) = SU(4)

Global symmetry of ¥ =4:50(4,2) x SO(6)

1

Isometry of vacuum geometry: AdSs x S°

SO(4,2):

S0(6):

15 generators

Poincaré = (P, L,,): 10=4+6
Special conformal = K,: 4
Dilatation = D: 1

15 generators
Rotations = M,;: 15



N = 4 Super-Yang-Mills for Asymptotically Flat Spacetimes

We want: AdSs x S°> =)  Asymptotically flat spacetimes,
e.g., R>!' x R® or R3! x CY;

Isometry of vacuum geometry: R3>! x R® S$0(4,2): 15 generators
} Poincaré = (P, L,,): 10=4+6
I Spec nformal =K
v '

Global symmetry of ¥ = 4:150(3,1) X ISO(6) S0(6): 15 generators

Rotations = M,;: 15

Find a vacuum to break the special conformal and dilatation symmetries only,
but to preserve the Poincaré and 1S0(6) symmetries.



Coulomb branch of ' = 4 super Yang-Mills

-~

o

\
Consider the limit N - oo: (Aoki, et al, '99)
Coulomb branch Commutative Yacuum: [Py, Ppllpge =0 => (DPy)pac = diag(a,q, ---,aaN)b
Noncommutative vacuum: [®,, Py 1| ,0c = —iBgp Inxyn = (Pg)pac = Pgqg = Baby/

[B.p] = a' 11543 X ig?: 6 X 6 symplectic matrix

y@ satisfy the Heisenberg-Moyal algebra: [y%,y?] =i %P1y where § = B™1

We assign the mass dimension: [®,] = M, [y%] =M™, [By,] = M?, [6%°] = M2

U(N) gauge symmetry is broken to a subgroup H or NC U(1),.

The second vacuum will be called the NC Coulomb branch.
Note that the Moyal-Heisenberg vacuum saves the NC nature of matrices
while the conventional vacuum dismisses the property.



D=10 ¥ =1 NC U(1) Gauge Theory from ' = 4 Super-Yang-Mills

Suppose that fluctuations around the NC Coulomb branch take the form
_ : _ P\
DIJ _aﬂ_lAPl(x’y)’ Cba _pa+Aa (x’y) Ec/qe ! IIJ(I?y): 1 (“‘Tuy)
The above adjoint scalar fields now obey the deformed algebra given by
(Do, Pp] = [pa + Aa (X, ), Pp +Ap (x,¥)] = =1 (Bap — Fap (x,¥)), Fap = 04Ap — 0pAq — i[Ag, Apl,
D, ®, = [6” —iA,(x,y), patA, (x, y)] = 0,Aq — 044, — i[Au,Aa] = F,q(x,y),
F,uv(x» .Y) = i[D[,U DV] = l[au — iA‘u(xr 3’); av — iAV(xr y)];

with the definition 0, = —i ad,,, = —i[pg, - .

Similarly, for [D,, 1], [®4, 2] and [dg, 4] -



D=10 & =1 NC U(1) Gauge Theory from N = 4 Super-Yang-Mills

Plugging the fluctuations into the four-dimensional U(N — o) super Yang-Mills theory,
we get the ten-dimensional supersymmetric NC U (1) gauge theory with the action

1 1 2
S = /d*‘xTr{—ZFwF“” — §D#%D“fba + %[%%]2

o

S = /dmx{—dglz (Fyrny — Bun)? + %@TMDM@}
YM

+iMeH DN+ %gig Ay, M] — —gu®ii}, [@ﬂ,,,i:_.-]}

where Buw = (0 ,0.) and Gy, = (2m)3[Pf6lg® (HSY, ‘09, 13, '14)

0 Bab



D=10 & =1 NC U(1) Gauge Theory from N = 4 Super-Yang-Mills

The action is invariant under V' = 1 supersymmetry transformations given by

0Ay =ial'yy b, o0 = %fFMN _ BMN)FMNQ '

We want to emphasize that the relationship between the four-dimensional U(N) super-Yang—Mills
theory and ten-dimensional NC U (1) super-Yang—Mills theory in the NC Coulomb branch is not a
dimensional reduction but they are exactly equivalent to each other.

Therefore any quantity in lower-dimensional U(N) gauge theory can be transformed into an object
In higher-dimensional NC U (1) gauge theory using the compatible ordering.

For example, a Wilson loop in U(N) gauge theory (Ishibashi, et al, ‘99, Ambjorn, et. al, ’99, .....)
Wy = %Trpexp (-;' j{ (A gt + fbag}“)ds)
can be translated into a corresponding NC U(1) Wilson “line” defined by
W = Viﬁ / d®y P, exp (i /F (Bapi®y® + Apgi™ )ds)

where Vg is a volume of extra six-dimensional space.



D=10 ¥ =1 NC U(1) Gauge Theory from ' = 4 Super-Yang-Mills

This can be confirmed by using the fact well-known from quantum mechanics:

The map Af - Ay = Ay(C¥(R3Y)) = C*(R*1) ® Ay is a Lie algebra homomorphism where
N =dim (H) - co:

3 o IR 6 Y) MYM] = Bmeo fam (O)I0) (m)
for f(x,) € A and [f (X)]nm € Af.

Via the matrix representation, one can recover the v': = 4 supersymmetric U(N) Yang-Mills theory
from D=10 v = 1 NC U(1) gauge theory.

Now we will show that R3>! x CY; is a ten-dimensional geometry emergent from D=10 V' = 1
NC U(1) gauge theory. (HSY, ‘14)



Asymptotically Flat Spacetimes from D=10 ¥ =1 NC U(1) Gauge Theory

ﬁ:onsider a Kdahler manifold (M, g) where ds* = g;;(z, 2)dz'dzl, i,j=1,,n \
L
and g;:(z,7) = aa ZEZ;) The real function K (z, 2) is callled Kdbhler potential.

Given a Kdahler metric, one can introduce a fundamental two-form defined by
Q= V-1 gi;(z, 2)dz' AdZ,
which is a nondegenerate, closed 2-form, dQQ = 0. So the Kdhler form is a symplectic 2-form.
That means the Kdhler manifold (M, g) is a symplectic manifold (M, Q) too
Qlthough the reverse is not necessarily true.

AN

KI’ he Kdhler potential is not unique but admits a Kéhler transformation
K(z,z) > K(z,2) + f(z) + f(2).

Note that the Kéhler form can be written as (0 = d.A where A = g (0 — 0)K(z,2)
and @ = dzi -, 3 =dz*-%, d = 3 + 3. Then the Kéhler transformation corresponds to

azt’ oz’

a gauge transformation for the 1-form A given by
A—A+d), where 1="7(2) - f(2).
ths implies that the 1-form A corresponds to U(1) gauge fields. /




Kdhler Geometry As A U(1) Gauge Theory

/ Kdhler geometry corresponds to a dynamical symplectic geometry and is locally described by
B=(N=U,U,, F, = B + F,). (Griffiths & Harris, 107 pp)

In this picture, the dynamical U(1) gauge fields defined on a symplectic manifold (N, B) manifest
themselves as local deformations of the symplectic or Kahler structure.

\J

~

ﬂVhat IS the gauge theory description for gravity?

Find a local coordinate transformation ¢, € Diff(U,): y* — x%(y), such that
Pa(B + F)=B = @46 + hg)=8

Thus the picture essentially states the equivalence principle in general relativity.

In terms of local coordinates, x*(y) = 0*° ¢, (y)=0%" (p, + a,(y))

dx dxb b . 1
(Bab + Fab(x) ay_uﬁ - BMV adil (x) - (B+F(x)

where 8 = B~1 € T (A*TM) is a Poisson bivector and
Qb (y) = d,ap — dpa, + {a,, ap} is the field strength of symplectic U(1) gauge fields a, (y).

/
~

)" = 200 = (-5 + F0))0)”

/




Duality Between Kdhler Geometry and U (1) Gauge Theory

@[ Is the relation between gauge theory and gravity ? (J. Lee & HSY, “18) \
(A. Igbal, C. Vafa, N. Nekrasov and A. Okounkov, hep-th/0312022,
D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, math.AG/0312059)

Kéhler gravity Llf Symplectic U( 1) gauge theory

Ql 1Q
Quantized Kahler gravity 2o NC U(1) gauge theory

Calabi — Yau manifold E} Symplectic U(1) instanton
Ql 1 Q
Quantized Calabi — Yau manifold o NC U{(1) instanton

Here J means an isomorphism between two theories.

In some sense J corresponds to the gauge-gravity duality.
It turns out that it can be interpreted as the large N duality too.




Gauge-Gravity Duality for Asymptotically Flat Spacetimes

For any dynamical variable, e.g. ®, = p, + A,(y) € A, , We can associate a differential operator,
the so-called polyvector fields in D, , by the adjoint map
Ag = Dy :Pe(y) made, = [®P(y), - | =V,

The adjoint map A, — Dy is also a Lie algebra homomorphism. For example,

using the commutation relation
[q)a» CI)b] = —i (Bab - Fab)» Fop = aaAb - abAa - i[Aa:Ab]:

we get the relation

The generalized vector fields ¥, take the following form
g =yt 4y pHkp 0 9
Va="Va dyH T ZP=2 Va dyH1  gykp’
Let us truncate the above polyvector fields to ordinary vector fields given by

0
XM = Vo = VO gzlan=1,-,6},




Gauge-Gravity Duality for Asymptotically Flat Spacetimes

The orthonormal vielbeins on TM are obtained by the prescription
Vi=AE, €T(TM) or e4=Av? e I(T*M).
The conformal factor A € C* (M) is determined by the volume-preserving condition
Ly vy =V -Vy—8V4Ind) =0 with v, = 2%d*x Av' A--A VO,

If the structure equation of vector fields V, € I'(TM) is defined by
[Va, Vg] = _gABC Ve,

the volume-preserving condition can be written as
gBAB &S VA lnﬂ.z.

In the end, the Riemannian metric on a 10-dimensional emergent spacetime manifold M
IS given by _ ,
ds* = Gun(X)dXM @ dX" = ¢* @ e

= Mot @ vt = N (nudetde” + vl (dy® — A%)(dy° — A°))



Vacua of V' = 4 super Yang-Mills theory in the NC Coulomb branch

The vacua of V' = 4 super Yang-Mills theory in the NC Coulomb branch are characterized by the BPS
equation given by

1
9

0¥ = =FynT"Va
For simplicity, we set A, (x,y) = 0 and assume that NC U(1) gauge fields 4, (x, y),
a=1,--,6,along extra dimensions depend only on NC coordinates y,, i.e. A, (y).

The solution of the BPS equation (3) is known as Hermitian Yang-Mills instantons obeying

_ 1 cd iz
Fab __E ab ch

where T,,°* = %eab“lef Ir. The self-duality equations (known as Donaldson-Uhlenbeck-Yau equations)

on C3 are given by (HSY, ‘14)

Fi,=F;=0, > F;=0.

I I

Kéhler condition: w;; = w;;  Ricci-flat condition: Y7_; w;; = 0

Hermitian U(1) instantons = Calabi-Yau manifolds



Summary and Speculation

= | emphasize that the AdS/CFT correspondence is a particular example of emergent gravity
from a large N gauge theory in the noncommutative (NC) Coulomb branch.

= \We showed that the four-dimensional V' = 4 supersymmetric large N gauge theory in the
NC Coulomb branch is isomorphically mapped to the ten-dimensional V' = 1 supersymmetric
NC U(1) gauge theory.

= Wild speculation 1: The NC Coulomb branch admits infinitely degenerate vacua
whose dual geometries interpolate from R to AdSs x S°.

= Wild speculation 2: Emergent gravity from NC gauge theory generalizes the AdS/CFT
correspondence to asymptotically flat spacetimes as well as AdS spacetimes.

16



B panjunl o
L




