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NC gauge theories with Θab(x)
The star product is given by

f ? g = f · g +
i

2
Θij ∂i f ∂jg −

1
8

ΘijΘkl ∂i∂k f ∂j∂lg

− 1
12
(
Θim∂mΘjk

)(
∂i∂j f ∂kg + ∂i∂jg ∂k f

)
+O(Θ3) .

The standard Leibniz rule is violated,

∂a(f ? g) = ∂af ? g + f ? ∂ag +
i

2
(∂aΘij)∂i f ∂jg +O(Θ2) .

So, if to substitute all point-wise products with a star products in
the action, the theory will not be gauge invariant.

Possible solution: [Madore et al’ 00], taking, Da = c[xa, ·]?, one
gets Da[f , g ]? = [Daf , g ]? + [f ,Dag ]?, as a consequence of,
[xa, [f , g ]?]? + [f , [g , xa]?]? + [g , [xa, f ]?]? ≡ 0.
However, the commutative limit is not well defined.



The statement of the problem

We are looking for the non-commutative theory satisfying the
following two properties:
1. Gauge invariance
2. Correct commutative limit

In fact, non-commutative gauge theory should be a deformation in
Θ, ∂Θ, ∂∂Θ, etc., of well defined commutative theory.

To this end we employ the framework of L∞ algebras which are
good for both description of gauge theories and deformations.

For simplicity in this talk we discuss only the associative
deformations, when the star commutator satisfies the Jacobi
identity.



Definition of L∞ in `-picture
• is a graded vector space:

L =
⊕
n

Ln = · · · ⊕ L−3︸︷︷︸
Noether

⊕ L−2︸︷︷︸
eom

⊕ L−1︸︷︷︸
fields

⊕ L0︸︷︷︸
gauge

⊕ L1︸︷︷︸
ghosts

⊕ . . .

• endowed with multi-linear maps: `n(v1, . . . , vn), such that,

`n(v1, . . . , vn) ∈ Ln−2+
∑n

i=1 deg(vi ) ,

• which are graded anti-symmetric,

`n(. . . , v1, v2, . . . ) = (−1)1+deg(v1)deg(v2) `n(. . . , v2, v1, . . . ) ,

• and satisfy the relations (generalized Jacobi identities):

Jn(v1, . . . , vn) :=
∑

i+j=n+1(−1)i(j−1)∑
σ(−1)σ χ(σ; v)

`j
(
`i (vσ(1) , . . . , vσ(i)) , vσ(i+1), . . . , vσ(n)

)
= 0 .



Strong homotopy algebras [Lada, Stasheff’ 92]
The first L∞ relations read

J1 := `1
(
`1(v)

)
= 0 ,

J2 := `1
(
`2(v1, v2)

)
− `2

(
`1(v1), v2

)
− (−1)v1`2

(
v1, `1(v2)

)
= 0 ,

meaning that `1 is a nilpotent derivation with respect to `2.

J3 := `1
(
`3(v1, v2, v3)

)
+ `3

(
`1(v1), v2, v3

)
+(−1)v1`3

(
v1, `1(v2), v3

)
+ (−1)v1+v2`3

(
v1, v2, `1(v3)

)
+`2

(
`2(v1, v2), v3

)
+ (−1)(v2+v3)v1`2

(
`2(v2, v3), v1

)
+(−1)(v1+v2)v3`2

(
`2(v3, v1), v2

)
= 0 ,

the Jacobi identity for `2 is required to hold only up to `1 exact
(total derivative) terms.

L∞ algebras are natural to deal with deformations. The proof of
the Formality Theorem by Kontsevich is based on the notion of L∞.



Example: Lie Algebra

Suppose, L = L0 = V . For any v ∈ V , deg(v) = 0. Since,

deg
(
`n(v1, . . . , vn)

)
= n − 2 +

n∑
i=1

deg(vi ),

the only non-vanishing bracket is `2 : V × V → V , which is
antisymmetric,

`2(v1, v2) = − `2(v2, v1) ,

and satisfies the standard Jacobi identity,

`2
(
`2(v1, v2), v3

)
+ `2

(
`2(v2, v3), v1

)
+ `2

(
`2(v3, v1), v2

)
= 0 .

Thus, L∞ algebra concentrated in L0 defines a Lie algebra.



Relation to gauge transformations, L = L−1 ⊕ L0
L−1 = {Aa} - classical fields and L0 = {f } - gauge parameters.
Since, deg

(
`n
)

= n − 2, the only non-vanishing

`n+1(f ,An) ∈ L−1 and `n+2(f , g ,An) ∈ L0 .

Gauge variations are given by:

δf A =
∑

n≥0
1
n!(−1)

n(n−1)
2 `n+1(f ,A, . . . ,A︸ ︷︷ ︸

n times

) = `1(f ) + `2(f ,A) + . . . .

L∞ relations, Jn+2(f , g ,An) = 0, imply the closure condition,

[δf , δg ]A = δ−C(f ,g ,A)A ,

C (f , g ,A) =
∑
n≥0

1
n!

(−1)
n(n−1)

2 `n+2(f , g ,A, . . . ,A︸ ︷︷ ︸
n times

) = `2(f , g)︸ ︷︷ ︸
[f ,g ]

+ . . . ,

field dependent gauge parameters [Berends, Burgers, van Dam’ 85].

Jn+3(f , g , h,An) = 0, ⇒
∑
cycl

[
δf , [δg , δh]

]
≡ 0 .



Field theory and Lfull∞ algebra [Hohm, Zwiebach’ 17]
Consider nonempty, L−2 = {F}, containing lhs of eom, Fa(A) = 0,

L−2 L−1 L0

Fa Aa f

Additional non-vanishing brackets

`n(An) ∈ L−2 and `n+2(f ,E ,An) ∈ L−2 ,

The equations of motion are determined as

F :=
∑
n≥1

1
n!

(−1)
n(n−1)

2 `n(An) = `1(A)− 1
2
`2(A2) + · · · = 0 .

The L∞ relations Jn+1(f ,An) = 0, and Jn+2(f ,E ,An) = 0, imply

δfF = `2(f ,F) + `3(f ,F ,A)− 1
2
`4(f ,F ,A2) + . . . ,

the eom are gauge covariant (invariant on-shell, F = 0).



Field theory and Lfull∞ algebra

Example: abelian Chern-Simons. Consider the only non-vanishing,

`1 : L0 → L1 , with `1(f ) = ∂af ,

`1 : L−1 → L−2 , with `1(A) = εabc∂bAc .

The only L∞ relation to check: `1(`1(f )) = εabc∂b∂c f ≡ 0.

According to the above formulas,

δf Aa = `1(f ) = ∂af , and Fa := `1(A) = εabc∂bAc = 0 .

For the abelian Yang-Mills, `1(A)a = �Aa − ∂a(∂ · A).
For non-abelian theories one set, `2(f , g) = [f , g ], etc.

Massage: L∞ algebra determines gauge theory and vise versa
[Hohm, Zwiebach’ 17].



L∞ bootstrap, arXiv: 1803.00732
Undeformed theory is determined through the given brackets,

`1(f ) ∈ L−1 , and `1(A) ∈ L−2 , with `1(`1(f )) ≡ 0 .

The deformation is introduced by setting,

`2(f , g) = i [f , g ]? ∈ L0 .

The L∞ relation, J2(f , g) = 0, becomes an equation on `2(f ,A),

`1(`2(f , g)) = `2(

∈L−1︷ ︸︸ ︷
`1(f ), g) + `2(f ,

∈L−1︷ ︸︸ ︷
`1(g)) .

Then from, J2(f ,A) = 0, one finds `2(A,A) and `2(f ,F);
After that from, J3(f , g , h) = 0, defines `3(f , g ,A), etc.

Gauge variations and field equations are given as before by

δf A = `1(f ) + `2(f ,A) + . . . ,

F := `1(A)− 1
2`2(A2) + · · · = 0 .



Solving L∞ bootstrap equations
Since, `2(f , g) = −{f , g}+O(Θ3), and `1(f ) = ∂af , the first
relation is:

`1(`2(f , g)) = −{

∈L−1︷ ︸︸ ︷
`1(f ), g} − {f ,

∈L−1︷ ︸︸ ︷
`1(g)} − (∂aΘij) ∂i f ∂jg +O(Θ3) ,

= `2(`1(f ), g) + `2(f , `1(g)) .

which implies that

`2(f ,A) = i [f ,Aa]? −
1
2

(∂aΘij) ∂i f Aj +O(Θ3) .

• Note that the solution is not unique, one may also set, e.g.,

`′2(f ,A) = `2(f ,A) + s ija (x) ∂i f Aj , s ija (x) = s jia (x) .

However, the symmetric part s ija (x) ∂i f Aj can be always “gauged
away” by L∞-QISO, physically equivalent to SW map, for more
details see arXiv:1806.10314.
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Lgauge
∞ algebra

Then, we have to analyze J3(f , g ,A) = 0, given by

0 = `2(`2(A, f ), g) + `2(`2(f , g),A) + `2(`2(g ,A), f )

− `3(A, `1(f ), g)− `3(A, f , `1(g)).

We replace it with J3(g , h, `1(f )) = 0, written in the form

`3(`1(f ), `1(g), h)− `3(`1(f ), `1(h), g) = G (f , g , h) ,

G (f , g , h) :=

`2(`2(`1(f ), g), h) + `2(`2(g , h), `1(f )) + `2(`2(h, `1(f )), g) .

By construction, G (f , g , h) = −G (g , f , h). The graded symmetry
of `3(`1(f ), `1(g), h) implies the graded cyclicity (consistency
condition) of G (f , g , h):

G (f , g , h) + G (h, f , g) + G (g , h, f ) = 0 .

Below we show that it holds true as a consequence of the previously
solved “Jacobi identity”, J2(f , g) = 0.



Lgauge
∞ algebra

G (f , g , h) + G (h, f , g) + G (g , h, f ) =

`2(`2(`1(h), f ), g) + `2(`2(f , g), `1(h)) + `2(`2(g , `1(h)), f ) +

`2(`2(`1(g), h), f ) + `2(`2(h, f ), `1(g)) + `2(`2(f , `1(g)), h) +

`2(`2(`1(f ), g), h) + `2(`2(g , h), `1(f )) + `2(`2(h, `1(f )), g) .

Using, J2(f , g) = 0, we rewrite it as

`1
[
`2(`2(f , g), h) + `2(`2(g , h), f ) + `2(`2(h, f ), g)

]
≡ 0 .

Thus, the combination (symmetrization in f and g):

`3(`1(f ), `1(g), h) = −1
6

(
G (f , g , h) + G (g , f , h)

)
,

has required graded symmetry and solves, J3(g , h, `1(f )) = 0.



Lgauge
∞ algebra

Setting

`3(A,B, h) = `3(`1(f ), `1(g), h)|`1(f )=A; `1(g)=B ,

one gets in the leading order,

`3(A,B, f ) = −1
6

(
Ga

ijk + Ga
jik
)
AiBj∂k f +O(Θ3) .

with

Ga
ijk = Θim∂m∂aΘjk − 1

2
∂aΘjm∂mΘki − 1

2
∂aΘkm∂mΘij .

• The consistency condition (graded cyclicity) holds true as a
consequence of L∞ construction.
• Even in the associative case one needs higher brackets to

compensate the violation of the Leibnitz rule.



Recurrense relations for Lgauge
∞ algebra

For, Jn+2(g , h,An) = 0, n > 1 we proceed in the similar way. First
we substitute them by Jn+2(g , h, `1(f )n) = 0,

`n+2(`1(f )n, `1(g), h)− `n+2(`1(f )n, `1(h), g) = G (f1, . . . , fn, g , h) ,

The graded symmetry of `n+2(`1(f )n, `1(g), h) implies the
consistency condition,

G (f1, . . . , fn, g , h)+G (f1, . . . , fn−1, g , h, fn)+G (f1, . . . , fn−1, h, fn, g) = 0 ,

which follows from the previous L∞ relations and can be proved by
the induction.
The solution is constructed by taking the symmetrization of the
r.h.s. in the first n + 1 arguments, i.e.,

`n+2
(
`1(f )n, `1(g), h

)
= − 1

(n + 1)(n + 2)

(
G (f1, . . . , fn, g , h)

+ G (f2, . . . , fn, g , f1, h) + · · ·+ G (fn, . . . , fn−1, h)
)
.



Slowly varying field approximation, arXiv:1903.02867
We discard the higher derivatives terms, `2(f , g) = −{f , g}, then

`2(f ,A) = −{f ,Aa} −
1
2

(∂aΘij) ∂i f Aj .

Taking, Θij(x) = 2θεijkxk , from recurrence relations we see that

δf Aa = ∂af +{Aa, f }+θεabcAb∂c f +θ2
(
∂af A2 − ∂bf AbAa

)
χ(θ2A2) .

From the gauge closure condition,

[δf , δg ]A = δ{f ,g}A ,

one finds,

χ(t) =
1
t

(√
t cot

√
t − 1

)
, χ(0) = −1

3
.

• NC su(2)-like deformation of the abelian gauge
transformations in the slowly varying field approximation.



NC Chern-Simons theory, Lfull
∞ algebra; L = L−2 ⊕ L−1 ⊕ L0

The L∞ bootstrap setup is:

`1(f ) = ∂af , `2(f , g) = −{f , g} `1(A) = εc
ab ∂aAb .

Using the recurrence relations to calculate the lower brackets
`2(A,A), `3(A,A,A), etc., one finds the ansatz for the left hand
side of the field equations, Fa = 0,

Fa : = Pabc (A) ∂bAc + Rabc (A) {Ab,Ac} ,

where

Pabc (A) = εabc F
(
θ2A2)+ θ2εabmAm Ac G

(
θ2A2)

+θ3Aa Ab Ac K
(
θ2A2)+ θAa δbc L

(
θ2A2)

+θAb δac M
(
θ2A2)+ θAc δab N

(
θ2A2) ,

Rabc (A) = εabc S
(
θ2A2)+ θ2

(
εabmAm Ac − εacmAm Ab

)
T
(
θ2A2)

+θ
(
δab Ac − δac Ab

)
V
(
θ2A2) .



Non-commutative Chern-Simons theory, arXiv:1905.08753
To determine coefficient functions F (θ2A2), G (θ2A2), ets., we use
the condition that eom should transform covariantly,

δfF = `2(f ,F) = {f ,F} .

Thus,

F (t) =
N(t)

2
=

sin
√
t cos

√
t√

t
, G (t) =

2
√
t cos 2

√
t − sin 2

√
t

2 t
√
t

,

K (t) = −4T (t) = −2 sin
√
t

t2

(√
t cos

√
t − sin

√
t
)
,

L(t) = M(t) = −2 S(t) = −2V (t) = −sin2√t
t

.

Taking into account that, F (0) = 1, G (0) = −4/3, K (0) = 2/3,
and L(0) = −1 one finds, limθ→0 Fa = εabc∂bAc , since

lim
θ→0

Pabc (A) = εabc , and lim
θ→0

Rabc (A) =
1
2
εabc .



Non-commutative field strength
In 3d we have constructed a vector Fa, which transforms
covariantly, δfFa = {f ,Fa}. Consequently the tensor

Fab := εabcFc = Pabcd (A) ∂cAd + Rabcd (A) {Ac ,Ad} =

∂a
(
AbF (A)

)
− ∂b

(
AaF (A)

)
+

θεabc∂d
(
AcAdL(A)

)
+ θF (A)εabc∂cA

2 +

−1
2
{AaL(A),Ab} − 1

2
{Aa,AbL(A)} − θ

2
L(A)εabc{Ac ,A

2} ,

where

F (A) =
sin
(
2
√
θ2A2

)
2
√
θ2A2

, and L(A) = −sin2
√
θ2A2

θ2A2 ,

is antisymmetric, transforms covariantly, δfFab = {f ,Fab}, and

lim
θ→0
Fab = ∂aAb − ∂bAa .

We call it the non-commutative field strength. The space L−2 also
can be treated as the space of the field strength.



NCCS dynamics and action principle

• So, just like in the commutative case the NCCS eom are
satisfied if NC field curvature vanishes everywhere.

If Fa = δL/δAa, then
δFa

δAb
=
δFb

δAa
.

One may easily check that, for

Fa : = Pabc (A) ∂bAc + Rabc (A) {Ab,Ac} ,

this condition does not hold,

δFa

δAb
6= δFb

δAa
,

in particular, because Pabc is not an antisymmetric in a and c .
Possibly we have a non-trivial deformation of CS theory.



Non-commutative Yang-Mills
Since, δfFab = {f ,Fab}, the following Lagrangian,

L = −1
4
FabFab = −3

4
FaFa ,

also transforms covariantly, δf L = {f ,L}, i.e., the action, S =
∫
L,

is gauge invariant.

The NCYM eom are:
Dabd Fab = 0 ,

where

Dabd Fab =
1
2
Pabcd(A) ∂cFab − Rabcd(A) {Ac ,Fab} .

The transformation law is given by(
δfDabd

)
Fab = −Dabd {f ,Fab} .



Discussion

• Given undeformed gauge theory and anti-symmetric bi-vector
field Θij(x) describing the non-commutativity of the space, we
have iterative procedure of the construction of NC gauge
theory, which reproduce in the limit Θ→ 0 the undeformed
one.
• Our construction is based on the principle that gauge

symmetry should be realized by L∞ and works for any given Θ.
• Open questions:

• Physical consequences: interaction with the matter fields,
quantization, UV/IR? etc.

• The relation with the previous approaches needs to be better
understood.


