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Introduction

This talk is based on arXiv1905.12783, joint work with [Nicolas Delporte].
Some weird speculations however, are (especially if wrong) entirely mine.

At the Planck scale we expect space and time to change drastically as gravity
becomes quantized.

Why random trees ?

• Quantum gravity: space-time as random geometry

• Random trees: simplest example of non-trivial random geometry, with
effective dimension ds = 4/3

• Random trees naturally label the melonic approximation (MA)
characteristic of tensor models (TM) and of the Sachdev-Ye-Kitaev model
(SYK). This quantum model saturates the [Maldacena-Shenker-Stanford]

(MSS) bound, hence is maximally-chaotic and a serious toy model for
quantum black-holes.

SSYK =

∫
dt

(
1
2
ψi∂tψi +

∑
1≤i1<···<iq≤N

Ji1,··· ,iqψi1 · · ·ψiq

)
with Ji1,··· ,iq a quenched iid random tensor and ψi a real Fermionic vector.
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The Tree structure of Melonic Graphs

Melonic graphs are obtained by finitely many recursive edge-insertions of
“elementary melons" within themselves.
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General remarks on Quantum Gravity approaches

Particle physics centered approaches: superstring theory...

General-relativity centered approaches: background independence, space
emergence... Is time also emergent? Is causality fundamental?

In the first case one may want to reduce the dimension, eg from 10 to 4, using
eg compactification.

In the second case one may want to increase the dimension, eg from 0 to 4.
For this one might use holography, which means boundary => bulk.
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Quantum Gravity and Discrete Random Geometry

Typical holography is AdS/CFT. But there are no CFT in d = 0, 1, so how to
start?

Tensor models are 0-dimensional. The SYK model is a 1-dimensional model,
not truly quantum, in which time is given at the start.

Witten proposed to improve SYK into a true quantum tensor model
(Gurau-Witten). A typical uncolored [Bonzom, Gurau, R.] action is the following
one, found by [Klebanov, Tarnopolsky] using earlier work by [Carrozza,Tanasa]

SCTKT[ψ] =

∫
dt
(
1
2
ψabc∂tψabc +

λ

N3/2ψa1a2a3ψa1b2b3ψb1a2b3ψb1b2a3

)
.

This is a very active area with many recent related developments (eg here

[Ferrari, Krajewski, Pascalie, Sanchez, Valette, ...]).
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How to organize sub-dominant terms (beyond melons)?

The standard interpretation of the melonic approximation (MA) is branched
polymers (random trees). How to go beyond this random geometry?

Several avenues:

• multiple scalings [Bonzom, Gurau, Dartois, Lionni, R. Schaeffer...]

• tensor field theories and their renormalization group trajectories [Benedetti,

Ben Geloun, Carrozza, Eichhorn, Koslowski, Lumma, Martini, Oriti, Pereira, R.,

Toriumi...] This is the tensor generalization of the Kontsevich, Grosse and
Wulkenhaar matrix models

• corrections to the MA as fields living on the MA, hence on random trees ?
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Random Spaces

Probabllity measure on the space of all spaces (Gromov-Hausdorff space).

Right now (2019) probabilists understand analytically essentially two universal
non-trivial "continuous" random spaces:

• The Continuous Random Tree [Aldous, ' 1990]

• The Brownian Sphere [Le Gall, Miermont ' 2011]

The second space can be thought of as a set of random labels living on the first.

In practice: these spaces can be discretized as random graphs.

• Infinite trees with single spine

• Planar ribbon graphs at critical point [Miller, Sheffield, 2015]
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Galton-Watson trees

Galton-Watson processes are another way to understand random trees.

GW trees have independent probabilities pk to have k offsprings at each vertex.
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Galton-Watson trees

In the simplest case (binary trees) the critical Galton-Watson process
corresponds to offspring probabilities p0 = p2 = 1

2 , pk = 0 for k 6= 0, 2. .

The generating function for such trees obeys the simple Catalan equation

Z(ζ) = ζ(1 + Z 2(ζ)), which solves to Z =
1−
√

1−4ζ2

2ζ .

Infinite random trees: critical Galton-Watson trees with fixed branching rate
conditioned on non-extinction.

In physics, such random trees are often called branched polymers.
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Infinite trees

The condition of non-extinction generically leads to infinite random trees
characterized by a single infinite spine S = N or Z decorated at each node v by
an independent finite Galton-Watson branch Tv . The corresponding measure is

dν(Γ) =
∏
v∈S

dνGW (Tv )

The Hausdorff dimension dH is defined by the average volume/diameter
relation: V ' cDdH . For random trees we have dH (Random Tree) = 2.
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Why dH (Random Tree) = 2?

One can understand the metric properties of a large random tree via a nice
one-to-one map.

The Dyck walk turns around the tree to identify the tree to its contour
function quotiented by an equivalence relation. The contour function is exactly
a Brownian excursion.

This map leads quite easily to dHausdorff = 2.
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Random Walks on a Graph

On a graph Γ

• we have no longer translation and rotation invariance, Fourier analysis and
the notion of momenta are lost...

• what remains: the Laplace operator. LΓ = DΓ − AΓ (DΓ: degree matrix ;
AΓ: incidence matrix). It inverse has the random path expansion:

Cm
Γ (x , y) =

∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

∼
∫ ∞

0
dt e−m2tpt(x , y),

Spectral dimension ds : if pt(x , y) is the probability for a random walk starting
at x to be at y after t steps, then ds is defined through

pt(x , x) ∼
t→∞

1
tds/2

.

It is the infrared scaling of what physicists call the tadpole.
For random trees ds (Random Tree) = 4/3 [Durhuus, Johnson, Wheather]
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Diffusion time

How to intuitively understand that ds (Random Tree) = 4/3? It is because in
time t a random path typically explores up to distance t1/3.

Consider a random walk starting at the tree root killed when it first reaches
height L at time T .

The corresponding conditioned heat kernel pL(r , x) is harmonic (except at the
root) hence constant on the branches and linear on the walk from x to r

So pL(r , r) ' cL, and in fact pL(r , x) ≤ c(L− d(x , r))

Then
< T >=

∑
x

pL(r , x) ' L× L2 ' L3.

Since the path explores in time t distances up to t1/3, hence volumes t2/3 the
normalization should be in t−2/3 hence ds = 4/3, to fit with the usual (d

integer) formula pt(x , y) = t−d/2e−
(x−y)2

4t .
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Field theory and Observables

Partition function on a graph Γ:

Z(Γ;λ) =

∫
e
−λ

∑
x∈VΓ

φq (x)
dµCΓ (φ) =

∫
dνΓ(φ).

Correlation functions:

SN (Γ; z1, ..., zN ) =

∫
φ(z1)...φ(zN ) dνΓ(φ) =

∞∑
V =0

(−λ)V

V !

∑
G

AG (Γ; z1, ..., zN ).

The spine is common to all Γ ∈ T . Hence we can define the observables as
averaged Schwinger functions with arguments {z1, ..., zN} ∈ S on this spine

E[SN (Γ; z1, ..., zN )] =

∫
dν(Γ)SN (Γ; z1, ..., zN )
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Summary of Results

In arXiv1905.12783 we develop the perturbative renormalization group analysis
of this type of just renormalizable QFT on random trees.

• We identify the fractional power of the Laplacian which makes the theory
just-renormalizable

• We introduce a multiscale analysis by slicing the propagator according to
the time of its random path representation

• We combine this analysis with precise heat kernel estimates of [Barlow,
Kumagai]

• We obtain uniform bounds on convergent graphs and localization
estimates for the divergent subgraphs which require renormalization

• We perform mass and coupling constant renormalization at all orders

Our analysis justify the intuition that the theory truly behaves as in dimension
d = 4/3.
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Some weird conjectures

• Critical point for melons of 0-d TM can be interpreted as emergence of a
d = 4/3 dendritic gravi-time

• The spine of this gravi-time can be interpreted as an ordinary d = 1
classical time.

• Gravithermal quantum-mechanics is the Euclidean U(1) compact version
of the gravi-time. It is generated by critical unicycles. Fermions and
Bosons can be defined as usually by periodic/antiperiodic bc along the
single cycle.

• Conjecture: SYK, Gurau-Witten, CTKT models on this gravitime still
saturate the MSS bound

• If true, it should lead to some new BNCFT4/3/BAdS2 random-holographic
correspondence to de defined. (B meaning “brownian").
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Conclusion

Is time a random tree?

L’arbre Eternité vit, sans faîte et sans racines Victor Hugo
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Propagating the matter field

The propagator is the inverse of the Lapacian

Cm
Γ (x , y) =

∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

∼
∫ ∞

0
dt e−m2tpt(x , y),

with an IR regulator m.
We then use the Euler β-function identity:

L−α =
sinπα

π

∫ ∞
0

dm
2m1−2α

L+ m2 ,

(0 < α ≤ 1) to define the rescaled propagator as

CαΓ (x , y) =
sinπα

π

∫ ∞
0

dm 2m1−2α
∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

.
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Divergence degree

The standard degree of divergence for a φq Feynman graph G in dimension d
(V vertices, L internal edges and E external legs, qV = 2L + E) is:

ω(G) = (d − 2α)L− d(V − 1) = (d − 2α)(qV − E)/2− d(V − 1),

The just-renormalizable case occurs for

α =
d

2
− d

q
, α =

1
3

for d =
4
3
, q = 4.

Then the divergence degree depends only on N:

ω(G) = d

(
1− E

q

)
.

For q = 4, E = 2 and E = 4, i.e 2- and 4-point functions need renormalization.
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RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)

Field Theory on Random Geometry



Quantum Gravity
Random Geometry

QFT on Graphs and Random Trees

RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)

Field Theory on Random Geometry



Quantum Gravity
Random Geometry

QFT on Graphs and Random Trees

RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)

Field Theory on Random Geometry



Quantum Gravity
Random Geometry

QFT on Graphs and Random Trees

RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)

Field Theory on Random Geometry



Quantum Gravity
Random Geometry

QFT on Graphs and Random Trees

RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)

Field Theory on Random Geometry



Quantum Gravity
Random Geometry

QFT on Graphs and Random Trees

Probabilistic estimates

For a parameter λ ≥ 1, the ball B(x , r) is said λ–good if (essentially):

r2λ−2 ≤ |B(x , r)| ≤ r2λ.

Crucially, [Barlow, Kumagai] showed that λ–good balls occur more and more likely
for larger and larger λ:

P[B(x , r) is not λ–good] ≤ c1e
−c2λ.

Then, they obtained the (quenched) bounds:
Given r > 0 and that B(x , r) is λ–good, if t ∈ [r3λ−6, r3λ−5], then

• for any K ≥ 0 and any y ∈ T with d(x , y) ≤ Kt1/3

pt(x , y) ≤ c
(
1 +
√
K
)
t−2/3λ3 ,

• for any y ∈ T with d(x , y) ≤ c1rλ
−19

pt(x , y) ≥ ct−2/3λ−17.
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Propagators

Slicing the propagator into proper time slices Ij = [M2(j−1),M2j ]

C j
T (x , y) =

u=m2

∫ ∞
0

du u−α
∫

Ij

dt pt(x , y)e−ut = Γ(1− α)

∫
Ij

dt pt(x , y)tα−1

Lemma (Single Line)

• cM−2j/3 ≤ E
[
C j

T (x , x)
]
≤ c ′M−2j/3,

• cM2j/3 ≤ E
[∑

y C
j
T (x , y)

]
≤ c ′M2j/3.

Interpretation: The propagator scales as∫
Ij

t−2/3t−2/3dt ' cM−2j/3.

The integration volume
∑

y costs c ′M4j/3 as in a naive dimension d = 4/3.
c, c ′ are dummy names for inessential constants.

Idea of proof: slice the y -sum into rings and sum over all possible volumes
inside with associated λ–not-goodness probability factors.
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Convergent graphs

Theorem
For a completely convergent graph (no 2- or 4- point subgraphs) G of order
V (G) = n, the limit as limρ→∞ E(AG ) of the averaged amplitude exists and
obeys the uniform bound

E(AG ) ≤ cn(n!)β

where β = 52
3 .

Comment: essentially uses the bounds above, Cauchy-Schwarz (for loops) and
again slicing the space into rings that are asked to be λ-good.

However intersecting rings don’t have independent probabilities. This is what
leads to the (non-optimal) factorial growth.
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Divergent graphs I

We want to know how an amplitude changes when moving an external leg from
one point z to a close point y :

Lemma
Defining ∆j

T (x ; y , z) :=
∣∣∣C j

T (x , y)− C j
T (x , z)

∣∣∣, we obtain

E[∆j
T (x ; y , z)] ≤ cM−2j/3M−j/3√d(y , z).

Comment: uniform in x and the factor M−j/3
√

d(y , z) is the gain, provided
d(y , z)� rj = M2j/3. The precise inequality for y , z ∈ T is

|f (y)− f (z)|2 ≤ d(y , z)
∑
x∼y

(f (x)− f (y))2
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Divergent graphs II

For jm � jM , we want to compare the “bare" amplitude

Abare
T (x , z) :=

∑
y∈T

C jM
T (x , y)C jm

T (y , z)

to the “localized" amplitude at z

Aloc
T (x , z) := C jM

T (x , z)
∑
y∈T

C jm
T (y , z).

Lemma
Introducing the averaged “renormalized" amplitude
Āren(x , z) := E[Abare

T (x , z)− Aloc
T (x , z)], we have∣∣Āren(x , z)
∣∣ ≤ cM−2(jM−jm)/3−(jM−jm)/3.
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Divergent graphs III

The previous lemma allows to write 4-point subgraphs as a local 4-vertex, plus
corrections unseen by the external scale, defining hence an effective amplitude
Aeff :

Theorem
For a graph G with no 2-point subgraph G of order V (G) = n, the averaged
effective-renormalized amplitude E[Aeff

G ] = limρ→∞ E[Aeff
G ,ρ] is convergent as

ρ→∞ and obeys the same uniform bound than in the completely convergent
case, namely

E(Aeff
G ) ≤ cn(n!)β .
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