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Strongly coupled physics is notoriously difficult to
access.

We do not have small parameters in which to do a
perturbative expansion. Our most basic notions of field
theory are of a perturbative nature.

Make use of symmetries, look at special limits/
subsectors where things simplify.

Here: study theories with a global symmetry group.
Hilbert space of the theory can be decomposed into
sectors of fixed charge Q under the action of the global
symmetry group.

Study subsectors with large charge Q.

Large charge Q becomes controlling parameter in a
perturbative expansion!
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» fixed points in RG flows 1
- critical phenomena fz/ é*:}
* quantum gravity (via AdS/CFT)
» string theory (WS theory) pa————

CFTs do not have any intrinsic scales, most have by
naturalness couplings of O(1).

Possibilities: analytic (2d), conformal bootstrap (d>2),
lattice calculations, non-perturbative methods...

Prime candidate for the large-charge approach!

(Also: they come with a lot of space-time symmetry
that will help us in practice to constrain the eff. action.)
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The large-charge approach consists of 2 steps:
|. identify the symmetry breaking patterns due to
charge fixing for a given order parameter/field

2. write an effective action for the low-energy DOF and
compute physical quantities

Step |:start from the global symmetries of the system
and how they act on the order parameter.

Assume that also in the IR, we have the same order
parameter and that it transforms the same way under
the global symmetry.
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Write down Wilsonian effective action. In general:
infinitely many terms - not so useful.
Make self-consistent truncation at large charge:

* Set a cutoff A\ obeying __~ space dimension
typical scale of the 1 1 Qv
system \‘Z <K A < % — T

* write a linear sigma model action for the order
parameter.Work at criticality: impose scale invariance
of the action, assuming that the fields have vanishing
anomalous dimension (at leading order in 1/Q)

* semiclass. determine the fixed-charge ground state

* compute the quantum fluctuations to verify that they
are parametrically small when Q >> |.
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In a sector of fixed charge, the classical solution around
which the quantum fluctuations are computed will

generically break both spacetime (Lorentz) and global
symmetries: Goldstone bosons

Step 2: write down EFT encoded by Goldstones.
Similar techniques to chiral perturbation theory.
Important difference: the symmetry breaking comes
from fixing the charge (NOT dynamical).

Use EFT to calculate the CFT data (anomalous
dimensions, 3-pt functions).

Wilsonian action has only a handful of terms that are
not suppressed by the large charge. Useful!
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Consider simple model: O(2) model in (2+1) dimensions
Loy = 0,¢" "¢ — g*(¢"¢)°

Flows to Wilson-Fisher fixed point in IR.

Assume that also the IR DOF are encoded by cplx scalar

Global U(l) symmetry:  @rr =ae™  x — x + const.

Look at scales: put system in box (2-sphere) of scale R
Second scale given by U(l) charge Q: p'/? ~ QY?/R

Study the CFT at the fixed point in a sector with

| 1/2 UV scale
= <AL QR < 2

cut-off of effective theory
Write Wilsonian action.
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Assume large vev for a: A<’ «g?
scalar curvature

RAQ/A

Lig = 2 0,a0"a+ $b%a” 0, O x — 1_671 gaG + higher derivative terms

dimensionless constants
Lagrangian is approximately scale-invariant.

 has approximately mass dimension |/2 and the action
has a potential term o |¢|°

Do semi-classical analysis: solve classical e.o.m. at fixed

Noether charge.
~ oLr
= =
Classical solution at lowest energy and fixed global

charge becomes the vacuum of the quantum theory.

b2a’x Q ~ 47 R*bV/ \a*



The O(2) model

Classical solution:



The O(2) model

Classical solution:




The O(2) model

Classical solution: non-const. vev




The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.



The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.

Determine radial vev v by minimizing the classical
potential:



The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: (Q ) 2 1 p \

v

Vc ass — | : "
l 202 1GU T 6v



The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: S Q 2 4 | R1)2—|—év6
dass = \V ) 202 716 6
™~

centrifugal term



The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: 2 1 p \
V. Vclass — Q | U2 + —U6
(V) V) 202 16 ' 6
™~

centrifugal term




The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: (Q ) 2 1 p \

| 2 76
chl(v) Vclass — ! VT + <

202 16 6
N~

v

centrifugal term

D ~ Q1/4
large condensate is

compatible with our
assumption a > 1




The O(2) model

Classical solution: non-const. vev

@=v,  (=p=gog ()=t

Fixed-charge ground state is homogeneous in space.
Determine radial vev v by minimizing the classical

potential: (Q ) 2 1 p \

| 2 76
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202 16 6
N~

v

centrifugal term

1 ~ Q1/4
large condensate is
compatible with our
assumption a > 1
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massive mode, not relevant
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Go to NLSM: Integrate out a (saddle point for LO).
Dynamics is described by a single Goldstone field X:

L0 = kyya(8,x 9y)¥/? «— can get.this purely.by
dimensional analysis
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The O(2) model

Use dimensional analysis and scale invariance to
determine (tree-level) operators in effective action
beyond LO (scalar operators of scaling dimension 3,
including curvatures of the background metric)

Use p-scaling to determine which terms appear:
Ox ~ pt% ... 0y~ p 4

O(p*?) O35 = | Ox |3 LO Lagrangian
, conf. inv. combination,
O(p'/?) : O1/2 = R|0x|+2 (9]9x) negative p-scaling

scale-inv. but NOT
conformally inv.

For homogeneous solutions, there are no other terms
contributing to the effective Lagrangian at non-negative

p-scaling for d>1.
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Result:

L = ks/5(0,x0"X)*? + k1 o R0, x0"x) " + O(Q~Y/?)

\

dimensionless parameters suppressed by inverse
powers of Q

To be understood as an expansion around the classical
ground state ut + x

Expand action to second order in fields:
L = ]{3/21LL3 + kl/gRILL + (875)2)2 — %(VSQ)%)Z + ...

Compute zeros of inverse propagator and get

dispersion relation: p
P Wp = % .— dictated by conf. invariance 1/v/d

Spontaneous symmetry breaking
= X is relativistic Goldstone (type |)

= superfluid phase of O(2) model
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Use state-operator correspondence of CFT:

R? R x G-
conformal cd1 He energy
dimension —™——|
N
Scl—1

Conformal dimension of lowest operator of charge Q:

one-loop vacuum
energy of Goldstone

C3/2 _
D(Q) =5 =@ +2vme12Q"% — 0094+ 0(Q)
S. Hellerman, D. Orlando, S. R., M. Watanabe, arXiv:1505.01537 [hep-th]
1 dw — 1 0.0937...
Eyse = — ) 21+ D log(w? +1(1+1)) = —1/2|5%) = —
v = g | g L@ DIon? I+ 1) = g2l = -2
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Our prediction:

D(@) = 5 2Q" +2/me15Q/? ~ 0094+ O(Q /%)
IndependentMconFrmatlon from the Iattlce
12
10 |
_ 8t :
2 | | Excellent
agreement!!
ol ¢3/2 = 1.195(10)
2 | VG data g 1 €172 = 0.075(10)
it
works for smallo/v 2 4 6 8 10
c h e rge * Wh)” 7 D. Banerjee, Sh. Chandrasekharan, D. Orlando [hep-th/1707.00711]
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Beyond O(2)

Where else can apply the large-charge expansion?
Try out other known CFTs/assume they exist.

Obvious generalization in 3d: O(2n) vector model
non-Abelian global symmetry group: new effects

SU(N) matrix model in 3d.

Not many examples of (non-susy, non-fermionic) CFTs
known in 4d.
Asymptotically safe CFT (UV fixed point)

Superconformal CFTs in 3d and 4d. Cases with moduli
space work differently!

Non-relativistic CFTs (Schrodinger symmetry) in 3d, 4d
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Solution for homogeneous ground state:
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The O(2n) vector model

Fixing k charges explicitly breaks O(2n) to
O(2n-2k) x U(k).

We can always rotate ()= J5(41,...,4x,0,...)

by a U(k) transformation into (o,...,0, \/“‘3+ +450,...)

Vacuum breaks symmetry spontaneously to
O(2n-2k) x U(k-1).

We also see that all homogeneous states of minimal
energy with fixed total charge (Q: +Q2+---+Qx) are
related by an U(k) transformation and have the same
energies (and conformal dimensions).

What happens if instead, we choose a configuration with
k different chemical potentials that cannot be rotated
into the state (0,...,0, %,0,...,0)?

J \ . J
-~

k—1 n—k
Ground state must be inhomogeneous!
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The O(2n) vector model

For quantum description, write effective theory for
fluctuations around the ground state.

Expand Lagrangian around the ground state

(97"'797%797"'79)
k—1 n—k ) A
i ttidon /v f P2k—1 — P2K—1
U(1) sector: ox = o5 e#tow/ (” + ¢2k—1) - ;
( ) vz ok — Oor + 0,
U(k-1) sector: ¢ =, b = U7 @

Developing to second order in fields:

L® =3 (B=ip)e} (Ostin)pi + Y ¢igi— Y ViV
— ) 1P — 2Py,
1=1

Find inverse propagators and dispersion relations.
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The O(2n) vector model

We expect dim[U(k)/U(k-1)] = 2k-1 Goldstone d.o.f.

Massless modes:

2 P4 p6 6
2 L, p4 —4 :
wy = =p° + + O(p™ ") one time

2w 322
There are \“conformal” Goldstone
* | relativistic Goldstone w x p
- k-1 non-relativistic Goldstones (count double) w  p?

Nielsen and Chadha; Murayama and Watanabe
142x% (k—1) =2k —1=dim(G/H)
Non-relativistic Goldstones have no zero-point energy
and do not contribute to the conformal dimensions.
Ground-state energy again determined by a single
relativistic Goldstone.
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The O(2n) vector model

Same formula for anomalous dimensions as for O(2):

n-dependent universal for O(2n)

C3 /‘2/ \

D(Q) = 2\/—623/2 + 20T er2Q? = 0.094 + O(Q~1/?)
" L. Alvarez-Gaume, O. LoukalD. Orlando and S. R., arXiv:1610.04495 [hep-th]
Comparison with old lattice data: verified at large n for

D CP(n_ I ) model de la Fuente
3.0
25

: ° O(2)
2.0

: 0(3)
15" . 04)
1.0 o O(5)

05

Hasenbusch, Vicari

c3/2 decreases, ci/» increases with increasing n
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The O(2n) vector model

New lattice data for O(4) model:
12

10 1

8 u
63/2 — 1068(4)
| C1/2 — 0083(3)

| | | | | | | | | |
o5 1 15 2 25 3 35 4 45 5
j D. Banerjee, Sh. Chandrasekharan, D. Orlando, S.R. 1902.09542

Again excellent agreement with large-Q prediction!
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The O(2n) vector model

Only total charge matters for homogeneous case:

Correlation function:

Co(r) ~ —4@) R(L/2)
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The O(2n) vector model

Only total charge matters for homogeneous case:

Correlation function:

Co(r) ~ —4@) R(L/2)

|7]2D(Q)

Cq(r=1L/2)
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D. Banerjee, Sh. Chandrasekharan, D. Orlando, S .R. unpublished

Parallel lines in log/log plot: conformal dimensions are the

same!
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The O(2n) vector model

Now let’s take the limit » — «

Start from first principles, expand path integral around
saddle point (no EFT!)

Leading order: theory is solvable and we find the same

powers in the large-Q expansion of the anomalous
dimension.

"
4
Find coefficients of the expansion:

cs2 = 4/3/7/n
12 =1/ 12+/n/m L. Alvarez-Gaume, D. Orlando, SR. 1909.02571
Within 10% of the lattice measurements for O(4):
5y = 1.18 c3/2 = 1.068(4)
5 = 0.094 ¢y 79 = 0.083(3)

Here, Q large means @ >
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Summary

Some questions:
* Does it work?
- For all the examples, we tried, yes! Confirmation
from lattice data (O(2) and O(4))
* For what kinds of theories does it work!?
- (S)CFTs and non-relativistic CFTs
* In how many space-time dimensions!

d>| space dimensions
* For what kinds of global symmetries does it work?

- we checked U(l), O(2n) vector models, SU(N)
matrix models
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Further study of supersymmetric models at large R-
charge (higher-dim. moduli spaces) meieman. wseds. ortando, Reffert, Watanabe

Connection to holography (gravity duals)

Loukas, Orlando, Reffert, Sarkar

Operators with spin; connection to large-spin results

Cuomo, de la Fuente Monin, Pirtskhalava, Rattazzi, Cuomo

Understanding dualities semi-classically at large charge

Use/check large-charge results in conformal bootstrap

Jafferis and Zhiboedov

Further lattice simulations: inhomogeneous sector,
general O(N) Chandrasekharan et al.
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Further directions

Chern-Simons matter theories @large charge

Watanabe

4'€ eX anS|On Iar e Char e rias-Tamargo, Rodriguez-Gomez, Russo;
P @ g g gadel ,T Cuorr?o, l\ljlo(rilin% Ratt(jzzi; Walt{anabe

strongly coupled CFTs in 4d at IR fixed point

going away from the conformal point

Fishnet CFTs (non-unitary)

Study fermionic theories. Can large-charge approach
be used for QCD (e.g. large baryon number)!?



Thank you for your
attention!



