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Introduction

Invariant differential equations play a very im-

portant role in the description of physical sym-

metries - recall, e.g., the examples of Dirac,

Maxwell equations, (for more examples cf., e.g.,

[BR]).

It is important to construct systematically such

equations for the setting of quantum groups,

where they are expected as (multiparameter)

q-difference equations.



In the present talk we consider the construc-

tion of deformed multiparameter analogs of

some conformally invariant equations, in par-

ticular, the Maxwell equations, following the

approach of [D].

We start with the classical situation and we

first write the Maxwell equations in an index-

less formulation, trading the indices for two

conjugate variables z, z̄.

This formulation has two advantages. First, it

is very simple, and in fact, just with the intro-

duction of an additional parameter, we can de-

scribe a whole infinite hierarchy of equations,

which we call the Maxwell hierarchy .

Second, we can easily identify the variables

z, z̄ and the four Minkowski coordinates with

the six local coordinates of a flag manifold of

SL(4) and SU(2,2).



Next we need the deformed analogs of the

above constructions. The specifics of the ap-

proach of [D] is that one needs also the com-

plexification of the algebra in consideration.

Thus we have used the multiparameter de-

formations Uq,q(gl(m)) and Uq,q(sl(m)) in the

case m = 4. We know that these multiparam-

eter deformations depend maximally on

(m2 −m+2)/2 parameters.

Thus, we obtain initially a 7-parameter defor-

mation of Minkowski space-time. Under vari-

ous conditions we consider several variants with

less parameters.

Using the corresponding representations and

intertwiners of deformed U(sl(4)) we also de-

rive infinite hierarchies of deformed Maxwell

and related equations.



Classical setting

It is well known that Maxwell equations may
be written in several equivalent forms:

∂µFµν = Jν , ∂µ∗Fµν = 0 (1)

or,

∂kEk = J0 (= 4πρ),

∂0Ek − εkℓm∂ℓHm = Jk (= −4πjk),
∂kHk = 0 ,

∂0Hk + εkℓm∂ℓEm = 0 , (2)

where Ek ≡ Fk0, Hk ≡ (1/2)εkℓmFℓm,
or

∂kF
±
k = J0 , ∂0F

±
k ± iεkℓm∂ℓF

±
m = Jk , (3)

where

F±k ≡ Ek ± iHk . (4)

Not so well known is the fact that the eight
equations in (3) can be rewritten as two con-
jugate scalar equations in the following way:



I+ F+(z) = J(z, z̄) , (5a)

I− F−(z̄) = J(z, z̄) , (5b)

I+ = z̄∂+ + ∂v − (6a)

−
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z ,

I− = z∂+ + ∂v̄ − (6b)

−
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ ,

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2,

∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂v̄, (7)

F+(z) ≡ z2(F+
1 + iF+

2 )− 2zF+
3 −

− (F+
1 − iF+

2 ) , (8)

F−(z̄) ≡ z̄2(F−1 − iF−2 )− 2z̄F−3 −
− (F−1 + iF−2 ) ,

J(z, z̄) ≡ z̄z(J0 + J3) + z̄(J1 − iJ2) +

+ z(J1 + iJ2) + (J0 − J3) ,



where we continue to suppress the xµ, resp.,

x±, v, v̄, dependence in F and J. (The conju-

gation mentioned above is standard and in our

terms it is : I+ ←→ I−, F+(z)←→ F−(z̄).)

It is easy to recover (3) from (5) - just note

that both sides of each equation are first order

polynomials in each of the two variables z and

z̄, then comparing the independent terms in

(5) one gets at once (3).

Writing the Maxwell equations in the simple

form (5) has also important conceptual mean-

ing. The point is that each of the two scalar

operators I+, I− is indeed a single object,

namely, I+, I− are intertwiners of the con-

formal group, while the individual components

in (1) - (3) do not have this interpretation.

This also is a restatement of the well known

fact that the Maxwell equations are confor-

mally invariant.



Let us be more explicit. The physically rele-

vant representations Tχ of the 4-dimensional

conformal algebra su(2,2) may be labelled by

χ = [n1, n2; d], where n1, n2 are non-negative

integers fixing finite-dimensional irreducible rep-

resentations of the Lorentz subalgebra, and

d is the conformal weight (or dimension, or

energy). (In the literature these Lorentz repre-

sentations are labelled also by (j1, j2) = (n1/2, n2/2).)



Then the intertwining properties of the opera-

tors in (6) are given by:

I+ : C+ −→ C0 ,

I+ ◦ T+ = T0 ◦ I+ , (9a)

I− : C− −→ C0 ,

I− ◦ T− = T0 ◦ I− , (9b)

where T a = Tχa
, a = 0,+,−, Ca = Cχa

are

the representation spaces, and the signatures

are given explicitly by:

χ+ = [2,0; 2] , χ− = [0,2; 2] , χ0 = [1,1; 3] ,

(10)

as anticipated. Indeed, (n1, n2) = (1,1) is the

four-dimensional Lorentz representation, (car-

ried by Jµ above), and (n1, n2) = (2,0), (0,2)

are the two conjugate three-dimensional Lorentz

representations, (carried by F±k above), while

the conformal dimensions are the canonical di-

mensions of a current (d = 3), and of the

Maxwell field (d = 2).



We see that the variables z, z̄ are related to

the spin properties and we shall call them ’spin

variables’. More explicitly, a Lorentz spin-tensor

G(z, z̄) with signature (n1, n2) is a polynomial

in z, z̄ of order n1, n2, resp.

The intertwining properties of the operators in

(6) and some more, namely,

χ(ϕ) = [0,0; 0], χ(Φ) = [0,0; 4], χ(Aµ) = [1,1; 1]

are presented in the following diagram:
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Simplest example of diagram with conformal invariant operators

(arrows are differential operators, dashed arrows are integral operators)

∂µ = ∂
∂ xµ

, Aµ electromagnetic potential, ∂µ φ = Aµ

F = F+
⊕ F− electromagnetic field, ∂[λAµ] = ∂λAµ − ∂µAλ = Fλµ

Jµ electromagnetic current, ∂λFλµ = Jµ, ∂µJµ = Φ

d12, d23 linear invariant operators corresponding to the roots α12, α23



Formulae (9), (10) are part of an infinite hi-

erarchy of couples of first order intertwiners.

Explicitly, instead of (9), (10) we have [D]:

I+n : C+
n −→ C0

n ,

I+n ◦ T+
n = T0

n ◦ I+n , (11a)

I−n : C−n −→ C0
n ,

I−n ◦ T−n = T0
n ◦ I−n , (11b)

where T a
n = Tχa

n, Ca
n = Cχa

n, and the signa-

tures are:

χ+
n = [n+2, n; 2] , χ−n = [n, n+2;2] ,

χ0
n = [n+1, n+1;3] , n ∈ ZZ+ , (12)

while instead of (5) we have:

I+n F+
n (z, z̄) = Jn(z, z̄) , (13a)

I−n F−n (z, z̄) = Jn(z, z̄) , (13b)



where (n ∈ ZZ+)

I+n =
n+2

2

(
z̄∂+ + ∂v

)
− (14a)

−
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z ,

I−n =
n+2

2

(
z∂+ + ∂v̄

)
− (14b)

−
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ ,

while F+
n (z, z̄), F−n (z, z̄), Jn(z, z̄), are polyno-

mials in z, z̄ of degrees (n + 2, n), (n, n + 2),

(n+1, n+1), resp., as explained above.

If we want to use the notation with indices as in (1),

then F+
n (z, z̄) and F−n (z, z̄) correspond to Fµν,α1,...,αn

which

is antisymmetric in the indices µ, ν, symmetric in α1, . . . , αn,

and traceless in every pair of indices, while Jn(z, z̄) cor-

responds to Jµ,α1,...,αn
which is symmetric and traceless in

every pair of indices. Note, however, that the analogs

of (1) would be much more complicated if one wants

to write explicitly all components.



The crucial advantage of (13) is that the op-

erators I±n are given just by a slight general-

ization of I± = I±0 .

We call the hierarchy of equations (13) the

Maxwell hierarchy. The Maxwell equations

are the zero member of this hierarchy.

Formulae (13),(11),(12) are part of a much

more general classification scheme [D], involv-

ing also other intertwining operators, and of

arbitrary order:
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The general sextet of invariant differential operators valid for

so(4, 2), so(5, 1) and so(3, 3) ∼= sl(4,R).

p, ν, n are three natural numbers, the shown simplest case is when p = ν = n = 1,

dν
2
, dν

13
linear invariant operators of order ν corresponding to the roots α2, α13

dn
12
, d

p

23
linear invariant operators of order n, p corresponding to the roots α12, α23



But first we go back and we rewrite (14) in

the following form:

I+n =
1

2

(
(n+2)I1I2 − (n+3)I2I1

)
,

I−n =
1

2

(
(n+2)I3I2 − (n+3)I2I3

)
(15)

where

I1 ≡ ∂z , I2 ≡ z̄z∂++z∂v+z̄∂v̄+∂− , I3 ≡ ∂z̄ .

(16)

It is important to note that group-theoretically

the operators Ia correspond to the right ac-

tion of the three simple roots α1, α2, α3 of

sl(4), while the operators I±n are obtained

from the lowest possible singular vectors cor-

responding to the two non-simple non-highest

roots α12 ≡ α1 + α2, α23 = α2 + α3 [D].



This is the form that we generalize for the de-

formed case. In fact, we can write at once the

general form, which follows from the analysis

of [D]:

Î+n =
1

2

(
[n+2]qÎ1Î2 − [n+3]qÎ2Î1

)
,

Î−n =
1

2

(
[n+2]qÎ3Î2 − [n+3]qÎ2Î3

)
(17)

Here Î±n are obtained from the lowest possible

singular vectors of Uq(sl(4)), corresponding

(as above) to the two non-simple non-highest

roots [D].

• In addition to the differential operators on the

last sextet diagram there are operators arising

from singular vectors in doublets :



✲✛ /
(I12)

p

1Λ
−

pν 1Λ
+
pν

✲✛ /
Dp,n

2Λ
−

pn 2Λ
+
pn

/
(I23)

n

✲✛3Λ
−

νn 3Λ
+
νn

where p, ν, n are natural numbers, Dp+n is

an invariant differential operator of order p+n.

The above sextets and doublets exhaust the

so(4,2) invariant differential operators arising

from singular vectors. Besides those there are

invariant differential operators arising from Casimirs

and from subsingular vectors (two cases for

so(4,2)).



Multiparameter quantum Minkowski space-

time

The variables x±, v, v̄, z, z̄ have definite group-

theoretical meaning, namely, they are six local

coordinates on the flag manifold

Y = GL(4)/B̃ = SL(4)/B,

where B̃, B are the Borel subgroups of GL(4),

SL(4), respectively, consisting of all upper di-

agonal matrices. Under a natural conjugation

(cf. also below) this is also a flag manifold of

the conformal group SU(2,2).



Explicitly, for this is used the triangular Gauss

decomposition:
g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 = (18)

=


1 0 0 0
z 1 0 0
v x− 1 0
x+ v̄ z̄ 1



∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗



1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1





In the deformed case we use the same decom-

position which gives us the commutation rela-

tions of the non-commutative coordinates on

the multiparameter Yq,q flag manifold. There

is a technicality here, namely, that we start

from the multiparameter deformation GLq,q(m)

of GL(m) (given by Sudbery) which depends

on the maximal possible number of parame-

ters, i.e., on the (m2 −m+ 2)/2 parameters

q, qij, 1 ≤ i < j ≤ m.

(The parametrisation is such that the standard

one-parameter deformation is obtained for all

qij = q.)

Thus, the flag manifold Ỹq,q = GLq,q(m)/B̃q,q(m)

depends on the same number of parameters.



Thus, for m = 4 we have a seven parame-

ter quantum Minkowski space-time the explicit

relations being (λ ≡ q − q−1):

x+v =
q23q34
q24

vx+ , v̄x+ =
q14

q12q24
x+v̄ ,

x−v =
q13

q12q23
vx− , v̄x− =

q13q34
q14

x−v̄ ,

v̄v =
q13q34
q12q24

vv̄ , (19)

q q24
q23q34

x+x− =
q12q24
q q14

x−x+ + λvv̄ ,



The commutation relations involving the spin

variables z, z̄ are:

z̄z =
q13q24
q14q23

zz̄ , (20)

z̄x+ =
q13q34
q14

x+z̄ ,

z̄x− =
q23q34
q2q24

x−z̄ + λv̄ ,

z̄v̄ =
q23q34
q24

v̄z̄ ,

z̄v =
q13q34
q2q14

vz̄ + λx+ ,

x+z =
q14

q12q24
zx+ ,

x−z =
q2q13
q12q23

zx− − λv ,

vz =
q13

q12q23
zv ,

v̄z =
q2q14
q12q24

zv̄ − λx+ .

Now we point out several special cases:



• When all deformation parameter are phases,

i.e., |q| = 1, |qij| = 1, and in addition holds

the following relations:

q13 =
q12q24
q34

, q14 =
q12q

2
24

q23q34
, (21)

then the commutation relations (19) and (20)

are preserved by an anti-linear anti-involution

ω acting as :

ω(x±) = x± , ω(v) = v̄ , ω(z) = z̄ .

(22)

• Further, we recall from [DoPa] that the

dual quantum algebra Uq,q(gl(m)) has the

quantum algebra Uq,q(sl(m)) as a commu-

tation subalgebra, but not as a co-subalgebra.

In order to achieve the latter we have to im-

pose some relations between the parameters,

thus the genuine multiparameter deformation

Uq,q(sl(m)) as co-subalgebra of GLq,q(m) de-

pends on (m2 − 3m+4)/2 parameters.



Thus, in the case of m = 4 for the genuine

Uq,q(sl(4)) we have four parameters instead

of seven. Explicitly, we achieve this by impos-

ing that the parameters qi,i+1 are expressed

through the rest:

q12 =
q3

q13q14
, q23 =

q4

q13q14q24
, q34 =

q3

q14q24
(23)

Thus, the four-parameter quantum Minkowski

space-time and the embedding quantum flag

manifold Yq,q are given by (19) and (20) with

(23) enforced.

• If we would like to enforce also the conjuga-

tion (22) then there are more relations between

the deformation parameters, namely, we get:

q12 = q23 = q34 =
q2

q14
, q13 = q24 = q .

(24)



Thus, we have a two-parameter deformation
the analogs of (19) and (20) becoming:

x+v = p vx+ , v̄x+ = p−1 x+v̄ ,

x−v = p−1 vx− , v̄x− = p x−v̄ ,

v̄v = vv̄ ,
q

p
x+x− =

p

q
x−x+ + λvv̄ , (25)

z̄z = zz̄ , (26)

z̄x+ = p x+z̄ ,

z̄x− =
p

q2
x−z̄ + λv̄ ,

z̄v̄ = p v̄z̄ ,

z̄v =
p

q2
vz̄ + λx+ ,

x+z = p−1 zx+ ,

x−z =
q2

p
zx− − λv ,

vz = p−1 zv ,

v̄z =
q2

p
zv̄ − λx+ ,

where p ≡ q3/q214.



Quantum Maxwell equations hierarchy

The order of variables hinted in (19),(20) is re-

lated to the normal ordered basis of the quan-

tum flag manifold Yq,q considered as an as-

sociative algebra:

φ̂ijkℓmn = zi vj xk− xℓ+ v̄m z̄n , i, j, k, ℓ,m, n ∈ ZZ+ .

(27)

We introduce now the representation spaces

Cχ corresponding to the signatures χ = [n1, n2; d].

The elements of Cχ , which we shall call

(abusing the notion) functions, are polynomi-

als in z, z̄ of degrees n1, n2, resp., and formal

power series in the quantum Minkowski vari-

ables. Namely, these functions are given by:

φ̂n1,n2(Ȳ ) =
∑

i,j,k,ℓ,m,n∈ZZ+
i≤n1, n≤n2

µ
n1,n2
ijkℓmn φ̂ijkℓmn ,

(28)



where Ȳ denotes the set of the six coordinates
on Yq,q . Thus the quantum analogs of F±n ,
Jn, cf. (13), are :

F̂+
n = φ̂n+2,n(Ȳ ) , F̂−n = φ̂n,n+2(Ȳ ) ,

Ĵn = φ̂n+1,n+1(Ȳ ) . (29)

Using the above machinery we can present a
deformed version of the Maxwell hierarchy of
equations. First, we mention that the explicit
form of the operators Ia in (16) is obtained by
the infinitesimal right action of the three sim-
ple root generators of sl(4) on the flag mani-
fold Y (following the procedure of [D]). Thus,
in the deformed case for the right action of
Uq,q(sl(4)) on Yq,q we have:

Îa = πR(X
−
a ) (30)

From this we obtain the multi-parameter quan-
tum Maxwell hierarchy of equations by substi-
tuting the operators of (30) in (17), i.e., the



final result is:

Î+n F̂+
n = Ĵn , (31a)

Î−n F̂−n = Ĵn . (31b)

The reason that we can use (17) is that the

multiparameter Uq,q(sl(4)) depends only on q as

a commutation subalgebra, while the depen-

dence on the other parameters is exhibited only

in its co-algebra structure and in the explicit

expressions of πR(X
−
a ).

Formulae (31) are part of a much more gen-

eral classification scheme (mentioned above,

cf. [D]) involving also other intertwining oper-

ators, and of arbitrary order. A subset of this

scheme are two infinite two-parameter families

of representations which are intertwined by the

same operators (14), cf. [D]. Explicitly:



I+
n+1 ,n+2

: C+

n+1 ,n+2
−→ C0+

n+1 ,n+2
, (32a)

I+
n+1 ,n+2

◦ T+

n+1 ,n+2
= T0+

n+1 ,n+2
◦ I+

n+1 ,n+2
,

I−
n−1 ,n

−
2

: C−
n−1 ,n

−
2
−→ C0−

n−1 ,n
−
2

, (32b)

I−
n−1 ,n

−
2
◦ T−

n−1 ,n
−
2

= T0−
n−1 ,n

−
2
◦ I−

n−1 ,n
−
2

,

where T a
n±1 ,n

±
2

= T
χa

n±1 ,n±2 , Ca
n±1 ,n

±
2

= C
χa

n±1 ,n±2 ,

a = ±, or a = 0±, and

χ+

n+1 ,n+2
= [n+1 , n+2 ;

n+1 − n+2
2

+ 1] (33a)

χ0+

n+1 ,n+2
= [n+1 − 1, n+2 +1;

n+1 − n+2
2

+ 2],

n+1 ∈ IN, n+2 ∈ ZZ+ ,

χ−
n−1 ,n

−
2

= [n−1 , n
−
2 ;

n−2 − n−1
2

+ 1] (33b)

χ0−
n−1 ,n

−
2

= [n−1 +1, n−2 − 1;
n−2 − n−1

2
+ 2],

n−1 ∈ ZZ+, n−2 ∈ IN .



Then instead of (13) in the q = 1 case and

(31) in the q-deformed case, we have:

qI
+

n+1
F+

n+1 ,n+2
(z, z̄) = J+

n+1 ,n+2
(z, z̄),(34a)

qI
−
n−2

F−
n−1 ,n

−
2
(z, z̄) = J−

n−1 ,n
−
2
(z, z̄), (34b)

where qI
+

n+1
, qI
−
n−2

, are given by (17), while F±
n±1 ,n

±
2
(z, z̄),

J±
n±1 ,n

±
2
(z, z̄), are polynomials in z, z̄ of degrees

(n±1 , n
±
2 ), (n±1 ∓ 1, n±2 ± 1), resp.

The crucial feature which unifies these repre-

sentations is the form of the operators qI±n ,

which is not generalized anymore in equations

(34).

We call the hierarchy of equations (34) the

generalized q - Maxwell hierarchy. The q

- Maxwell hierarchy is obtained in the partial

case when χ0+

n+1 ,n+2
= χ0−

n−1 ,n
−
2
= χ0

n which fixes



three of the four parameters: n+1 − 2 = n+2 =

n−1 = n−2 − 2 = n.

• Another one parameter subhierarchy of the

generalized q-Maxwell hierarchy involves the

two signatures of χ+
n = [n + 2, n; 2], χ−n =

[n, n+2;2], and in addition

χ00
n = [n+1, n+1;1] = {n+2,−1−n, n+2} ,

(35)

(n ∈ ZZ+). The intertwining relations are:

I+n−1 : C00
n −→ C−n , (36)

I+n−1 ◦ T
00
n = T−n ◦ I

+
n−1 ,

I−n−1 : C00
n −→ C+

n , (37)

I−n−1 ◦ T
00
n = T+

n ◦ I−n−1 , (38)

where T00
n = Tχ00

n , C00
n = Cχ00

n . Here the

equations are:

qI
+
n−1 qAn = qF

−
n , (39a)

qI
−
n−1 qAn = qF

+
n , (39b)



where qI±n are given by (17), qAn has the sig-

nature χ00
n .

This hierarchy will be called the potential q-

Maxwell hierarchy . The reason is that the

lowest member obtained for n = 0 and q = 1

is just:

∂[µAν] = Fµν . (40)



q - d’Alembert equations hierarchy

Here we consider another one parameter sub-
hierarchy of the generalized q-Maxwell hierar-
chy which is obtained from (33) for n+1 =
n−2 = r ∈ IN , n−1 = n+2 = 0, i.e.

χd+
r = [r,0;

r

2
+ 1], (41a)

χd0+
r = [r − 1,1;

r

2
+ 2], r ∈ IN,

χd−
r = [0, r;

r

2
+ 1], (41b)

χd0−
r = [1, r − 1;

r

2
+ 2], r ∈ IN,

where the two conjugated equations follow from
(34):

qI
+
r F d+

r = Jd+
r , (42a)

qI
−
r F d−

r = Jd−
r , (42b)

where qI±r are given by (17).

For the minimal possible value of the param-
eter r = 1 we obtain the two conjugate q -
Weyl equations.



The case r = 2 gives the q-Maxwell equations

(note that Jd+
2 = Jd−

2 ). This is the only in-

tersection of the present hierarchy with the q-

Maxwell hierarchy.

We call this hierarchy q - d’Alembert hier-

archy following the classical case, (cf. [D]),

due to the following. We consider the repre-

sentations χd±
a for the excluded above value

r = 0, when they coincide. Thus, we set:

χd ≡ χd±
0 = [0,0; 1] = χ(Aq). Then the rel-

evant equation is the q-d’Alembert equation

[D]:

�q Aq = Jq (43)

where χ(Jq) = [0,0; 3],

�q =
(
D̂v̄D̂v − qD̂−D̂+TvTv̄

)
TvTv̄T+T− (44)

where D̂y, Ty are standard q-difference, q-

shift, operators.



q - Weyl gravity equations hierarchy

Here we study another hierarchy which is given
as follows:

C+
m

↗ ↘
Ch
m CT

m
↘ ↗

C−m

(45)

where m ∈ IN , and the corresponding signa-
tures are:

χ+
m = [2m,0; 2], χ−m = [0,2m; 2], (46)

χh
m = [m,m; 2−m], χT

m = [m,m; 2 +m]

For future reference we give also the Dynkin
labels χ = {m1,m2,m3} of these representa-
tions:

χ+
m = {2m+1,−m− 1,1}, (47)

χ−m = {1,−m− 1,2m+1},
χh
m = {m+1,−1,m+1},

χT
m = {m+1,−2m− 1,m+1}



The arrows on (45) represent invariant differ-

ential operators of order m. It is a partial case

of the general conformal scheme parametrized

by three natural numbers p, ν, n, (cf. Fig. 2),

setting here: ν = 1, p = n = m. This hi-

erarchy intersects with the Maxwell hierarchy

for the lowest value m = 1. Here we consider

the linear conformal (Weyl) gravity which is

obtained for m = 2.



q - Linear conformal gravity

We start with the q = 1 situation and we first

write the linear conformal gravity equations, or

Weyl gravity equations in our indexless formu-

lation, trading the indices for two conjugate

variables z, z̄.

Weyl gravity is governed by the Weyl tensor

Cµνστ which is given in terms of the Riemann

curvature tensor Rµνστ , Ricci curvature tensor

Rµν , scalar curvature R :

Cµνστ = Rµνστ − 1
2(gµσRντ + gντRµσ −

− gµτRνσ − gνσRµτ) +

+ 1
6(gµσgντ − gµτgνσ)R , (48)

where gµν is the metric tensor. Linear confor-

mal gravity is obtained when the metric ten-

sor is written as: gµν = ηµν + hµν, where ηµν

is the flat Minkowski metric, hµν are small so



that all quadratic and higher order terms are
neglected. In particular:

Rµνστ = 1
2(∂µ∂τhνσ+∂ν∂σhµτ−∂µ∂σhντ−∂ν∂τhµσ)

The equations of linear conformal gravity are:

∂ν∂τCµνστ = Tµσ , (49)

where Tµν is the energy-momentum tensor. From
the symmetry properties of the Weyl tensor
it follows that it has ten independent compo-
nents. These may be chosen as follows (intro-
ducing notation for future use):

C0 = C0123 , C1 = C2121 , C2 = C0202 ,

C3 = C3012 , C4 = C2021 , C5 = C1012 ,

C6 = C2023 , C7 = C3132 , C8 = C2123 ,

C9 = C1213 . (50)

Furthermore, the Weyl tensor transforms as
the direct sum of two conjugate Lorentz irreps,
which we shall denote as C± (cf. (46) for m =
2). The tensors Tµν and hµν are symmetric and
traceless with nine independent components.



Further, we shall use again the fact that a

Lorentz irrep (spin-tensor) with signature (n1, n2)

may be represented by a polynomial G(z, z̄) in

z, z̄ of order n1, n2, resp. More explicitly, for the

Weyl gravity representations mentioned above

we use:

C+(z) = z4C+
4 + z3C+

3 + z2C+
2 + zC+

1 + C+
0 ,

C−(z̄) = z̄4C−4 + z̄3C−3 + z̄2C−2 + z̄C−1 + C−0 ,

T (z, z̄) = z2z̄2T ′22 + z2z̄T ′21 + z2T ′20 +

+zz̄2T ′12 + zz̄T ′11 + zT ′10 +

+z̄2T ′02 + z̄T ′01 + T ′00 , (51)

h(z, z̄) = z2z̄2h′22 + z2z̄h′21 + z2h′20 +

+zz̄2h′12 + zz̄h′11 + zh′10 +

+z̄2h′02 + z̄h′01 + h′00 .



The components C±k are given in terms of the

Weyl tensor components as follows:

C+
0 = C2 −

1

2
C1 − C6 + i(C0 +

1

2
C3 + C7)

C+
1 = 2(C4 − C8 + i(C9 − C5))

C+
2 = 3(C1 − iC3) (52)

C+
3 = 8(C4 + C8 + i(C9 + C5))

C+
4 = C2 −

1

2
C1 + C6 + i(C0 +

1

2
C3 − C7)

C−0 = C2 −
1

2
C1 − C6 − i(C0 +

1

2
C3 + C7)

C−1 = 2(C4 − C8 − i(C9 − C5))

C−2 = 3(C1 + iC3)

C−3 = 2(C4 + C8 − i(C9 + C5))

C−4 = C2 −
1

2
C1 + C6 − i(C0 +

1

2
C3 − C7)



while the components T ′ij are given in terms of

Tµν as follows:

T ′22 = T00 +2T03 + T33

T ′11 = T00 − T33

T ′00 = T00 − 2T03 + T33

T ′21 = T01 + iT02 + T13 + iT23

T ′12 = T01 − iT02 + T13 − iT23

T ′10 = T01 + iT02 − T13 − iT23

T ′01 = T01 − iT02 − T13 + iT23

T ′20 = T11 +2iT12 − T22

T ′02 = T11 − 2iT12 − T22 (53)

and similarly for h′ij in terms of hµν .



In these terms all linear conformal Weyl gravity

equations (49) (cf. also (45)) may be written

in compact form as the following pair of equa-

tions:

I+ C+(z) = T (z, z̄) , I− C−(z̄) = T (z, z̄) ,

(54)



where the operators I± are given as follows:

I+ =
(
z2z̄2∂2+ + z2∂2v + z̄2∂2v̄ + ∂2−+

+2z2z̄∂v∂+ +2zz̄2∂+∂v̄ +

+2zz̄(∂−∂+ + ∂v∂v̄) +

+2z̄∂−∂v̄ +2z∂v∂−
)
∂2z −

−6
(
zz̄2∂2+ + z∂2v +2zz̄∂v∂+ + z̄2∂+∂v̄ +

+z̄(∂−∂+ + ∂v∂v̄) + ∂v∂−
)
∂z +

+12
(
z̄2∂2+ + ∂2v +2z̄∂v∂+

)
, (55)

I− =
(
z2z̄2∂2+ + z2∂2v + z̄2∂2v̄ + ∂2−+

+2z2z̄∂v∂+ +2zz̄2∂+∂v̄ +

+2zz̄(∂−∂+ + ∂v∂v̄) +

+2z̄∂−∂v̄ +2z∂v∂−
)
∂2z̄ −

−6
(
z2z̄∂2+ + z̄∂2v̄ +2zz̄∂+∂v̄ + z2∂v∂+ +

+z(∂−∂+ + ∂v∂v̄) + ∂−∂v̄

)
∂z̄ +

+12
(
z2∂2+ + ∂2v̄ +2z∂+∂v̄

)
,



To make more transparent the origin of (54)

and in the same time to derive the quantum

group deformation of (54), (55) we first intro-

duce the following parameter-dependent oper-

ators:

I+n =
1

2

(
n(n− 1)I21I

2
2 − 2(n2 − 1)I1I

2
2I1 +

+ n(n+1)I22I
2
1

)
, (56)

I−n =
1

2

(
n(n− 1)I23I

2
2 − 2(n2 − 1)I3I

2
2I3 +

+ n(n+1)I22I
2
3

)
,

where I1 = ∂z, I2 = z̄z∂+ + z∂v + z̄∂v̄ + ∂−,
I3 = ∂z̄, are from (16).

The operators I±n correspond to the singular

vectors for the two non-simple non-highest sl(4)

roots. More precisely, the operator I+n corre-

sponds to the singular vector of weight 2α12,

while the operator I−n corresponds to weight

2α23. The parameter n = max(2j1,2j2).



It is easy to check that we have the following

relation:

I± = I±4 , (57)

i.e., (54) are written as:

I+4 C+(z) = T (z, z̄) , I−4 C−(z̄) = T (z, z̄) .

(58)

Using the same operators we can write down

the pair of equations which give the Weyl ten-

sor components in terms of the metric tensor:

I+2 h(z, z̄) = C−(z̄) , I−2 h(z, z̄) = C+(z) .

(59)

The above equations are immediately general-

izable to the deformed case.

Using the Uq(sl(4)) formula for the singular

vector given in [D] we obtain for the q-analogue



of (56):

qI
+
n =

1

2

(
[n]q [n− 1]q qI

2
1 qI

2
2 −

− [2]q [n− 1]q [n+1]q qI1 qI
2
2 qI1 +

+[n]q [n+1]q qI
2
2 qI

2
1

)
, (60)

qI
−
n =

1

2

(
[n]q [n− 1]q qI

2
3 qI

2
2 −

− [2]q [n− 1]q [n+1]q qI3 qI
2
2 qI3 +

+[n]q [n+1]q qI
2
2 qI

2
3

)
,

where the q-deformed qIa were given above.

Then the q-Weyl gravity equations are (cf.

(58)):

qI
+
4 C+(z) = T (z, z̄) , qI

−
4 C−(z̄) = T (z, z̄) ,

(61)

while q-analogues of (59) are:

qI
+
2 h(z, z̄) = C−(z̄) , qI

−
2 h(z, z̄) = C+(z) .

(62)



THANK YOU !


