

SUSY searches in ATLAS and CMS

Vasiliki A. Mitsou for the ATLAS & CMS Collaborations

19th HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY Workshop on Connecting Insights in Fundamental Physics: Standard Model and Beyond August 31 - September 11, 2019, Corfu, Greece

Supersymmetry

- What it is?
 - global symmetry between fermions & bosons
- Why is it attractive?
 - Higgs: predicts a below-135-GeV Higgs scalar
 - may be SM-like
 - completely solves hierarchy problem
 - unification of gauge couplings at a single scale
 - dark matter candidate

Interpretation

- Sparticle masses from SUSY breaking not fixed by theory ⇒ huge parameter space to explore
- How to test that at LHC?
- 1. Top-down approach
 - SUSY breaking mechanism → different models
 - □ GUT scale unification → few free parameters
- 2. Bottom-up approach
 - Phenomenological models (pMSSM, ...)
 - fix mass hierarchy, mass scales and other assumptions
 - scan remaining parameters
 - Simplified topologies
 - specific decay chain
 - · easy to interpret results in terms of other models

Typical SUSY search

- Signal region (SR)
 - may be single-bin ("cut & count") or multi-bin
 - optimised for best discovery in targeted production/decay mode
 - □ to cover different mass hierarchies → few SRs for each final state
- Data-driven background estimate
 - irreducible backgrounds estimated using control region (CR) data as a constraint and Monte Carlo to extrapolate from CR to SR
 - reducible background (fake/non-isolated leptons, MET from jet mis-measurement) from data
 - validation regions (VR) to check background estimate method and CR→SR variable modelling
- Likelihood fit of data in SRs and CRs
 - hypothesis testing of signal models → 95% CL cross-section upper limits
 - background versus data → model-independent upper limits at 95% CL in visible cross-section

Large Hadron Collider at CERN

Run 1: 2010 - 2012

 proton-proton vs = 7 - 8 TeV

 Run 2: 2015 - 2018

 proton-proton vs = 13 TeV

 Spectacular LHC performance!

Strong production Production of 1st and 2nd generation squarks and gluinos with subsequent cascade decay to lighter sparticles

Squarks & gluinos: 0L + jets + MET

- Events with no isolated lepton (e/μ) in the final state
 relying on high MET and hadronic activity
- Various strategies:
 - a) multi-bin SRs: shape of jet-related variables, e.g. $m_{
 m eff} = \sum_{
 m jets} p_{
 m T}^{
 m J}$
 - b) Boosted Decision Tree (BDT) trained against SM
 - c) split events into two pseudojets and compute MT2(j₁; j₂)

OL + jets + MET interpretation

Strong production - summary

- Inspired by naturalness arguments
- Focuses on stop and sbottom production

Sbottom decay to Higgs

SRA

- $h \rightarrow b\overline{b}$ decay leads to multi-*b*-jets final signature
- Depending on mass splittings, *b*-jets from sbottom may have different kinematics from ones from h

arXiv:1908.03122

many (\geq 3 or 4) *b*-jets

SRC

Stop production

ATL-PHYS-PUB-2019-022

Electrowealk production

- Involves **neutralino**, **chargino**, **slepton** direct production
- Results also interpreted in the context of **dark matter**

77.5 fb⁻¹ (13 TeV)

Corfu2019 V.A. Mitsou

Chargino/neutralino with $h \rightarrow \chi \chi$

Targetting

300

- wino-like $\tilde{\chi}_1 \pm \tilde{\chi}_2^0$
- higgsino-like $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ in GMSB with \tilde{G} LSP
- Selection: $\geq 2\gamma$, $H \rightarrow \gamma\gamma$ tag, 1 e/ μ OR e⁺e⁻/ $\mu^+\mu^-$ pair close to m(Z) OR ≥ 1 jet

Observed limit (±1 o^{SUSY}

 $\widetilde{\chi}_1^0$

CMS

2 leptons + 0 jets

- Signature: 2ℓ opposite-sign, 0/1 jet, b-jet veto (to reject tt)
- Analysis uses object-based missing transverse momentum significance
 - significantly reduces MET background, particularly in 1-jet events
- Binned SRs in stransverse mass m_{T2} to exploit shape differences between signal and background

arXiv:1908.08215

Big improvement w.r.t. Run 1 limits excluding up to 400 GeV in $\tilde{\chi}_1^{\pm}$ mass

Compressed scenarios with staus

- First SUSY search in events with one soft tau
 - + one energetic ISR jet and large MET
- Signal models: co-annihilation between (nearly mass degenerates) τ̃ and χ̃₁⁰ → generates "correct" dark matter relic density

Upper limits set on the $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ and $\tilde{\tau}$ production cross sections \Rightarrow lower mass limit of 290 GeV on the mass of the $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ \rightarrow most stringent to date CMS-PAS-SUS-19-002

Electroweak production - summary

ATL-PHYS-PUB-2019-022

- Neutralino, chargino, slepton direct production
- Final states (+MET):
 - multileptons
 - hadronic taus
 - (di-)bosons
 → b-jets, photons

Intense effort to cover compressed-spectra region

Sensitive to details of scenario considered, e.g. nature of gaugino (bino, wino, higgsino)

21

R-parity violation

$$W_{\mathbb{R}p} = \underbrace{\lambda_{ijk}\hat{L}_i\hat{L}_j\hat{E}_k^C + \lambda'_{ijk}\hat{L}_i\hat{Q}_j\hat{D}_k^C + \underbrace{\epsilon_i\hat{L}_i\hat{H}_u}_{ijk} + \underbrace{\lambda''_{ijk}\hat{U}_i^C\hat{D}_j^C\hat{D}_k^C}_{ijk}}_{ijk}$$

L-number violation

bilinear terms

B-number violation

- *R*-parity conservation hinted but not required by proton stability
- *R*-parity conservation/violation largely define final states of SUSY events

 $R = (-1)^{3(B-L)+2s}$ $R = \begin{cases} +1 \text{ for SM particles} \\ -1 \text{ for superpartners} \end{cases}$

In broken R-parity

- LSP is not stable
- LSP may be charged and/or carry colour
- MET may be small → "standard" SUSY searches may miss RPV signal
- multi-lepton and/or multi-jet inclusive final states
- resonant LSP reconstruction → impossible in RPC SUSY
- LSP may be long-lived → displaced vertices

Extensive search program for RPV SUSY in both ATLAS and CMS, also inclusive searches with RPV interpretations

Corfu2019 V.A. Mitsou RPC-RPV Combination: $\tilde{t} \rightarrow t \tilde{\chi}^0(\rightarrow tbs) / \tilde{t} \rightarrow bs, m(\tilde{\chi}^0)=200 \text{ GeV}, \text{ bino-like } \tilde{\chi}^0_{1}$ Prompt* *R*-parity violation 2400 m(Ĩ,) [GeV] **ATLAS** Preliminary 2200F - O-Expected Observed √s=13 TeV 95% CL limits 2000 July 2019 RPC Stop 0L (36.1 fb⁻¹) 2400 [**dev**] 2200 $\lambda'', \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$, RPV Multijet, arXiv:1804.03568 RPC Stop 1L (36.1 fb⁻¹) 1800 $\rightarrow tt \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow uds$, RPV 1L+Jets, arXiv:1704.08493 **ATLAS** Preliminary RPV 1L (36.1 fb⁻¹) $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ $tt \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow uds, SS/3L, arXiv:1706.03731$ (¹₀²)²⁰⁰⁰ (¹₂)²⁰⁰⁰ ¹⁸⁰ 1600 Dijet (37 fb⁻¹), TLA (3.2 fb⁻¹) $\lambda', \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow lqq$, RPV 1L+Jets, arXiv:1704.08493 ATLAS-CONF-2018-003 Dijet pairs (36.7 fb⁻¹) $\lambda', \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow lqq$, SS/3L, arXiv:1706.03731 1400 Observed Limit •••• Expected Limit 1600 1200 All limits at 95% CL ATL-PHYS-PUB-2019-022 1400 1000**⊢** 1200 800 1000 600 800 400 600 10⁻³ 10⁻² RPC 10^{-4} 10^{-1} 400 λ_{323} 200 2200 2000 1000 1200 1400 1600 1800 $m(\tilde{g})$ [GeV] $\lambda_{323}^{\prime\prime}$ Many more RPV decays considered $\lambda_{323}^{\prime\prime}$ 323 q11 Reinterpreting RPC & RPV analyses in varying RPV coupling $\widetilde{\mu}_{L}^{+}$ rich phenomenology offers full coverage nice complementarity between RPC and RPV searches * More on delayed LSP decays in "Long-lived particles"

24

Long-lived particles

- For dedicated reviews, see:
 - Lee, Ohm, Soffer, Yu, Prog.Part.Nucl.Phys. 106 (2019) 210
 - LHC-LLP Community, arXiv:1903.04497
- r talk by Herbi Dreiner on long-lived neutralinos in RPV on Thursday afternoon
- *•* talk by Haifa Rejeb Sfar on CMS searches for long-lived particles on Thursday afternoon
- ☞ talk by Audrey Kvam on ATLAS search for displaced hadronic jets on Tuesday Sep 10th

Long-lived particles

- Long-lived decays of spartners possible in several frameworks, including
 - nearly conserved symmetry
 - long-lived gluinos or squarks that hadronise before decaying ightarrow **R-hadrons in Split SUSY**
 - low coupling between the particle and the final state
 - weak RPV couplings or gravitational (GMSB)
 - mass degeneracy between the particle and the final state
 - chargino and neutralino wino in AMSB
 - stau and neutralino in **coannihilation** scenarios
- Depending on the lifetime, different detection techniques involving various objects: tracks, photons, leptons, displaced vertices, ...

- (1) Slow, large dE/dx ~ 1000 mm
 (2) Slow, stopped
 (3) Disappearing track ~ 100 mm
 (4) Kinked track ~ 10 mm
 - (5) displaced track

Displaced dilepton decays

- Search for displaced e⁺e⁻, μ⁺μ⁻ or e[±]μ⁺ vertices in the inner detector
- Analysis designed to be model-independent
 - $\, \circ \,$ interpreted for RPV models with λ coupling
 - also motivated by GMSB

- Sensitivity in ct depends on $\tilde{q}/\tilde{\chi}_1^0$ mass splitting (controls boost)
- Higher efficiency for large $m(\tilde{\chi}_1^0)$

arXiv:1907.10037

Delayed jets

- arXiv:1906.06441
- Search for LLPs decaying to hadronic jets
 - shower would arrive late at the ECAL
 - targeting decays beyond the acceptance of the tracker
- First search to use ECAL timing to tag delayed jets
- Extensive quality selections to remove hardware or cavern backgrounds
- Limits placed on long-lived ĝ production in the context of a GMSB model

R-hadrons & long-lived charginos

Summary on disappearing track

Long lived chargino, $\tilde{\chi}_1^{\pm} \rightarrow \pi^{\pm} \tilde{\chi}_1^{0}$

Results on R-hadrons

Split SUSY with metastable $\tilde{g} \rightarrow g/qq~\tilde{\chi}_1{}^0$

\widetilde{g} (R-hadron) \rightarrow qq $\widetilde{\chi}_{1}^{0}$; m($\widetilde{\chi}_{2}^{0}$) = 100 GeV $\widetilde{\chi}_{1}^{\pm}[\sim \widetilde{W}^{\pm}] \rightarrow \pi^{\pm} \widetilde{\chi}_{1}^{0}[\sim \widetilde{W}^{0}]$ March 2019 March 2019 Lower limit on m(g) [GeV] 5200 5000 5000 ATLAS Preliminary [±]) [GeV] RPC 0L 2-6 jets arXiv:1712.02332 (Vs=13 TeV, 36 fb⁻¹) 31.6 - 36 fb⁻¹, √s=13 TeV - - - - Expected limits RPC 0L 2-6 jets ATLAS-CONF-2018-003 (Vs=13 TeV, 36 fb⁻¹) 1400 Disappearing track (pixel-only) arXiv:1712.02118 Expected Displaced vertices arXiv:1710.04901 ($\sqrt{s}=13$ TeV, 33 fb⁻¹) --- Observed limits Stable charged arXiv:1902.01636 Pixel dE/dx arXiv:1808.04095 (Vs=13 TeV, 36.1 fb⁻¹) ---- Observed 95% CL limits. Lower limit on $m(\widetilde{\chi}_{1}^{++})$ 1500 m $m(\widetilde{\chi}_{1}^{++})$ 800 Stable charged arXiv:1902.01636 (Vs=13 TeV, 36.1 fb⁻¹) 18.4-20.3 fb⁻¹, √s=8 TeV $\sigma_{\text{theory}}^{\text{SUSY}}$ not included Stopped gluino arXiv:1310.6584 (Vs=7,8 TeV, 5.0,23 fb⁻¹) Pixel dE/dx arXiv:1506.05332 Disappearing track arXiv:1310.3675 -ATLAS Preliminary 1500 600 400 1000 Stable 200 - Li uud ir irrun 1 1 1 1 1 1 1 1 1 500 10⁻² 10^{2} 10^{3} 10⁴ 10 10! 10! 10 τ [ns] (r for $\eta=0, \beta\gamma=1$) Inner Detector MS Calo (r for $\eta=0, \beta\gamma=1$) Beampipe Inner Detector Calo MS τ [ns] 1 1 1 1 1 1 1 1 1 10^{-2} 10⁻³ 10⁻² 10² 10^{-1} 10^{-1} 10^{3} 10 10 10⁴ cτ [m] cτ [m]

ATL-PHYS-PUB-2019-022

29

Long-lived particles – summary

Including R-parity violation

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

30

Conclusions & outlook

- ATLAS and CMS have developed a vast program to search for supersymmetry
 - many new results have just been released with the full Run 2 dataset
 - no significant excess seen so far
- Improved search methods and new reconstruction techniques have de possible the exploration of kinematic regions previously inaccessible
- More searches and updates keep coming with the full Run-2 dataset and beyond
- Stay tuned for upcoming results !

More results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS