Top physics in ATLAS and CMS

Jin Wang (IHEP, CAS)

On behalf of CMS and ATLAS Collaborations

Institute of High Energy Physics

Chinese Academy of Sciences

Outline

Focus on new results published in 2018 and 2019

• Introduction

- Top quark production cross-section measurements
 - $t\bar{t}$ inclusive and differential cross sections
 - Single top quark production cross sections
 - Top+X production measurements
- Top quark properties measurements
 - Top quark mass measurements, top decay width
 - Top pair spin correlations, charge asymmetry
- New Physics searches
 - Flavour changing neutral currents from top-quark decays
 - Charged lepton-flavour violation in top-quark decays

Introduction

• The unique top quark

3

- Most massive of known fundamental particles ~ 173 GeV
- Mass is of order of the electroweak symmetry breaking scale
 - large couplings to new resonances predicted by New Physics models
 - large Yukawa coupling to Higgs boson
- The only quark that decays before it can hadronise
 - opportunity to study a bare quark
 - access to its spin and polarization
- Important backgrounds to many precision measurements and New Physics searches
- Huge top quark production cross sections at the LHC
 - >100 million top quarks produced in Run 2

Very interesting and important at the LHC

Tuesday, September 3, 2019

Corfu 2019

$t\bar{t}$ inclusive and differential cross sections

$t\bar{t}$ production cross sections

Core physics delivery of the LHC with statistics O(1000) times Tevatron

5

- Unique test of QCD with massive partons and constraints on QCD soft scale modelling
- Constraints on SM parameters (m_t, α_s) and PDFs
- Constraints on anomalous EFT terms
- Background for many BSM and Higgs signals

Top Pair Branching Fractions

Good agreement between data and prediction

Corfu 2019

$t\bar{t}$ inclusive cross sections

- Single measurement precision: ~3.5%
- Limited mainly by luminosity and signal model uncertainty.

Corfu 2019

Latest $t\bar{t}$ inclusive cross sections

7

• ATLAS, ATLAS-CONF-2019-041

- 13 TeV, 36.1 fb⁻¹ data
- events with an opposite-charge eµ pair and one or two b-tagged jets
- 2.4% precision

 $\sigma_{t\bar{t}} = 826.4 \pm 3.6 \; ({\rm stat}) \pm 11.5 \; ({\rm syst}) \pm 15.7 \; ({\rm lumi}) \pm 1.9 \; ({\rm beam}) \; {\rm pb}$

- CMS, CMS-PAS-TOP-18-005
 - 13 TeV, 35.9 fb⁻¹ data
 - events $t\bar{t} \to (lv_l)(\tau_h v_\tau)b\bar{b}$
 - measured cross section

- $\sigma_{t\bar{t}} = 781 \pm 7(stat) \pm 62(syst) \pm 20 \; (lumi) \; pb$
- ratio of the partial width to the total width $\Gamma(t \rightarrow \tau v_{\tau} b) / \Gamma_{total}$ = 0.1050 ± 0.0009(stat) ± 0.0071(syst)

$t\bar{t}$ differential cross sections - ATLAS

- Scrutinize tt production in many channels as a function of many observables
 - precision tests of QCD in different regions of phase space
 - sensitive to BSM physics

Kinematic variables consistent with NLO QCD in general

Corfu 2019

$t\bar{t}$ differential cross sections - CMS

- Data shows softer top p_T than POWHEG+PYTHIA predicted in dilepton channel
 - still see the trend with higher order QCD and EW corrections
- Other variables related to top p_T are also in tension

$t\bar{t}$ differential cross sections - multidifferential

- 10
 - ATLAS: 2D differential cross sections as a function of lepton and dilepton kinematics

• CMS: 2D, 3D differential cross sections vs. top, $t\bar{t}$ kinematics and Njets, extracted m_t^{pole} ,

Single top quark production cross sections

Single top quark production measurements

• Top quark electroweak production @ 13 TeV

12

• t-channel: 216.99 pb, tW channel: 71.7 pb, s-channel: 10.32 pb, rare tZq production: ~ 1 pb

Corfu 2019

ATLAS and CMS Run1 Combination

- Run1 ATLAS+CMS combinations on single-top-quark cross sections and Vtb
 - JHEP 05 (2019) 088

13

Best V_{tb} direct determination to date!

Top+X production measurements

Top+X production in a nutshell

M. Aldaya

tZq observation

- Updates from CMS with 77.4 fb⁻¹ data from 2016 and 2017
- Binned maximum likelihood fit to BDTs of three signal regions and the WZ/ZZ control regions

• Measured cross section with 15% precision:

 $\sigma(tZq \to t\ell^+\ell^-q) = 111 \pm 13(stat)_{-9}^{+11}(syst)$ fb

• First observation with observed (expected) significance 8.2 (7.7) σ .

Corfu 2019

Searches for standard model production of four top quarks

- Tiny cross section in SM ~9fb @13 TeV
- Many BSM models probes an increase

- Searches performed in LHC with Run2 data
 - ATLAS/CMS: single lepton and opposite-sign dilepton channels <u>arXiv:1811.02305</u>, CMS-TOP-17-019
 - CMS: same sign and multilepton final states CMS-TOP-18-003, using full Run2 data

$t\overline{t} + b\overline{b}$

18

- Important background to ttH(bb) production
- Different phase spaces compared to NLO MC simulations
- In general data exceeds the predictions

fresh results from CMS-PAS-TOP-18-002

Top quark properties measurements

Top quark mass measurement

- Top quark mass is a key parameter of the Standard Model, important for electroweak vacuum stability
 - Need to measure the top mass in all possible ways with highest possible precision
- Direct measurement of "Monte Carlo mass" m_t^{MC}

- Extracted from invariant mass of decay products
- Indirect measurement of the pole mass m_t^{pole} from observables depending on m_t
 - E.g. inclusive or differential cross section $\sigma^{measure}$ compared to σ^{theory}
 - Measurement made in a given renormalization scheme
- Difference between m_t^{MC} and m_t^{pole} could be ~ GeV

Direct top mass measurement

21

2018 updates

ATLAS: arxiv 1810.01772

Lepton+jets channel 8TeV 20.2 fb⁻¹ data

172.08±0.39(stat)±0.82(syst)

CMS: <u>Eur. Phys. J. C 78 (2018) 891</u> Lepton+jets channel 2016 36 fb⁻¹data 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst GeV

reached ~0.5 GeV precision

Corfu 2019

Indirect measurement of the m_t^{pole} in ATLAS

 Recent indirect measurement of the pole mass m_t^{pole} extracted from differential measurement in ATLAS <u>arXiv:1905.02302</u> and CMS <u>arXiv:1904.05237</u>

Latest top mass measurement in CMS

- Measure top mass m_t from boosted jet mass (mjet) observable
 - CMS-PAS-TOP-19-005
 - using highly boosted hadronic top quark decays produced in $t\bar{t}$ events
 - reconstruct highly-boosted top quark decays with a novel XCone jet algorithm <u>JHEP11(2015)072</u>
 - the normalized differential cross section as a function of jet mass is compared to predictions from POWHEG with different values of m_t
 - extract a value of the top quark mass of 172.56 ± 2.47 GeV

The running of top mass measurement in CMS

- First measurement of the running of the top quark mass from CMS
 - CMS-PAS-TOP-19-007

- differential $t\bar{t}$ production cross section as a function of $m_{t\bar{t}}$ at the parton level, compared to NLO predictions in the \overline{MS} scheme obtained with different values of m_t
- extract the running of the top quark mass (evolution of the top quark mass as a function of the scale), compared to the prediction from renormalization group equations (RGE) solved with one-loop precision assuming five active flavours.

Top pair spin correlations

- Top quarks in $t\bar{t}$ production are mainly unpolarized, but the top pairs are strongly correlated
- Some BSM scenarios would lead to different top spin correlation
- Leptons from top decay carry the most spin information of the parent top
 - The easiest observable is the azimuthal opening angle $\Delta \phi$ between l^+l^-
- In ATLAS and CMS, unfolded parton-level differential cross sections for $\Delta \varphi(l^+l^-)$ are compared to different generator predictions

25

stronger spin correlation in data comparing to NLO prediction

Corfu 2019

arXiv:1907.03729

Top decay width and top pair charge asymmetry

- Direct measurement of the top decay width Γ_t in dilepton events in ATLAS with full Run2 data
 - ATLAS-CONF-2019-038

- Compare data to MC templates with different Γ_t assumptions
- The measured width is Γ_t =1.9±0.5 GeV
- Top pair charge asymmetry is measured in ATLAS using full Run2 data
 - ATLAS-CONF-2019-026
 - The inclusive tt charge asymmetry is measured as A_C=0.0060±0.0015(stat+syst.)
 - 4 σ deviation from zero

New Physics searches

Flavour changing neutral currents from top-quark decays

- 28
 - In SM, quark flavours can only change at tree level via charged currents (W+/- bosons)
 - FCNC processes occur via loops in the SM, highly suppressed by GIM mechanism
 - An observation of FCNC would be unambiguous evidence of BSM.

- 29
 - Test BSM models that allow the local non-conservation of charged lepton flavor
 - E.g. minimal extension of the SM explaining neutrino mass
 - Latest results ATLAS-CONF-2018-044 from ATLAS use 79.8 fb⁻¹ data collected from 2015 to 2017
 - Search for $t \to l^{\pm} l'^{\mp} q$ decay in $t\bar{t}$ with the other top decays semileptonically
 - Use binned maximum-likelihood fit on BDT discriminant to test for the presence of the signal events
 - The observed exclusion on cLFV decay branching ratio is

$$\mathcal{B}(t \to \ell \ell' q) < 1.86 \times 10^{-5}$$
 (observed).

Corfu 2019

Summary

Summary

- LHC Run-2 data is taking a central stage in top physics studies, a broad range of new results were updated by ATLAS and CMS
 - precision measurements of top production and decay, top quark properties
 - $t\bar{t}$, single top, top+X cross sections
 - top quark mass, decay width, top pair spin correlations, charge asymmetries
 - challenging and rare production/decay modes are exploited
 - four-top-quark production, tZq observation
 - improved limits on various new physic searches
 - FCNC, cLFV

- new studies on running of top mass, tW and $t\bar{t}$ interference models, jet shapes etc.
- data results are generally consistent with theoretical predictions with a few exceptions that need further investigation
 - some differential distribution in $t\bar{t}$, $t\bar{t}$ + $b\bar{b}$, top pair spin correlations
- More potential and excitement for top quark physics with the upcoming results using full Run 2 data
 - larger statistics ~150 fb⁻¹, improved MC models and theoretical calculations
 - new BSM interpretations, access to rare processes, new physics searches etc.

Backup

$t\bar{t}$ inclusive cross sections

- Single measurement precision: ~3.5%
- Limited mainly by luminosity and signal model uncertainty.

Corfu 2019

Probing interference between tW and $t\bar{t}$ production

34

- Treatments of the tW and $t\bar{t}$ NLO interference effects:
 - **Diagram removal (DR)**: remove doubly resonant diagrams from Wtb matrix element
 - **Diagram subtraction** (DS): subtract gaugeinvariant term from Wtb matrix element
 - arXiv:1607.05862 for details
- New study from ATLAS testing different models
 - Phys. Rev. Lett. 121, 152002 (2018)
- Use variable sensitive to interference effects

$$m_{b\ell}^{\text{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}\$$

 Results provide an important constraint on interference models and will guide future model development and tuning.

tZq measurements

• tZq rare production

- unique sensitivity to some EFT operators due to $Wb \rightarrow tZ$ vertex
- Challenging large SM backgrounds
- Previous results CMS result with 2016 data ATLAS result with 2016 data Phys. Lett. B 779 (2018) 358 Phys. Lett. B 780 (2018) 557 N 120r Events / 0.3 Entries / 0.1 35.9 fb⁻¹ (13 TeV) CMS ATLAS Data Data tZg Vs = 13 TeV, 36.1 fb 1biet tZq tt+tW NPL Z+jets 40 tWZ Diboson ttH+ttW ttV+ttH+tWZ tτΖ 30 W Uncertainty ΖZ 60 WZ+c 20 WZ+b 40 WZ+liah 10 20 Data / Pred. Pulls 0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ONN -0.5 0.5 0 **BDT** output $\mu = 1.31^{+0.35}_{-0.33}$ (stat) $^{+0.31}_{-0.25}$ (sys) $\mu = 0.75 \pm 0.21$ (stat) ± 0.17 (sys) 3.7 (3.1) σ Obs.(Exp.) 4.2 (5.4)σ Obs.(Exp.)

Both measurements with about 35% uncertainty

Tuesday, September 3, 2019

Corfu 2019

 $t\bar{t} + \gamma$

$t\bar{t} + \gamma$

- Photon emitted by ISR, FSR from top quark
- Important background to $ttH(\gamma\gamma)$ production or BSM processes
- Probe tγ EW coupling

- ATLAS updated 13TeV results of inclusive and differential cross-sections for $t\bar{t} + \gamma$ with 2015+2016 data, recently submitted to EPJC
- All measurements are in agreement with the theoretical predictions.

$t\bar{t}$ + jets in leptop+jets channel

- Some tension found between data and prediction for reconstructed hadronical top p_T in 4-jet exclusive configuration in both ATLAS and CMS
- POWHEG+PYTHIA also has difficulties simultaneously reproducing Njets and $p_T(t\bar{t})$

$t\bar{t}+W/Z$

- Important background to ttH production or BSM processes
- Could be increased by BSM effects

- Results are in agreement with the standard model.
- Constrained the anomalous EFT operators

Corfu 2019

Indirect top mass measurement

40

CMS: 13 TeV data, L = 2.2 fb⁻¹; lepton+jets final state

- Measure differential cross section wrt min(m_{lb}) in categories of N_{jet} and N_{b-jet}:
 σ = 888 ± 2 (stat) ± 27(sys) ± 20 (lumi) pb
- Extract pole mass from cross section: $m_t^{pole} = 170.6 \pm 2.7 (tot) \pm 1.01 (syst.) GeV$

ATLAS: 8 TeV data, L = 20.2 fb⁻¹, dilepton with 1 or 2 b-jets

- 8 differential fiductial cross sections measured: p_T^I, |ηI|, p^{eµ}, m^{eµ}, |y^{eµ}|, Δφ^{eµ}, p_T^e+p_T^µ, E^e+E^µ
- m_t^{pole} extracted from combined fit to templates or distribution moments
 - m_t^{pole} = 173.2 ± 0.9 (stat) ± 0.8 (syst) ± 1.2 (theo) GeV

Corfu 2019

Top Width measurements

41

ATLAS: direct measurements from a partial kinematic reconstruction of the top decay

- Fit to m(lb) and $\Delta R_{min}(j,b)$
- Width extracted assuming m_{top}=172.5 GeV

CMS: direct measurement gives 0.6 GeV< Γ_t <2.5 GeV at 95% CL [TOP-PAS-16-019]

CMS also derived Γ_{t} from t-channel single top production

B(t \rightarrow Wb) is separately measured: [PLB 736 (2014) 33] $\frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)} = 1.014 \pm 0.003(stat) \pm 0.032(sys)$

Finally, combined with previous CMS tchannel single-top-quark cross section:

 $\Gamma_{\rm t} = 1.36 \pm 0.02 ({\rm stat})^{+0.14}_{-0.11} ({\rm sys})$

Top charge asymmetry

[JHEP 04 (2018) 033]

ATLAS+CMS

ATLAS, lepton+jets

Eur. Phys. J. C 76 (2016) 87

CMS, lepton+jets

ATLAS+CMS

.

-0.01

0

 A_{c}

0.01

-0.02

LHC*top*WG

Phys. Rev. D 93 (2016) 034014, L_{int} = 19.6 fb⁻¹

L_{rt}= 20.3 fb⁻¹

At Tevatron, measure A_{FB} . At LHC, measure A_{C} :

 $A_{\rm C} = rac{N^{\Delta|y|>0} - N^{\Delta|y|<0}}{N^{\Delta|y|>0} + N^{\Delta|y|<0}}$

Non-zero A_C in SM due to higher order effects in $q\overline{q}\,$ annihilation

Use lep+jets events. Reconstruct $t\overline{t}$ events and unfold

√s = 8 TeV

QCD NLO (+ EW NLO), Phys. Rev. D 86 (2012) 034026 QCD NNLO (+ EW NLO), arXiv:1711.03945 LHC A_C measurements ruled out a number of theories explaining the Tevatron A_{FB} anomaly

Flavour changing neutral currents from top-quark decays

43

- In SM, quark flavours can only change at tree level via charged currents (W+/- bosons)
- FCNC processes occur via loops in the SM, highly suppressed by GIM mechanism
- An observation of FCNC would be unambiguous evidence of BSM.

Current summary of 95% C.L. observed limits on the branching ratios of the top quark decays via FCNC in ATLAS and CMS.

Latest updates since Dec. 2017:

ATLAS with 2015+2016 36 fb⁻¹ data JHEP 07 (2018) 176 $t \rightarrow qZ$ (q=u, c) Phys. Rev. D 98 (2018) 032002 $t \rightarrow Hq$ with H \rightarrow multilepton ATLAS-CONF-2018-049 $t \rightarrow Hq$ with H $\rightarrow b\bar{b}, \tau\tau$

CMS with 35.9 fb⁻¹ 2016 data JHEP 06 (2018) 102 t \rightarrow Hq with H \rightarrow $b\overline{b}$

Variable	Separation (%)
OSSF lepton pair invariant mass	11
cLFV top mass	10
$p_{\rm T}$ of the electron associated to the cLFV decay	9.1
$p_{\rm T}$ of the muon associated to the cLFV decay	8.5
$p_{\rm T}$ of the lepton associated to the SM decay	8.3
Scalar mass of all jets and leptons in the event	7.6
Same-sign electron pair invariant mass	6.9
Missing transverse momentum	6.8
Number of <i>b</i> -jets	6.7
W transverse mass associated to the SM top lepton	6.6
ΔR between the cLFV electron and the cLFV light jet	6.5
SM top mass	6.4
ΔR between the cLFV muon and the cLFV light jet	6.3
BDT discriminant	44

Variables used in the multivariate analysis, sorted according to the method-specific ranking.