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Membrane theory

The Hamiltonian for a (bosonic) closed membrane moving in R1%1 in

the light-cone gauge is

H= | a2 (G0 + 305"} 1))

- Closed surface X which represents the membrane.
- Embedding coordinates x4 (4 = 1,2, ...,9) in R101
- Canonical momenta p4 = dx4/dt.

- Poisson bracket {, } induced by the volume form w on X.
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Matrix regularization

The Hamiltonian is described in terms of the functions x4,p4 € C*(2)

and the Poisson bracket {, } on X.

The matrix regularization is an operation of the following replacement,

[Hoppe, de Wit-Hoppe-Nicolai, Arnlind-Hoppe-Huisken]

Poisson algebra on X Lie algebra of matrices
(€@, {, D My (O, [, D
Infinite dimension Finite dimension

which approximate the Poisson algebra by matrices. The accuracy of

the approximation improves as N — oo.
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Matrix model for membrane

After the matrix regularization, the Hamiltonian of the membrane theory

becomes [Hoppe, de Wit-Hoppe-Nicolai]

1 1
H=Tr (E PApP, — 2 [XA,XB][XA,XB])

This coincides with (the bosonic term of) the matrix model which is

conjectured to describe M-theory. [BFSS, Susskind, Seiberg]

The matrix regularization is also applied to type |IB string theory and

provides a matrix model for the nonperturbative formulation. [IKKT]
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Area-preserving diffeomorphisms

In the matrix regularization, the (residual) gauge symmetry of the

membrane theory is replaced as

Area-preserving diffs MR Unitary transformations
ox4 = {x4,v) 0XA4 = —i[X4, V]
At
(the Lie algebra is)
iIsomorphic (the Lie algebra is) equivalent in
i N - oo at least for §2

Poisson algebra onzx [Hoppe, Pope-Stelle]
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Topic of my talk

We study how general diffeomorphisms on X act on the matrices in the

matrix regularization.

General diffson X 77?77

6x4 = utg, x4 6X4 =777

- For constructing a covariant formulation of M-theory.

- For formulating theories of gravity on fuzzy spaces.

[Chamseddine-Connes, Aschieri et al, Hanada-Kawai-Kimura, Steinacker, Nair, Yang, etc.]
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Plan of my talk:
1. Berezin-Toeplitz quantization
2. Matrix diffeomorphisms
3. Matrix diffeomorphisms on fuzzy sphere

4. Approximate diffeomorphism invariants



1. Berezin-Toeplitz quantization



Matrix regularization and quantization

The matrix regularization is very similar to quantization on the classical

phase space (for a particle moving on the real line),

Noncompact

Poisson algebra on R? Algebra of operators

(C=®R), {1 @D

Infinite dimension

We can say that the matrix regularization is the quantization on a

compact curved phase space. = Berezin-Toeplitz quantization

6/24



Berezin-Toeplitz quantization

The quantization is given by a linear map for the canonical variables,
(q,p) € R* — (q,p) with [q,p] = ih

and fixing the ordering of (g, p) in composite operators. The Berezin-

Toeplitz quantization is a scheme of the anti-normal ordering:

F== [ a2ziznel £z
T[fl R2

- Complex coordinate z = (q + ip)/V.

- Canonical coherent state |z): a|z) = T%le) for [a,at] = 1.
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Coherent state and Dirac zero modes
We can rewrite the Berezin-Toeplitz map as

(ilflj)y=| d*z9] (@) ¥:(2) f(2)

RZ
Yi(2) = L(“'Z)) (i=12,.. 0)

The spinors Y;(z) are characterized as the zero modes of a Dirac

operator with a U(1) gauge potential for a constant curvature,

D=iaa(6a—%Aa), F=dA=dgAdp

This formulation can be generalized to general phase spaces.
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Berezin-Toeplitz map

The Berezin-Toeplitz map Ty: C*(Z) = My (C) for a closed surface X is

[Klimek-Lesniewski, Bordemann-Meinrenken-Schlichenmaier, Ma-Marinescu] c.f.[Terashima]

TP = L N A

* Riemannian metric g,, (which is compatible with w).
. . 1
- U(1) gauge potential 4, with the Chern number EIM F=N.

- Dirac operator D = io*(d, + 2, — i4,). by the Index

theorem
* Orthonormal basis of KerD: y; (i = 1,2, ..., N).
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2. Matrix diffeomorphisms



Mapping diffeomorphisms

We map automorphisms of C* () instead of diffeomorphisms of X to

transformations of matrices:

B-T map

fecr® F=Tn({)

automorphism transformation of
induced by ¢ matrices
feoo v
I
. -, B-T map / .
¢"f € CT(Z) F'=Tn(@ f)
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3. Matrix diffeomorphisms on the fuzzy sphere



Dirac zero modes for §?2

We choose the standard round metric g = d6? + sin? 8 d¢? and the

Wu-Yang gauge potential

(N
> (—cos@ + 1)dg (regionl)

N
& > (—cos6 —1)d¢ (regionll)

With these data, the orthonormal Dirac zero modes are
_ [N (i) . _
lpi(9;¢)—\[;( 0 ) (i=1,2..,N)

Q) = e71PL 71017 Q1017 |11y (N = 2] + 1)

N-dim irrep of SU(2) generators
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Berezin-Toeplitz map for $*

The Berezin-Toeplitz map for the embedding functions x4 (4 = 1,2,3)

of S2in R3 are

A

N
X4 =Ty ==—| do|axQ|x4 =

This is the well-known configuration of the fuzzy sphere (up to O(N~1)),

which satisfies [Madore]

XAX, =1+0(N"1)

N[X4 XB] = 2ie?BX. + O(N™1)
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Holomorphic diffeomorphisms of $2

We identify the sphere with CU {} by the stereographic coordinate
z=e'? tang and focus on the holomorphic diffeomorphisms,

az + b a b
= , € SL(2,C
v@=——. (& J)esLezo
Special four types:  Isometry & area-preserving T?s talk
Rotation Dilatation
p(z) = e“z (a € R) p(z) = etz (t €R)
Translation Special conformal
(2) = —
p(z) =z+Db L
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Mapping dilatation

The transformation of x4 induced by the dilatation is

p*x4(z) = x%(etz) (t=0)

Gauss’s hypergeometric
The corresponding transformation of X4 is function F(a, B,y,s)

(

—t
Jr|X'"|Js) = %\/U —r+DJ+DFJ+r+1,1,2] +3;1—e72)

—t
JriX'"|]s) =6r;1+i\/(]+r+ DJ-DFJ+r+2,1,2]+3;1—e %)

rs

2(0+1)

Jr|X"|s) = {(I+e?HY+r+DFJ+7r+2,1,2] +3;1—e72)

20+ DFJ+r+1,1,2] +2;1—e~2t)}
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Unitary non-equivalence

The transformation off course does not break the constraint, X'4X,; ~ 1,

but changes the eigenvalues.

1.010 100000

=+ Dyrix®|r)
— = +Dyrix|r)

1.000 0 /
t=04 t=04

0.995 -50000
J =10000 J = 10000

0.990 —100000
—100000 —-50000 0 50000 100000 —-100000 -50000 0 50000 100000

1.005 (]7'|X’AX’A Ur) 50000

Thus, general diffeomorphisms do not correspond to unitary similarity

transformations in the matrix regularization.
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4. Approximate diffeomorphism invariants



Approximate diffeomorphism invariants

We propose three kinds of approximate diffeomorphism invariants on

the fuzzy sphere in the sense that they are

(i) Invariant exactly under unitary similarity transformations

0X4 = —i[X4,V]
(i) Invariant in the large-N limit under general matrix diffs

a4 N p y
5X4=—| dajoxQ|utd,x
277: SZ
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Matrix Dirac operator

From the embedding functions x4 and the matrices X4 of the fuzzy §2,

we define a Dirac type operator,
D=0"Q® X4—xy)

We denote the eigenvalues and eigenstates by E, and |n) such that

|Eo| < |E{| <. Then we have [de Badyn-Karczmarek-Sabella-Garnier-Yeh]

_ -t
Bo=77—1=0W™)

0) =0, () ®10)
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Invariance of Ej,

Under an infinitesimal matrix diff X4 - X4 + §X4, E, transforms as

The “locality” of |Q) (
(QIQ)? ~ 8@ Q- Q)
= x"utd,x" + O(N™1)

this term is zero since x4x, =1

Thus E, is invariant up to 1/N corrections.

E, has the information of the induced metric for the embedding

functions xA. [Berenstein-Dzienkowski, Ishiki, Schneiderbauer-Steinacker] cf.[Terashimal]
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Information metric

By using the eigenstate |0), we introduce a density matrix,

p = |0X0|

This defines an embedding of S? into the space of density matrices

and gives a metric h on $? as the pullback of the information metric,
Vv —
hy,dotdo’ = Trdpdp

For general K&hler manifolds, this gives a Kéahler metric. [ishiki-TM-Muraki]
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Covariance of h,,

Under an infinitesimal matrix diff X4 —» X4 + §X4, |0) transforms as

A
510) = z In)(nla? & §X4]0)

E —E, + (puer imaginary)

n+0
= —u#d,|0) + (puer imaginary) + O(N™1)

This means 8p = —u*d,p + O(N™1), and so the induced metric h is

covariant up to 1/N corrections:

Shy, = —V,u, +Vyu, + O(N™H)

U
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Heat kernel expansion

For a 2n-dimensional Riemannian manifold (M, g), the heat kernel

K(t) =Tre A

1
= ——0,,(r\/gg"*’o
A Jg (/997" 0y)

generates diffeomorphism invariants on M as the coefficients of
the asymptotic expansion in t - +0:

Einstein-Hilbert action

1 . 1 1 .
(4ﬂ)nJM\/§t +(4n)ngJM\/§Rt 1 4

Cosmological term

K(t) ~
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Heat kernel on fuzzy sphere

We define the heat kernel on the fuzzy sphere by [Sasakura]

R(ty,N) = Tr e tvd
A= (J + D*[X4, [Xa, 1]

The matrix Laplacian A corresponds to the operator —{x4, {x,, - }} and

has the same spectrum with A on §2 up to a UV cutoff:

N—-1 l N—1
Tr A= z z I+ 1) = z I+ )2+ 1)
1=0 m=—1 1=0
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Double scaling limit

The matrix heat kernel K is regular in ty — +0 for finite N, but by

putting ty = N~ % (0 < a < 1) and taking the limit N - oo, we have

Vol(52) = 4n

K(ty,N) ~1-tyt Lo
(tv, N) ~ 1 -ty +§t1v + 0(ty)
R=2

The geometric information which K has is based on the metric of
— {x4,{x4, - }} = —g"¥ 0,0, + --- where

gt = WPEWV0,x40,x,

Open string metric in the strong magnetic flux [Seiberg-Witten]
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Invariance of K

Under a general perturbation X4 - X4 + §X4, we find

Vector fuzzy spherical harmonics
_ A
5XA — 2 5lep Ylmp [Ishiki-Shimasaki-Takayama-Tsuchiya]

Imp

N-1
_ +1
K = 2ity6Xp0-1 ]T 2 e NV + 1) (21 + 1)
=0

The mode §X,,—, is for Y§5_, o« L4, which changes the radius of §2 in

R3 and so violates the constraint X4X, ~ 1.

This means that if X4 is a matrix diffeomorphism, then 6K = 0.
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Summary

In the formulation of the matrix regularization, we ...

- defined the action of diffeomorphisms on matrices using the

Berezin-Toeplitz quantization map.

- proposed three kinds of method of constructing approximate

invariants on the fuzzy sphere.

The future work is ...

- charactering the matrix diffeomorphisms in terms of purely

the matrix geometry.

- applying to formulate gravity on fuzzy spaces.



