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Brief review on AdS/CFT correspondence

Global R-symmetry: 𝑆𝑂(6) ≅ 𝑆𝑈(4)

𝑆𝑂 6 : 15 generators
Rotations = 𝑀𝑎𝑏: 15

𝒩 = 4 supersymmetric 𝑈(𝑁) Yang-Mills

Conformal invariance: 𝑆𝑂(4,2)

𝑆𝑂(4,2): 15 generators

Poincar  e = 𝑃𝜇 , 𝐿𝜇𝜈 : 10=4+6

Special conformal = 𝐾𝜇: 4

Dilatation = 𝐷: 1

Isometry of vacuum geometry: 𝐴𝑑𝑆5 × 𝕊5

Global symmetry of 𝒩 = 4 : 𝑆𝑂 4,2 × 𝑆𝑂(6)

Gauge multiplet: (𝐴𝜇 , Φ𝑎, 𝜆
𝑖), 𝑎 = 1.⋯ , 6, 𝑖 = 1,⋯ , 4

A. Tsuchiya’s talk



𝒩 = 4 Super-Yang-Mills for Asymptotically Flat Spacetimes

We want: 𝐴𝑑𝑆5 × 𝕊5 Asymptotically flat spacetimes,
e.g., ℝ3,1 × ℝ6 or ℝ3,1 × 𝐶𝑌3

𝑆𝑂 6 : 15 generators
Rotations = 𝑀𝑎𝑏: 15

𝑆𝑂(4,2): 15 generators

Poincar  e = 𝑃𝜇 , 𝐿𝜇𝜈 : 10=4+6

Special conformal = 𝐾𝜇: 4

Dilatation = 𝐷: 1

Isometry of vacuum geometry:  ℝ3,1 × ℝ6

Global symmetry of 𝒩 = 4 : 𝐼𝑆𝑂 3,1 × 𝐼𝑆𝑂(6)

Find a vacuum to break the special conformal and dilatation symmetries only,
but to preserve the Poincar  e and 𝐼𝑆𝑂 6 symmetries.



Coulomb branch of 𝒩 = 4 super Yang-Mills

[𝐵ab] = 𝛼′−1 I3×3 × 𝑖𝜎2: 6 × 6 symplectic matrix

𝑦𝑎 satisfy the Heisenberg-Moyal algebra: 𝑦𝑎, 𝑦𝑏 = 𝑖 𝜃𝑎𝑏𝐼𝑁×𝑁 where 𝜃 ≡ 𝐵−1

We assign the mass dimension: Φ𝑎 = 𝑀, 𝑦𝑎 = 𝑀−1, 𝐵𝑎𝑏 = 𝑀2,  𝜃𝑎𝑏 = 𝑀−2

𝑈(𝑁) gauge symmetry is broken to a subgroup 𝐻 or NC 𝑈 1 ⋆.

The second vacuum will be called the NC Coulomb branch. 

Note that the Moyal-Heisenberg vacuum saves the NC nature of matrices 

while the conventional vacuum dismisses the property.

Coulomb branch  
Commutative vacuum: Φ𝑎, Φ𝑏  𝑣𝑎𝑐 = 0 ⟹ Φ𝑎 𝑣𝑎𝑐 = diag(𝛼𝑎1, ⋯ , 𝛼𝑎𝑁)

Noncommutative vacuum: Φ𝑎, Φ𝑏  𝑣𝑎𝑐 = −𝑖𝐵𝑎𝑏 𝐼𝑁×𝑁 ⟹ Φ𝑎 𝑣𝑎𝑐 = 𝑝𝑎 = 𝐵𝑎𝑏𝑦
𝑏

Consider the limit 𝑁 → ∞: (Aoki, et al, ‘99)



D=10 𝒩 = 1 NC 𝑈(1) Gauge Theory from 𝒩 = 4 Super-Yang-Mills 

Suppose that fluctuations around the NC Coulomb branch take the form

𝐷𝜇 = 𝜕𝜇 − 𝑖𝐴𝜇 𝑥, 𝑦 , Φ𝑎 = 𝑝𝑎 + 𝐴𝑎 𝑥, 𝑦 ∈ 𝒜𝜃 , 

The above adjoint scalar fields now obey the deformed algebra given by

Φ𝑎, Φ𝑏 = 𝑝𝑎 + 𝐴𝑎 𝑥, 𝑦 , 𝑝𝑏 + 𝐴𝑏 𝑥, 𝑦 = −𝑖 𝐵𝑎𝑏 − 𝐹𝑎𝑏(𝑥, 𝑦) , 𝐹𝑎𝑏 = 𝜕𝑎𝐴𝑏 − 𝜕𝑏𝐴𝑎 − 𝑖 𝐴𝑎, 𝐴𝑏 ,

𝐷𝜇Φ𝑎 = 𝜕𝜇 − 𝑖𝐴𝜇 𝑥, 𝑦 , 𝑝𝑎+𝐴𝑎 𝑥, 𝑦 = 𝜕𝜇𝐴𝑎 − 𝜕𝑎𝐴𝜇 − 𝑖 𝐴𝜇 , 𝐴𝑎 = 𝐹𝜇𝑎(𝑥, 𝑦), 

𝐹𝜇𝜈(𝑥, 𝑦) = 𝑖 𝐷𝜇 , 𝐷𝜈 = 𝑖[𝜕𝜇 − 𝑖𝐴𝜇 𝑥, 𝑦 , 𝜕𝜈 − 𝑖𝐴𝜈 𝑥, 𝑦 ],

with the definition 𝜕𝑎 ≡ −𝑖 𝑎𝑑𝑝𝑎 = −𝑖 𝑝𝑎 , ∙ .

Similarly, for 𝐷𝜇 , 𝜆
𝑖 , Φ𝑎, 𝜆

𝑖 and  Φ𝑎, 𝜆𝑖 .                                                                                                            



D=10 𝒩 = 1 NC 𝑈(1) Gauge Theory from 𝒩 = 4 Super-Yang-Mills 

Plugging the fluctuations into the four-dimensional 𝑈(𝑁 → ∞) super Yang-Mills theory, 

we get the ten-dimensional supersymmetric NC 𝑈(1) gauge theory with the action

where                     and 𝐺𝑌𝑀
2 = 2𝜋 3 Pf 𝜃 𝑔2 (HSY,  ’09, ‘13, ’14) 



D=10 𝒩 = 1 NC 𝑈(1) Gauge Theory from 𝒩 = 4 Super-Yang-Mills 

The action is invariant under 𝒩 = 1 supersymmetry transformations given by

We want to emphasize that the relationship between the four-dimensional 𝑈 𝑁 super-Yang–Mills 

theory and ten-dimensional NC 𝑈(1) super-Yang–Mills theory in the NC Coulomb branch is not a 

dimensional reduction but they are exactly equivalent to each other. 

Therefore any quantity in lower-dimensional 𝑈(𝑁) gauge theory can be transformed into an object 

in higher-dimensional NC 𝑈(1) gauge theory using the compatible ordering.

For example, a Wilson loop in 𝑈(𝑁) gauge theory (Ishibashi, et al, ‘99, Ambjorn, et. al, ’99, …..) 

can be translated into a corresponding NC 𝑈(1) Wilson “line” defined by

where 𝑉6 is a volume of extra six-dimensional space.



D=10 𝒩 = 1 NC 𝑈(1) Gauge Theory from 𝒩 = 4 Super-Yang-Mills 

This can be confirmed by using the fact well-known from quantum mechanics:

The map 𝒜𝜃
4 → 𝒜𝑁

4 ≡ 𝒜𝑁 𝐶∞ ℝ3,1 = 𝐶∞ ℝ3,1 ⊗𝒜𝑁 is a Lie algebra homomorphism where 

𝑁 =dim (ℋ) → ∞:

 𝑛,𝑚=0
∞   𝑛  𝑛 𝑓 𝑥, 𝑦   𝑚  𝑚 =  𝑛,𝑚=0

∞ 𝑓𝑛𝑚(𝑥)  𝑛  𝑚 

for 𝑓 𝑥, 𝑦 ∈ 𝒜𝜃
4 and 𝑓 𝑥 𝑛𝑚 ∈ 𝒜𝑁

4 . 

Via the matrix representation, one can recover the 𝒩 = 4 supersymmetric 𝑈(𝑁) Yang-Mills theory

from D=10 𝒩 = 1 NC 𝑈(1) gauge theory.

Sup
er-Yang-Mills 
Now we will show that ℝ3,1 × 𝐶𝑌3 is a ten-dimensional geometry emergent from D=10 𝒩 = 1

NC 𝑈(1) gauge theory. (HSY, ‘14)



Asymptotically Flat Spacetimes from D=10 𝒩 = 1 NC 𝑈(1) Gauge Theory

Consider a K  𝑎hler manifold (𝑴, 𝒈) where 𝑑𝑠2 = 𝑔𝑖  𝑗 𝑧,  𝑧 𝑑𝑧𝑖𝑑  𝑧  𝑗, 𝑖,  𝑗 = 1,⋯ , 𝑛

and 𝑔𝑖  𝑗 𝑧,  𝑧 =
𝜕2𝐾 𝑧,  𝑧

𝜕𝑧𝑖𝜕  𝑧 𝑗
. The real function 𝐾 𝑧,  𝑧 is callled K  𝑎hler potential.

Given a K  𝑎hler metric, one can introduce a fundamental two-form defined by

Ω = −1 𝑔𝑖  𝑗 𝑧,  𝑧 𝑑𝑧𝑖 ∧ 𝑑  𝑧  𝑗,

which is a nondegenerate, closed 2-form, dΩ = 0. So the K  𝑎hler form is a symplectic 2-form. 

That means the K  𝑎hler manifold (𝑴,𝒈) is a symplectic manifold (𝑴,𝛀) too 

although the reverse is not necessarily true. 

The K  𝑎hler potential is not unique but admits a K  𝑎hler transformation

𝐾 𝑧,  𝑧 ⟶ 𝐾 𝑧,  𝑧 + 𝑓 𝑧 +  𝑓(  𝑧).          

Note that the K  𝑎hler form can be written as Ω = d𝒜 where 𝒜 =
−1

2
(𝜕 −  𝜕)𝐾 𝑧,  𝑧

and 𝜕 = 𝑑𝑧𝑖
𝜕

𝜕𝑧𝑖
,  𝜕 = 𝑑  𝑧  𝑖 𝜕

𝜕  𝑧  𝑖 , 𝑑 = 𝜕 +  𝜕. Then the K  𝑎hler transformation corresponds to 

a gauge transformation for the 1-form 𝒜 given by

𝒜⟶𝒜 + 𝑑𝜆, where 𝜆 =
−1

2
(  𝑓(  𝑧) − 𝑓 𝑧 ).

This implies that the 1-form 𝒜 corresponds to 𝑈(1) gauge fields.



K  𝑎hler Geometry As A 𝑈(1) Gauge Theory

K  𝑎hler geometry corresponds to a dynamical symplectic geometry and is locally described by 

𝔅 = (𝑁 =  𝛼𝑈𝛼 , ℱ𝛼 = 𝐵 + 𝐹𝛼). (Griffiths & Harris, 107 pp)

In this  picture, the dynamical 𝑈(1) gauge fields defined on a symplectic manifold (𝑁, 𝐵) manifest 

themselves as local deformations of the symplectic or K  𝑎hler structure. 

This is the analog of the picture 𝔅 for the Lorentz force.

What is the gauge theory description for gravity?

Find a local coordinate transformation 𝜑𝛼 ∈ Diff(𝑈𝛼): 𝑦
𝜇 ↦ 𝑥𝑎(𝑦), such that 

𝜑𝛼
∗(𝐵 + 𝐹𝛼) = 𝐵 ⟺ 𝜑𝛼

∗(𝛿 + ℎ𝛼) = δ
Thus the picture essentially states the equivalence principle in general relativity.

In terms of local coordinates, 𝑥𝑎 𝑦 ≡ 𝜃𝑎𝑏𝜙𝑏(𝑦)=𝜃
𝑎𝑏 (𝑝𝑏 + 𝑎𝑏 𝑦 )

𝐵𝑎𝑏 + 𝐹𝑎𝑏 𝑥
𝜕𝑥𝑎

𝜕𝑦𝜇
𝜕𝑥𝑏

𝜕𝑦𝜈
= 𝐵𝜇𝜈 ⇔ Θ𝑎𝑏 𝑥 ≡

1

𝐵+𝐹 𝑥

𝑎𝑏
= {𝑥𝑎 𝑦 , 𝑥𝑏 𝑦 } = 𝜃 −𝐵 + 𝑓 𝑦 𝜃

𝑎𝑏

where 𝜃 ≡ 𝐵−1 ∈ Γ(Λ2𝑇𝑀) is a Poisson bivector and 

𝑓𝑎𝑏 𝑦 = 𝜕𝑎𝑎𝑏 − 𝜕𝑏𝑎𝑎 + {𝑎𝑎, 𝑎𝑏} is the field strength of symplectic 𝑈(1) gauge fields 𝑎𝑏 𝑦 .



Duality Between K  𝑎hler Geometry and 𝑈(1) Gauge Theory

What is the relation between gauge theory and gravity ?  (J. Lee & HSY, ‘18)

(A. Iqbal, C. Vafa, N. Nekrasov and A. Okounkov, hep-th/0312022,

D. Maulik, N. Nekrasov, A. Okounkov and R. Pandharipande, math.AG/0312059)

Here 𝒥 means an isomorphism between two theories.

In some sense 𝒥 corresponds to the gauge-gravity duality.

It turns out that it can be interpreted as the large 𝑁 duality too.



Gauge-Gravity Duality for Asymptotically Flat Spacetimes

For any dynamical variable, e.g. Φ𝑎 = 𝑝𝑎 +  𝐴𝑎 𝑦 ∈ 𝒜𝜃 , we can associate a differential operator, 

the so-called polyvector fields in 𝒟𝜃 , by the adjoint map 

𝒜𝜃 → 𝒟𝜃 : Φ𝑎 𝑦 ↦ 𝑎𝑑Φ𝑎
= [Φ𝑎 𝑦 , ∙ ] ≡  𝑉𝑎.

The adjoint map 𝒜𝜃 → 𝒟𝜃 is also a Lie algebra homomorphism. For example, 

using the commutation relation    

Φ𝑎, Φ𝑏 = −𝑖 𝐵𝑎𝑏 −  𝐹𝑎𝑏 ,  𝐹𝑎𝑏 = 𝜕𝑎  𝐴𝑏 − 𝜕𝑏  𝐴𝑎 − 𝑖  𝐴𝑎,  𝐴𝑏 ,

we get the relation
 𝑉 𝐹𝑎𝑏= [  𝑉𝑎,  𝑉𝑏] ∈ 𝒟𝜃 .

The generalized vector fields  𝑉𝑎 take the following form

 𝑉𝑎 = 𝑉𝑎
𝜇 𝜕

𝜕𝑦𝜇
+  𝑝=2

∞ 𝑉𝑎
𝜇1⋯𝜇𝑝 𝜕

𝜕𝑦𝜇1
⋯

𝜕

𝜕𝑦𝜇𝑝
.

Let us truncate the above polyvector fields to ordinary vector fields given by 

𝒳 𝑀 = 𝑉𝑎 = 𝑉𝑎
𝜇
𝑦

𝜕

𝜕𝑦𝜇
 𝑎, 𝜇 = 1,⋯ , 6 .



Gauge-Gravity Duality for Asymptotically Flat Spacetimes

The orthonormal vielbeins on 𝑇𝑀 are obtained by the prescription

𝑉𝐴 = 𝜆 𝐸𝐴 ∈ Γ(𝑇𝑀) or   𝑒𝐴= 𝜆 𝑣𝐴 ∈ Γ(𝑇∗𝑀).                 

The conformal factor 𝜆 ∈ 𝐶∞(𝑀) is determined by the volume-preserving condition

ℒ𝑉𝐴𝓋𝑡 = 𝛻 ⋅ 𝑉𝐴 − 8 𝑉𝐴 ln 𝜆 = 0 with  𝓋𝑡 = 𝜆2𝑑4𝑥 ∧ 𝑣1 ∧ ⋯∧ 𝑣6.

If the structure equation of vector fields 𝑉𝐴 ∈ Γ(𝑇𝑀) is defined by 

𝑉𝐴, 𝑉𝐵 = −𝑔𝐴𝐵
𝐶 𝑉𝐶 ,

the volume-preserving condition can be written as 

𝑔𝐵𝐴
𝐵 = 𝑉𝐴 ln 𝜆

2.                                                     

In the end, the Riemannian metric on a 10-dimensional emergent spacetime manifold 𝑀
is given by



The vacua of 𝒩 = 4 super Yang-Mills theory in the NC Coulomb branch are characterized by the BPS 

equation given by

= 0.                                        

For simplicity, we set 𝐴𝜇 𝑥, 𝑦 = 0 and assume that NC U(1) gauge fields 𝐴𝑎 𝑥, 𝑦 ,

𝑎 = 1,⋯ , 6, along extra dimensions depend only on NC coordinates 𝑦𝑎, i.e. 𝐴𝑎(𝑦).

The solution of the BPS equation (3) is known as Hermitian Yang-Mills instantons obeying
 𝐹𝑎𝑏 = −

1

2
𝑇𝑎𝑏

𝑐𝑑  𝐹𝑐𝑑

where 𝑇𝑎𝑏
𝑐𝑑 =

1

2
𝜀𝑎𝑏

𝑐𝑑𝑒𝑓
𝐼𝑒𝑓. The  self-duality equations (known as Donaldson-Uhlenbeck-Yau equations) 

on ℂ3 are given by (HSY, ‘14)

 𝐹𝑖𝑗 =  𝐹  𝑖  𝑗 = 0,  𝑖=1
3  𝐹𝑖  𝑖 = 0.

K  ahler condition: 𝜔𝑖𝑗 = 𝜔  𝑖  𝑗 Ricci-flat condition:  𝑖=1
3 𝜔𝑖  𝑖 = 0

Hermitian 𝑈(1) instantons ≅ Calabi-Yau manifolds                              

Vacua of 𝒩 = 4 super Yang-Mills theory in the NC Coulomb branch
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Summary and Speculation

☞ I emphasize that the AdS/CFT correspondence is a particular example of emergent gravity 

from a large 𝑁 gauge theory in the noncommutative (NC) Coulomb branch.

☞ We showed that the four-dimensional 𝒩 = 4 supersymmetric large N gauge theory in the 

NC Coulomb branch is isomorphically mapped to the ten-dimensional 𝒩 = 1 supersymmetric 

NC U(1) gauge theory.

☞Wild speculation 1: The NC Coulomb branch admits infinitely degenerate vacua

whose dual geometries interpolate from ℝ9,1 to 𝐴𝑑𝑆5 × 𝕊5.

☞Wild speculation 2: Emergent gravity from NC gauge theory generalizes the AdS/CFT 

correspondence to asymptotically flat spacetimes as well as 𝐴𝑑𝑆 spacetimes.
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Thank you for your attention

Thank you for your attention


