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Introduction

When top-down approach from string theory is considered, there
are two choices depending on where SUSY breaking scale is ;

1.SUSY is broken at low energy in supersymmetric EFT ;

2.SUSY is already broken at high energy like string/Planck scale.

In this talk, the second one is focused on, and non-supersymmetric
string models are considered.

In particular, the SO0(16)xS0(16) model is a unique tachyon-free
non-supersymmetric string model in ten-dimensions.

[Dixon, Hervey, (1986)]



Introduction

Considering non-supersymmetric string models, however, we face
with the problem of vacuum instability arising from nonzero dilaton

tadpoles; V(¢): dilaton tadpole
V(¢) X A A : cosmological constant

(vacuum energy)

At 1-loop level, ¢
X

The desired model is a non-supersymmetric one whose
cosmolosical constant is vanishing or very small.

Interpolating models have the possibility of such properties.
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2. 9D Interpolating models



Interpolation between SUSY and non-SUSY

An interpolating model is a lower dimensional string model relating two
different higher dimensional string models continuously.

10 dim. Model M, Model M,
4 hon-SUSY SUSY
) Comp. on a
T-dual non-SUSY twisted circle

9 dim. Interpolating model v

0 << : » 0

Radius R

In the large R (small a) region, the cosmological constant is SUSY breaking

Ao~ (np —ng)a 26+ 0O (e_a_2>

[ a=vVo /R, &>0, ng, np:#of massless fermions, bosons}

If np = ng, the cosmological constant is exponentially suppressed.
[ltoyama, Taylor, (1987)]



Interpolation between $0(32) and S0(16)x50(16)

® The one-loop partition function

Zl(l?t) Zg) {Ao,0 [Vs (016016 + S16516) — Ss (VieVie + C16Ci6))]
+A1/20 | Vs (VigVie + C16C16) — Ss (016016 + S16516)]
+Ao.1/2 |Os (Vi6Ci6 + Ci6Vig) — Cs (016516 + S16016)]
+A1/21/2 |Os (016516 + S16016) — Cs (VigCie + Ci6Vi6)| }

[Aa,ﬁ _ (7777)_1 an’p%/Qqa’p%/Q — (7777)_1 Zexp 2mINWT] — TT2 (n a® +w?/a’ )] }

where the sum is takenover ne€2(Z+a), we Z+ [

. . contribution from the zero 1 (1)
R - oo contibution I ) Aoo— (20) 27, Ayi/2—0

e R > 0: contribution from the zero —) A N aZ(l) A 0
momentum only 0,6 B » /2,8



Interpolation between $0(32) and S0(16)x50(16)

® The one-loop partition function

719 = Zg) {Ao,0 [Vs (016016 + S16516) — Ss (VieVie + C16Ci6))]

int

+A1 /2,0
+Ao,1/2

Vs (VigVie + C16C16) — Sg (016016 + S16516))|

Os (VigCis + Ci6Vig) — Cs (016516 + S16016)]

—|—A1/2,1/2 [08 (016316 + 316016) — 6_18 (V16016 T Clﬁvl@)] }

® The limitingcases . R -, o the 1st and 2nd lines survive

e R —> 0:the 1stand 3rd lines survive

non-SUSY SUSY
~ S0(16)xS0(16) S0(32)
(9) _ SUSY S0(32) model in R -» o
Z. . realizes < | non-SUSY
S0(16)xS0(16) model inR - 0 9D Int. model ¢
~ 0 > o

Radius R



Interpolation between $0(32) and S0(16)x50(16)

® Massless spectrum at generic R, massless states come from n=w=0 part
Zi(ft) — Zg) {Ao,0 [Vs (016016 + S16516) — Ss (VieVie + C16Ci6))]
+A1/20 | Vs (VigVie + C16C16) — Ss (016016 + S16516)]
+Ao.1/2 |Os (Vi6Ci6 + Ci6Vig) — Cs (016516 + S16016)]
+A1/21/2 |Os (016516 + S16016) — Cs (VigCie + Ci6Vi6)| }

Massless bosons .« 9-dim. graviton, anti-symmetric tensor, dilaton:  Juvs Buv, ¢

- Gauge bosons in adj rep of S0(16)xS0(16)XU¢ (1)
Massless fermions . 8¢ ® (16, 16) & Jous By

TLF—TLB:64



Interpolation between EgxEg and SO(16)xS0(16)

® The one-loop partition function

Zi(r?t) = Zg) {Ao,0 [Vs (016016 + S16516) — Ss (016516 + S16016) ]
+A1 /2,0 [VS (016516 + S16016) — Ss (016016 + 516516)]
+Ag.1/2 |Os (VigCi6 + Ci6Vis) — Cs (VieVie + C16Ci6) ]
+A1/21/2 |Os (VigVie + C16C16) — Cs (VigCie + Ci6Vi6)| }



Interpolation between EgxEg and SO(16)xS0(16)

® Massless spectrum at generic R, massless states come from n=w=0part

Zv) = 2 { Moo [Vs (016016 + S16S16) — Ss (016516 + S16016)]

int

+A1/20 [Vs (016516 + S16016) — Ss (016016 + S16516)]
+Ag.1/2 |Os (VigCi6 + Ci6Vis) — Cs (VieVie + C16Ci6) ]
+A1/21/2 |Os (VigVie + C16C16) — Cs (VigCie + Ci6Vi6)| }

Massless bosons  « 9-dim. graviton, anti-symmetric tensor, dilaton: 9uv; Bul/a ¢

- Gauge bosons in adj rep of S0(16)xS0(16)xUZ (1)

Massless fermions 8c ® (‘(128, 1) D (1’ 128)) & Gour Boy

’/LF—TLB:64



3. 9D Interpolating models with Wilson line



Boost on momentum lattice

« Considering d-dimensional compactification, the boost in the momentum
lattice corresponds to putting massless constant backgrounds, that is,
adding the following term to the worldsheet action

[a=10—d,---,9 }
Caa / 220X A0X4 A=(aD)=10-d,,26
C,,. Mmetric and antisymmetric tensor, C;4: U(1)® gauge fields (WL)

[Narain, Sarmadi, Witten, (1986)]

 The d-dimensional compactifications are classified by the transformation
SO(16+d,d)

S0(16+d)xSo(d)’
whose DOF agree with that of Cyg.

In this work, we considered one-dimensional compactification and put a single
WL background A = C;=1 4=9 for simplicity.



Boost on momentum lattice

After turning on WL, the momenta of X/=1, X2=% and X4=° are changed as

boost and
( _ 1 (
L= Jgm rotation = (\/_m 2\/1-|-7a>
_ 1 i
VL= 7w (ant ) ) LT +A2‘m—\r+Aza)
— _1 _w 5 5w
\PR—\/@(Q” <) \PR = 2a,<\/_Am+\/1—|—Aan—\/1—|—A )

[, is the left-moving momentum of X/=1

The effective change in the one-loop partition function is
Turning

/ﬂ\g L . (0[]
) )

Aga?))— — \—1 —1 Z 25m 0‘ (l +pL)q2pR
Y

Ao, (a)

ne2(Z+a), weZ+p, meZ+y

n,w,m



The fundamental region of moduli space

Do all the points in moduli space correspond to different models?

It is convenient to introduce a modular parameter ¥ as

~ ~ .~ A -1 . 1 —1
T=1T1 +1Tg = a ~ +1 a
T Ty AT V14 A2 7,
The momentum lattice A((%? is invariant under the shift
F s F42v/2

‘ The fundamental region of moduli space is

V2<FH < V2 )




Interpolation between S0(32) and S0(16)xS0(16) with WL

® The one-loop partition function

A {‘78 (O<0 90,6 + S 0>516) s (V(O Mg+ OO O)Cm)

int
(V(1/2 ,0) Vi + C,(1/2 0)016) _ S (0%/2 0)0 i 5(1/2 0)516)

+0s (VgD Cr6 + CVVig ) — Cs (0812816 + 81572 016)

404 (O(l/z g Sié/2,1/2>016) _ Gy <V1<61/2,1/2>016 I Cfé/Q’””Vm)}
O\ _ 1 [ ap [0]7 (c8) [ 0 ]7 Sia? L (@p) [1/2] (a0, 8) [1/2]7

A Y A Y A Y + A 0,

(Vl(gz,ﬁ) on7 \ (0.0 7 |0 (0,1/2)7 1/2 Cfgﬁ) 277 (1/2,007 | 0 (1/2,1/2)" |1/2
« Q Q « V o 1 R
* R - oo: <0§6’B>,V1(6 ’5),S§6’6>,C§6’5)> -> Z](g) (O16, V16, S16, C16) 0.0 Poo =

2?“00 7/ 1 _|_A2

a a o a 1
* R=>0: <0§6’5),V1(6 ’B),5§6’B),Cf6’ﬂ)) —> Va1 24 (016, Vis, Si6, Ci6) Gavo ro=VvV1+ AR



Interpolation between S0(32) and S0(16)xS0(16) with WL

® The one-loop partition function

int

For any WL A,

Z(g) realizes <

int

A Zm{‘_/ (O(OO)O +S(OO)516)_S (Vi Vis + C16 Ve )

+Vs (V52 h6 + 1/ C16 ) — S5 (01> V016 + S1¢/> V516 )

+0q ( V0204 o0 Dyig) — G (08912515 + 501D 0,)
+0s (052 815+ 51/ *11P 016 ) = Cs (VIg/ 2P s + O > P13 |

® The limiting cases . R - oo: the 1st and 2nd lines survive

/‘

. . non-SUSY SUSY
e R— 0:the 1st and 3rd lines survive SO(16)xS0(16) S0(32)
SUSY S0(32) model in R » o non-SUSY
5 9D Int. model Y
S0(16)x50(16) model in R - 0 0 Radius R 0

N\~

+WLA



Interpolation between S0(32) and S0(16)xS0(16) with WL

® Massless spectrum at generic R, massless states come from n=w=0part
230 = 25 { Vs (0”016 + 0% 816 ) — S5 (Vi Vis + CLg % Cis)

Vs (Vig"2a6 + O/ > C16 ) = S5 (05 V016 + 152516 )
+0s (VG P Cr6 + OGP Vi) — Cs (05519816 + 85D 01

1+ 0g (O%/2’1/2)516 4+ Sié/2’1/2)016) — Cy (Vl(él/ll/?)cm 4+ C{é/2’1/2)V16)}

Massless bosons  « 9-dim. graviton, anti-symmetric tensor, dilaton: 9uv, Buv, ¢

- Gauge bosons in adj rep of S0(16)xS0(14)xU(1)xU¢g g(1)

Massless fermions 8¢ ® (16, 14)

TLF—TLBZSQ



Interpolation between S0(32) and S0(16)xS0(16) with WL

3 : .
® Massless spectrum a few conditions under which the additional massless states appear

Z(g) Z(B7) {Vg (Og%O)OlG + S§g,0)516) V(O O)V 16 + C(O O)C16>

int

+4 (V(1/2 Mg+ CL 20016 ) — S (0%/2 Y016+ Sy 0>516)
+0s (Vg0 + Ol P Vig ) = G (0567816 + 516 O

04 (O 81+ S/22045) — Cs (V) C1p + O Vi) )
condition @ 7:1:TL1/\/§ ny € 24

new massless states: « two 8y ® (1,14) «_two 85 % (16.1)

l {SO(l6)xSO(14)xU(1) —>  $0(16)xS0(16)
85 ® (16,14) — 85 ® (16,16)

TLF—TLB:64



Interpolation between S0(32) and S0(16)xS0(16) with WL

3 : .
® Massless spectrum a few conditions under which the additional massless states appear

Z(g) Z(B7) {Vg (Og%O)OlG + S§g,0)516) (V(O O)V 16 + C(O O)C16>

int

+V4 (V1(61/2’0)V + C%ﬂ O)Cl ) Ss (0%/2 O)O + 5(1/2 0>Sl6)

+0s (VG P Cr6 + OGP Vi) — Cs (05519816 + 85D 01

‘|‘O8 (0%/2’1/2)516 4+ Sié/2’1/2)016) 08 (Vl(é/Z 1/2)0 4+ 0(1/2 1/2)V16)}

ondition@ 71 = '?12/\/§ ng € 24 + 1

new massless states : « two 8, ® (16,1) ¢ two 8¢ ® (1,14)

l {SO(l6)xSO(14)xU(1) —>  S0(18)xS0(14)
8s ® (16,14) — 8s ® (18,14)

[nF—nB:O]




Interpolation between S0(32) and S0(16)xS0(16) with WL

® Summary of the conditions

We have found the two conditions under which
the additional massless states appear:

ondition® T = nl/\@ ny € 274

r~

condition 2 T = '712/\/5 ny € 24 +1

Actually, there are only four inequivalent orbits in the fundamental region:

Condition n, = 0 and 2 (or —2) n,=-1land 1
Gauge gp S0(16)xX50(16) S0(18)xS0(14)

np>nB nrg = npg




Interpolation between EgxEg and S0(16)x50(16) with WL

® The one-loop partition function

int

Ziy = Z(B7) {‘78 (05%0)016 + S%O) S16> — Sy (052’0)516 + S§270)016)

+Vs (0110 + 51/016) — 55 (012”010 + 51/ 510)

+

_|,

08 (Vl(g,1/2)016 T C{g,1/2)vl6) o 08 (Vlg’1/2)vl6 T C£2,1/2)016>

Oq (V1(61/2,1/2)V16 n Cfé/2’1/2)016) _ Gy (V1(§/2’1/2)016 n C%/z,uz)vm)}
S\ 1 @ o [1/2]" . (@8 1/2]"
(Cm,m = o7 \Bazo? | o | FAazam? |1

a, 7 7
(%) - 2 (s [ <xs2o 2]
V16 ) 2777 ( ) ) 0 ( ) / ) 1/2 16

Q « Q « \/J 1 R
* R - co: <O§6’B>7V1(6,5)7S§6,6>7C§6,5)> > o 75 (016, Vig, Si6, Ci6) 05 0 Foo = e

a a o a 1
* R=>0: <0§6’5),V1(6 ’B),5§6’B),Cf6’ﬂ)) —> Va1 24 (016, Vis, Si6, Ci6) Gavo ro=VvV1+ AR



Interpolation between EgxEg and S0(16)x50(16) with WL

® Massless spectrum at generic £, massless states come from n=w=0part
78 =23 v ( 05‘; D046+ 55" 516) ~ S (05% 816+ S %16)

0.

Massless bosons  « 9-dim. graviton, anti-symmetric tensor, dilaton: Guv Bp,w ¢

- Gauge bosons in adj rep of S0(16)xS0(14)xU(1)xU¢g g(1)

Massless fermions 8s X (128, 1)

nNg —Np — —730




Interpolation between EgxEg and S0(16)x50(16) with WL

® Massless spectrum 7 a few conditions under which the additional massless states appear
78 = 2 [V (08”046 + 515" 516) - 85 (0157816 + S5 %16)

int

+04 (Vl(é)’l/% +C<0 ””Vm) ~Gs (Vl(o 1/2)V6+C(0 1/2)016>

condition® Tq = nl/\@ ny € 24

new massless states : « two 8y ® (1,14)

mm) S0(16)xS0(14)xU(1) —>  SO(16)xSO(16)

Furthermore, the different additional massless states
appear depending on whether n{/2 is even or odd.



Interpolation between EgxEg and S0(16)x50(16) with WL

® Massless spectrum 7 a few conditions under which the additional massless states appear
z3) = 2 {5 (083" 016 + 5137 515 — S5 (01" 15 + S5 016 )

int

+Vs (05527816 + S{5/ >V 016 ) = s (055 >V 016 + S{5/>V 816 )

+0s (VgD Crs + O P Vig ) = Cs (VISP Va6 + OV 1)

403 (V2 Vig + O 1) — Cs (V9 Crg + O Vig) )
condition ®-1 71 — 77/1/\/5 n1/2 c 24

new massless states : « two 8y ® (1,14) « two 85 ® (1,64)

8s ® (128,1) ——> 85 ® ((128,1) ® (1,128))

In the fundamental region, this condition is #; = 0,
which corresponds to the no WL case.



Interpolation between EgxEg and S0(16)x50(16) with WL

® Massless spectrum 7 a few conditions under which the additional massless states appear
Ziw =2y {‘78 (05%0)016 + 85" 516> — Sg (05(6)5’0)516 + S§270)016)

int

Vs (083/2’0) S16 + 5%/2,0)016) — S (0%/2’0)016 + 3%/2,0)516)

‘|—68 (Vl(g’1/2)016 + 052,1/2)‘/16) — 08 (V160’1/2)V16 + C£2’1/2)016>

condition ®-2 T1 = nl/\/§ n1/2 c24 +1

new massless states: « two 8y ® (1,14) - two 8y ® (1,64)

)  50(16)xS0(14)xU(1) ——>  SO(16)xEg

In the fundamental region, this condition is #; = V2 (or #; = —/2).



Interpolation between EgxEg and S0(16)x50(16) with WL

® Massless spectrum 7 a few conditions under which the additional massless states appear
Ziw =2y {VS (05%’0)016 + 85" 516> — Sg (05%’0)516 + Sg(gj,O)OlG)

int

+Vs (Ofs > 816 + 5%/2’0)016) — 5 (0%/2’0)016 + 5%/2’0)516)

+68 (Vl(g’1/2)016 + C{g’l/mvl()‘) — 08 (V160’1/2)V16 + C£2’1/2)016>

ondition @ 71 = '?12/\/§ ng € 24 + 1

new massless states: ¢ two 8¢ ® (1,14) Gauge group is not enhanced

In the fundamental region, this condition is #; =v2/2 and #; = —/2/2.

[ There is no condition such that ny = np in this example. ]




Interpolation between EgxEg and S0(16)x50(16) with WL

® Summary of the conditions

We have found the three conditions under
which the additional massless states appear:

condition ®-1 7 =n./V2 n/2€2Z
condition -2 71 =n1/V2 mni/2€2Z+1
condition @ T = '712/\/5 ny € 24 + 1

Actually, there are only four inequivalent orbits in the fundamental region:
Condition ny=0 ny =2 (or =2) n, =1 and —1

Gauge gp SO(16)xS0(16) SO(16)xEg  SO(16)xS0(14)xU(1)

np>nB nF<nB nF<nB




The leading terms of the cosmological constant

The cosmological constant is written as

1 - d?
A2 (a, R) = -3 (4m%a’) o / —27 Zio(a, Ry 7)
f’

int TS
Up to exponentially suppressed terms, the results are
® S0(32) - SO(16)x50(16) interpolation

)9 X 8 {(224 —220) + 2(16 — 14) cos (\/iw%l)}

aop

Vo

® EgXEg - SO(16)xS0(16) interpolation

9
_uf @ ) V2
A,gg;(a, R) ~ 487~ 14 (\/%> X 8 {(27 — 220) — 2 - 14 cos (\/§7T7'1) +2-2%cos (77{'7’1) }

These results reflect the shift symmetry ¥ — % + 2v/2 and the conditions under which the
additional massless states appear.

ALY

nt

(a, R) ~ 487~ 4 (




The leading terms of the cosmological constant

® SO(32) - SO(16)xS0(16) interpolation  ® EgxEg - SO(16)xS0(16) interpolation

ag* At




4. Summary



Conclusion

® Ve have constructed 9D interpolating models with two
parameters, radius R and WL A, and studied the

massless spectra.

® Ve have found some conditions for (R, A) under which
the additional massless states appear.

® \\le have found that an example under which the
cosmological const. is exponentially suppressed
simultaneously with the gauge group enhancement to

SO(18)xS0(14).



Outlook

® How are SM-like or GUT-like 4D models with np = ng
constructed 7

®\\Ve can generalize interpolating models by putting more WL and
the other backgrounds. In fact, compactifying d-dimensions, the

So(16+d.d) ~whose DOF is
SO(16+d)xS0(d)

compactifications are classified by
d(16 + d).

Thank you!



