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NC gauge theories with ©3(x)
The star product is given by

P 1 .
frg=f g+ éeu Oif djg — 5070M 9jf 9j0ie
1 . .
-5 (0 0m&) (9,0;f g + 0i0jg Okf) + O(©3).
The standard Leibniz rule is violated,
0a(F 5 g) = Oof % g + f % Dag + é(aae"f)a,-fajg +O(0?).

So, if to substitute all point-wise products with a star products in
the action, the theory will not be gauge invariant.

Possible solution: [Madore et al’ 00], taking, D, = c[xa, -]+, one
gets D,[f, gl« = [Daf, gl + [f, D2gl« as a consequence of,
[xa, [f, glils + [F, [g: xals]x + [8: [xa, FlL]4 = 0.

However, the commutative limit is not well defined.



The statement of the problem

We are looking for the non-commutative theory satisfying the
following two properties:

1. Gauge invariance
2. Correct commutative limit

In fact, non-commutative gauge theory should be a deformation in
©, 00, 000, etc., of well defined commutative theory.

To this end we employ the framework of L., algebras which are
good for both description of gauge theories and deformations.

For simplicity in this talk we discuss only the associative
deformations, when the star commutator satisfies the Jacobi
identity.



Definition of L, in /-picture

is a graded vector space:

L=@Plo=® L3 dlodlid Lo & L &
- —~  ~~ —~— =~
Noether eom  fields gauge ghosts
endowed with multi-linear maps: ¢,(vi, ..., v,), such that,
gn(vla R Vn) S Ln—2+27:1 deg(v;) »

which are graded anti-symmetric,

En(' sy VI, V2, e ) = (_1)1+deg(V1)deg(v2) gn( Sy V2, VI, .. ) )

and satisfy the relations (generalized Jacobi identities):

\71"(‘/17 R Vn) = Zi+j:n+1(_1)i(j_l) Za(_l)a X(U; V)
G (Li(Vo(1) »- - Vo(i)) s Vo(i41)s - -+ Vo(n) )



Strong homotopy algebras [Lada, Stasheff’ 92]

The first Ly, relations read

Jri=(l(v)) =0,
Tz = l1(Lla(vi, v2) ) — Lo (fa(va), v ) — (=1)"*4a( v, ba(v2) ) = 0,
meaning that ¢; is a nilpotent derivation with respect to /5.
T3 = l1(3(v1, v2, v3) ) + £3(L1(v1), v2, v3 )
+(=1)"l3(v1, 1(v2), v3 ) + (=1)"*T2l3(v1, v, £1(v3) )
0o (La(vi, v2), v ) + (= 1) 2FY)05 (£y(va, v3), 1 )
H(=1) 120, (U (vs, v), v ) = 0,

the Jacobi identity for ¢» is required to hold only up to ¢; exact
(total derivative) terms.

Lo algebras are natural to deal with deformations. The proof of
the Formality Theorem by Kontsevich is based on the notion of L.



Example: Lie Algebra

Suppose, L = Ly = V. For any v € V, deg(v) = 0. Since,
deg(€n(vi,...,vn)) =n—2+ Zdeg(v,-),
i=1

the only non-vanishing bracket is ¢» : V x V — V/, which is
antisymmetric,

lo(v1,v2) = — lo(v2, 1),
and satisfies the standard Jacobi identity,
lo(l2(vi, v2), v3 ) + L2 (Ca(va, v3),vi ) + L2 (£2(v3, v1),v2 ) = 0.

Thus, L algebra concentrated in Ly defines a Lie algebra.



Relation to gauge transformations, L = L_1 & L
L_; = {A,} - classical fields and Ly = {f} - gauge parameters.
Since, deg(ﬁn) = n — 2, the only non-vanishing

€n+1(f,An) el_4 and €n+2(f,g,A") S LO .

Gauge variations are given by:
n(n—1)

SeA =m0 H(-1)"7 Lopa(FL A A) = 0(F) + G(F,A) + ...

n times

Lo relations, Jni2(f, g, A") =0, imply the closure condition,

[6f7 5g]A = 5—C(f7g7A)A7
1 n(n—1)

qwﬂZZ;H)2MM@AWMMW@+~
n>0 . n times [f7g]

field dependent gauge parameters [Berends, Burgers, van Dam' 85].

jn+3(fag7 ha An) = Oa = Z [67{7 [6g,5h]] =0.

cycl



Field theory and L/ algebra [Hohm, Zwiebach' 17]
Consider nonempty, L_» = {F}, containing lhs of eom, F,(A) =0,

L, L4 Lo
Fa Az f
Additional non-vanishing brackets
h(A") € Ly and lnio(fF,E;A") € Ly,

The equations of motion are determined as

n 1
ny __ = 2 —
F = Z . (n(A") = (1(A) = S 0a(A%) + 0.
n>1
The Ly relations J,11(f, A") =0, and Jp42(f, E, A") = 0, imply

1
§¢F = bo(F, F) + U3(F, F,A) — 5z4(f,Jf, A+

the eom are gauge covariant (invariant on-shell, 7 = 0).



Field theory and L™/ algebra
Example: abelian Chern-Simons. Consider the only non-vanishing,

l1: Lo — Ly, with fl(f) = 0,f,
(1: Ly — Lo, with  (1(A) =e®PA..

The only L relation to check: ¢1(¢1(f)) = 2*°0,0.f = 0.
According to the above formulas,
8¢A, = 01(F) = B.f and  F?:=/(1(A) =e0pA. =0.

For the abelian Yang-Mills, ¢1(A)? = OA? — 92(0 - A).
For non-abelian theories one set, ¢>(f, g) = [f, g], etc.

Massage: L. algebra determines gauge theory and vise versa
[Hohm, Zwiebach' 17].



L bootstrap, arXiv: 1803.00732
Undeformed theory is determined through the given brackets,
((f)e Ly, and 61(A)e L, with 61(61(f)) =0.
The deformation is introduced by setting,
l(f,g) =i[f,g]« € Lo.
The Ly relation, J>(f, g) = 0, becomes an equation on /»(f, A),

l1(b(f, 8)) = La(a(f), 8) + La(f, la(g)) -

Then from, J>(f, A) = 0, one finds ¢»(A, A) and ¢»(f, F);
After that from, J3(f, g, h) = 0, defines ¢3(f, g, A), etc.

Gauge variations and field equations are given as before by

0fA = fl(f)—l—fg(f,A)—l—... ,
F = fl(A) — %52(A2)+-~ =0.



Solving L., bootstrap equations
Since, lo(f,g) = —{f,g} + O(©3), and ¢1(f) = O,f, the first
relation is:

G(6(f,g)) =—{0(f),g} — {f,l1(g)} — (0.0Y) 0;f9;g + O(©?),
= l(i(f), g) + la(f, 1(8)) -

which implies that

1 ..
(a(f, A) = i[f, Aal. — 5(0.07) Oif A; + 0(0%).



Solving L., bootstrap equations
Since, lo(f,g) = —{f,g} + O(©3), and ¢1(f) = O,f, the first
relation is:

0(ea(f.g) =—{ha(f).g) £ 1)} - (2:07) dif g + O(6?),

= 62(51(f)7g) + eZ(fael(g)) .

which implies that
1 ..
(a(f, A) = i[f, Aal. — 5(0.07) Oif A; + 0(0%).

e Note that the solution is not unique, one may also set, e.g.,

O(F,A) = bo(F,A) +sI(x)0if A, s(x) =si(x).
However, the symmetric part sg(x) 0if Aj can be always “gauged
away” by L.-QISO, physically equivalent to SW map, for more
details see arXiv:1806.10314.



L&aue algebra

Then, we have to analyze J3(f, g, A) = 0, given by

0 = EZ(EZ(A’ f)ag) + 62(62(f>g)5 A) + 52(62(g5 A)7 f)
- 63(A7€1(f)7g) - 63(’47 f7€1(g))

We replace it with J3(g, h, ¢1(f)) = 0, written in the form
£3(€1(f)7€1(g)7 h) - £3(£1(f)>£1(h)7g) = G(fagv h) >
G(f. g, h) =
lo(l2((1(f), &), h) + L2(l2(g, h), £1(F)) + L2(L2(h, £1(F)), &) -

By construction, G(f, g, h) = —G(g, f, h). The graded symmetry
of ¢3(¢1(f),¢1(g), h) implies the graded cyclicity (consistency
condition) of G(f, g, h):

G(f,g,h)+ G(h,f,g)+ G(g,h,f)=0.

Below we show that it holds true as a consequence of the previously
solved “Jacobi identity”, J»>(f,g) = 0.



L&aue algebra

G(f,g,h)+ G(h,f,g)+ G(g,h,f) =

l(ba(L1(h), ), g) + La(La(f, g), C1(h)) + L2(Ca(g, ¢1(h)), ) +

6(L2(1(g), h), ) + L2(La(h, £), ta(g)) + L2(L2(f, £a(g)), h) +
( (f )

la(ba(€1(F), g), h) + £2(L2(g, h), €1(F)) + L2(L2(h, 4a(f)), &) -

Using, J>(f,g) = 0, we rewrite it as
El [£2(£2(f7g)7 h) + 62(£2(g7 h)7 f) + £2(€2(h7 f)7 g)] =0.
Thus, the combination (symmetrization in f and g):

B(0(F), (@), h) = 5 (G(F.g, ) + Gl £, 1))

has required graded symmetry and solves, J3(g, h, ¢1(f)) = 0.



auge
L&a1ee algebra
Setting

t3(A, B, h) = l3(€1(f), €1(8), M)loy (F)=n. t2(g)=B >
one gets in the leading order,
t5(A, B, f) = —é (Ga’fk + Gajik>A;BJ-8kf +0O(0%).
with
G, = ©M 0,0 — ,3 /M0,  — %aa@kmame"f.

® The consistency condition (graded cyclicity) holds true as a
consequence of L, construction.

® Even in the associative case one needs higher brackets to
compensate the violation of the Leibnitz rule.



Recurrense relations for L&"&¢ algebra

For, Jnt+2(g, h,A") =0, n > 1 we proceed in the similar way. First
we substitute them by J,12(g, h, ¢1(f)") =0,

Cn2(61(F)", 41(g), h) — Lni2(€a(F)", ba(h), 8) = G(f, ..., fa, 8, h),

The graded symmetry of £,2(¢1(f)", ¢1(g), h) implies the
consistency condition,

G(fA,...,fng h)+G(A,...,fo1,8,h f)+G(A,... fom1,h fhg) =0,

which follows from the previous L, relations and can be proved by
the induction.
The solution is constructed by taking the symmetrization of the
r.h.s. in the first n 4+ 1 arguments, i.e.,

1

Cni2(€1(F)", £1(8), h) = )+ 2) (G(fl, N -8

+G(f2,...,f,,,g,ﬂ,h)+--~+G(f,,,...,f,,_l,h)).



Slowly varying field approximation, arXiv:1903.02867
We discard the higher derivatives terms, (>(f,g) = —{f, g}, then

0(f, A) = —{f, A} — %(aa@"f)a,-fAj.
Taking, ©%(x) = 20%x*, from recurrence relations we see that
S As = Oaf +{ Ay, FY -0 A 62 (aaf A2 Opf AbAa> X(6242).
From the gauge closure condition,

[07,0g]A = 0(r 5} A,

one finds,

X(t):% (ﬂcotﬂ—l) . y(0)=—=.

® NC su(2)-like deformation of the abelian gauge
transformations in the slowly varying field approximation.



NC Chern-Simons theory, Lgéu algebra; L=L ,® L_1 & Ly
The Ly bootstrap setup is:
06(F)=0.F,  bo(f,g)=—{fg}  (1(A) =ec?DAs.

Using the recurrence relations to calculate the lower brackets
lo(A, A), 3(A, A, A), etc., one finds the ansatz for the left hand
side of the field equations, 72 = 0,

T2 = P (A) OpAc + R (A) {Ab, A},
where
pabe (A) — sabc F (02A2) + ngabmAm A G (02A2)
+03A% AP A K (07 A%) + 0 A° 6 L (6°A%)
+0 AP 53¢ M (6 A%) + 0 A°5°° N (6°A%)
R™E(A) = €5 (62A%) + 0% (™A AT — ™A AP) T (6242)

+0 (6% A° = 5% A) V (6242) .



Non-commutative Chern-Simons theory, arXiv:1905.08753

To determine coefficient functions F(62A2), G(#2A?), ets., we use
the condition that eom should transform covariantly,

O0rF = bo(f, F) ={f,F}.

Thus,
F(t) = N(t) _sin t“cos\/E7 G(t) = 2\/fcos2\/f—sm2ﬁ7
2 Vit 2t/t
K(t) = —4T(t)= —2S|:2\/E (\/f cos /'t — sin \/E) ,
.2
L(t) = M(t)=-25(t) = —2V(t) = - tﬁ.
Taking into account that, F(0) =1, G(0) = —4/3, K(0) = 2/3,
and L(0) = —1 one finds, limg_,g F? = £2b<9, A, since
1
. abc _ _abc . abc __ — .abc
6|[>’nOP (A) =&, and 6|T>10R (A)—25 .



Non-commutative field strength
In 3d we have constructed a vector F,, which transforms
covariantly, 0¢F, = {f, F,}. Consequently the tensor

]_-ab — EabC}—C — Pabcd (A) acAd + Rabcd (A) {AmAd} —
07 (APF(A)) — 0P (A°F(A)) +
07209 (AcAgL(A)) + OF (A)e? 0 A% +

—%{A"L(A), APy — %{Aa, APL(AY} — gL(A)sab"{Ac,A2},

where
in (2v62A2 in2 /02 A2
F(A):M, and  L(A)= VTN
2V62 A2 02 A2

is antisymmetric, transforms covariantly, 6;F2° = {f, 72}, and
lim ]:ab = aaAb - 6bA3 .
6—0

We call it the non-commutative field strength. The space L_» also
can be treated as the space of the field strength.



NCCS dynamics and action principle

® So, just like in the commutative case the NCCS eom are
satisfied if NC field curvature vanishes everywhere.

If F, =0L/5A?, then
0Fs  0Fp
SAb  §Aa°
One may easily check that, for

Fa: = P®(A) 0pAc + RP(A) {Ap, A},
this condition does not hold,

0F, , 0Fp
JAb " §A2

in particular, because P25 is not an antisymmetric in a and c.
Possibly we have a non-trivial deformation of CS theory.



Non-commutative Yang-Mills
Since, 6¢F3 = {f,f"b}, the following Lagrangian,

1 3
E:—f a ab:—f a
2 bF 4—7:3—7: ;

also transforms covariantly, L = {f, L}, i.e., the action, S = fﬁ,
is gauge invariant.

The NCYM eom are:
D Fop =0,

where
1
Dabd ‘Fab — §Pabcd(A) 8C‘Fab _ Rabcd(A) {ACvFab} )
The transformation law is given by

(6fDabd)Jrab = _Dabd {f7fab}'



Discussion

® Given undeformed gauge theory and anti-symmetric bi-vector
field ©¥(x) describing the non-commutativity of the space, we
have iterative procedure of the construction of NC gauge
theory, which reproduce in the limit © — 0 the undeformed
one.

e Qur construction is based on the principle that gauge
symmetry should be realized by L, and works for any given ©.
e QOpen questions:
® Physical consequences: interaction with the matter fields,

quantization, UV/IR? etc.
® The relation with the previous approaches needs to be better

understood.



