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e GW eral
- What can we see?

e “seeing” = extracting encoded information.
GW waveform evolution — chirping — is a key property.

e \What “Dark Matter” info can be encoded & extracted?

-1.0 F— Numerical relativity )
[ Reconstructed (template)
i i
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Takehome messages

e LIGO (+ Mid-band) do provide precision capabilities for
DM-frontier studies with chirping GW:.

e 1. LIGO alone (10-1000Hz) : “GW Fringe”

e 2.LIGO + mid-band (0.01-1000Hz) synergies :
“The highest frequency-band with year-long binary lifetime”
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LIGO can see compact DM:

(Primordial BH, Dark stars/clusters/solitons)

“GW (lensing) Fringe”

1712.01396 PRL (2019), S.Jung et al.
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Strong lensing of light

- Multiple images (with <arcsec separation) or Einstein ring.
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Micro lensing of light

magnification

'source

- Time-variation of brightness over a few days to weeks.
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Weak lensing of light

-+ Complicated statistical analysis of multiply and weakly
lensed lights.
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GW lensing observation seems very unlikely at

LIGO!

LIGO can see only with

(1) angular resolution > 1 deg (let alone arcsec)
(2) measurement time < 1 sec ~ 1min (let alone days)

LIGO

LIGO/
Virgo

IPN Fermi /
INTEGRAL .
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GW vs. light

Even though they follow the same null geodesics,,,

* GW chirps.
- It provides non-trivial specific change of lensing
pattern, which is extremely useful in lensing detection.

* GW angular resolution is much worse.
- It actually turns out to provide a new observable!
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Time-delayed images

Consider time-delayed lensed images of GW.

e Image 1

Compact Dark Matter
A bk Chly, sntiEEE <=-- (primordial BH, dark star)

Observer ST oo

GW source

Image j

Aty ~ 4GMpy = 2 x 1072 (Mpy /M) sec
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Interfered images

Unresolved GW images rather “interfere” in our
observation.

@
" Image i

Observer(E) - H—— o

E)
ource(S)

A¢ = fAt, .

age ]
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GW lensing Fringe

It is the GW chirping that makes the interference observable
— sweeping the interference pattern over a range of freq.

A¢ — f(t)Atd  ."'1‘11‘1§ng
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“GW Fringe”
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alr'S TECHNICA BIZ&GIT TECH SCIENCE POLICY CARS GAMING & CULT

Lonely black holes revealed by passing i G W F rl n g e &

gravitational waves

Black hole mergers may reveal large black holes in the foreground.

CHRIS LEE - 2/7/2019, 1:44 AM

O
o

|
O
U

o
N

O
o

|
O
N

i
8

Q
>
0
=
=
-
@)
e
0]
)
>
0
—
= K®L
Y
O
Q
©
-
=
a
-
<

o
o

|
O
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Top signal is the chirp that arrives directly from the merger. The middle signal has been delayed by a gravitational lens. The bottom signal is
the signal we would measure. An analysis of the measured signal may reveal the gravitational lens.
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Compact DM fraction
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1712.01396 PRL (2019), S.Jung et al.
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LIGO is an ideal
DM Fringe detector

-+ GW Fringe is most pronounced at LIGO:
- Highest frequency, producing most # of fringes.

- Chirping most quickly near merger.

- Highest-frequency GW can see the smallest
compact DM.
(10-1000 Hz = 102-104 Msun Schw radius)
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Aside: New idea on
PBH DM search gap
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Aside: New Idea on
PBH DM search gap
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Aside: New idea on
PBH DM search gap

Mppy [M@J
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* No lensing probe is possible here.
(PBH too small compared to wavelength and/or source.)

Mpgy |g]

19 Sunghoon Jung (SNU)

DM at LIGO and beyond




Aside: New idea on
PBH DM search gap
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e But! Fortunately, we have a natural access!

The astrophysical scale accessible to us

re ~ AU
happens to be the Einstein radius of this mass range!
ro—| 1908.00078, S.Jung, TaeHun Kim|
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GRB Lensing Parallax

'''''

+PBH DM (10-11~10-16V/;, ) 3

~~~~~

Einstein radius
'~ AU

e |f two detectors are spatially separated by those astro scales,
they will observe different magnifications of GRB pulses.
1908.00078, S.Jung, TaeHun Kim
e Space gamma-ray technique is already available (e.g. Fermi).
We just need one more!




GRB Lensing Parallax
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GRB Lensing Parallax
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GW Fringe from Cosmic string

- A new way to see “cosmic strings”

A > e
_———””F/ m °

x/ jo

cosmic string
(a)\ (b)

Cosmic String = 1-dim energy locus

DM at LIGO and beyond 24 Sunghoon Jung (SNU)



GW Fringe from Cosmic string

A new way to see “cosmic strings”

GW Fringe from the interference btwn three rays:
2 geometric rays + 1 diffracted ray

A > e
_.———f/ - 5

o jo

cosmic string
(a)\ (b)

Cosmic String = 1-dim energy locus

Figs. from Nunez et al. 2017
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GW Fringe from Cosmic string
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GW Fringe from Cosmic string
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Detection prospects
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Detection prospects

Why is heavier string harder to probe at LIGO?
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Detection prospects

“LIGO + mid-band” allows longer measurements
for critical Fringe resolutions.
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Detection prospects

What is this?

aLIGO & Al prospects |
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Model-independent searches

- Typical searches of “Stochastic GW” is from loop decays.
- This exists only in gauged U(1) model, not in local U(1).

GW fringe probes “straight” strings, model independently.

intercommute  |loop produces gravitational radiation

Ly
/\\
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Mid-frequency band

Is mid-frequency just an interpolation btwn LIGO and LISA?
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Mid-frequency band

No! Forming a highest-frequency band with year-long
measurement,,,
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Synergy of LIGO + Mid-band

- Unique & precision test-bed for dark matter:

-+ 1. Various Dark matter effects are most pronounced here!

[PRD (2019) with Han Gil Choi,
1810.04172 with TaeHun Kim]
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DM wave /\/

e Lightest possible spin-0 DM 107-23 eV. (cf. m(electron)=0.5 MeV)

e Although light, their effects can be astronomically enhanced
and time-oscillating.

 GW is again an exciting lab to probe them.
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DM wave

e Lightest possible spin-0 DM 107-23 eV. (cf. m(electron)=0.5 MeV)

* Although light, their effects are astronomically enhanced
and time-oscillating.

/\/ ¢(t) ox cosmyt

1 h

Compton frequency — = ~ 1 yr for 10A-22 eV, 1 min for 10A-16 eV
Tr ¢ mgC
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DM wave

e Lightest possible spin-0 DM 107-23 eV. (cf. m(electron)=0.5 MeV)

* Although light, their effects are astronomically enhanced
and time-oscillating.

d(t) ox cosmyt d(t) ox cos(myt + )

VAR

Second DM quanta with “same Compton frequency”
but with “different phase” is added.
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DM wave

e Lightest possible spin-0 DM 107-23 eV. (cf. m(electron)=0.5 MeV)

* Although light, their effects are astronomically enhanced
and time-oscillating.

<
¢(t) \/NDM COS Myt R/fa
By
Adding N DM quanta is a “N-random walk”. be/
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DM wave

e Lightest possible spin-0 DM 107-23 eV. (cf. m(electron)=0.5 MeV)

* Although light, their effects are astronomically enhanced
and time-oscillating.

<
o(t) o< \/ Npm cos mgt R/fa
o
DM wave (density) is collectively enhanced to astronomical size
and oscillating In time!
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Neutron mass-shift

e |f such scalar DM interacts with the neutron,
the neutron-star mass shifts and oscillates in time.

5j<\/l/l( t) o< ¢(t) o< v/pPDM COS Mt

1 h

m¢ m¢c

PP 111111171111
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GW inherently sensitive to
mass-shift
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GW exquisite sensitivity to
mass-shift

 GW evolution is governed by the binary masses.

— A tiny phase-shift due to mass-shift in each GW cycle

PRD(2019) H.G.Choi and S.Jung
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GW exquisite sensitivity to
mass-shift

 GW evolution is governed by the binary masses.

— A tiny phase-shift due to mass-shift in each GW cycle

AM
~ (SNR ~ 1078
e

c.f) AD;/D; ~ SNR ~ 1072

(for last 1-year measurement of NS-NS merger)

PRD(2019) H.G.Choi and S.Jung
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GW exquisite sensitivity to
mass-shift

 GW evolution is governed by the binary masses.

— A tiny phase-shift due to mass-shift in each GW cycle

AM
~ (SNR ~ 1078
e

cf) AD;/D; ~ SNR ~ 1072

* Ncyc is max for highest-freq long-time measurement.

PRD(2019) H.G.Choi and S.Jung
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Detection prospects
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Hz kHz
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Summary

e GW is a powerful new eye to DM and early Universe.

* New ways to see PBH DM:
"GW Fringe" (and “GRB Lensing Parallax”)

e "LIGO + mid-band" provides synergies
for probing cosmic strings and axion-like DM waves.
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Dark Odyssey 2020

GW Probes of Dark Universe

e |nterdisciplinary workshop on GW, DM, particle, astro,
cosmology.

e January 4-6 (Sat-Mon), 2020 @ Seoul National University

(1st Bosan Workshop at Center for Theoretical Physics)

Registration and homepage will open soon.

 Organizers: Sunghoon Jung, Seung J. Lee, Yue Zhao,
Chunglee Kim, Chan Park
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