
THE SNYDER MODEL AND ITS
GENERALIZATIONS

Salvatore Mignemi

Dipartimento di Matematica
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• Since the origin of quantum field theory (QFT) there have been
proposal to add a new scale of length to the theory in order to
solve the problems connected to UV divergences.
• Later, also attempts to build a theory of quantum gravity have
proved the necessity of introducing a length scale, that has been

identified with the Planck length Lp =
√

~G
c3
∼ 1.6 · 10−35 m.

• A naive application of this idea, like lattice field theory, would
however break Lorentz invariance.
• A way to reconcile discreteness of spacetime with Lorentz
invariance was proposed by Snyder (Snyder 1947) a long time ago.
• This was the first proposal of a noncommutative geometry: the
length scale should enter the theory through the commutators of
spacetime coordinates.



• Several models of noncommutative geometries also admit a sort
of dual representation on momentum space in theories of doubly
special relativity (DSR) (Amelino-Camelia 2001). Here a fundamental
mass length is introduced, that causes the curvature of momentum
space, and the deformation of both the Poincaré group and the
dispersion relations of the particles.
• The Snyder model can be seen as a DSR model, where the
Poincaré invariance and the dispersion relations are undeformed.
• Snyder’s idea was however almost abandoned with the
introduction of renormalization techniques, with the exception of
some Russian authors in the sixties (Gol’fand 1960, Kadyshevsky 1962,

Mir-Kasimov 1966).
• It revived more recently, when noncommutative geometry
became an important topic (Majid-Ruegg 1994).
• The issue of the finiteness of Snyder field theory has not been
established up to now.



THE SNYDER MODEL

• The Snyder model is defined on the full relativistic phase space
and is based on the Snyder algebra, generated by position xµ,
momentum pµ and Lorentz generators Jµν , that obey:
a) Poincaré algebra commutation relations

[Jµν , Jρσ] = i
(
ηµρJνσ − ηµσJνρ + ηνρJµσ − ηνσJµρ

)
,

[pµ, pν ] = 0, [Jµν , pλ] = i (ηµλpν − ηλνpµ) ,

b) standard Lorentz action on positions

[Jµν , xλ] = i (ηµλxν − ηνλxµ) ,

c) deformation of the Heisenberg algebra (preserving Jacobi
identities),

[xµ, xν ] = iβJµν , [xµ, pµ] = i(ηµν + βpµpν).

β is a parameter of order L2Pl and ηµν = diag(−1, 1, 1, 1).



• The generators Jµν can be realized in the standard way on phase
space, Jµν = xµpν − xνpµ.
• In contrast with the most common models of noncommutative
geometry and DSR, the commutators are functions of the phase
space variables: this allows them to be compatible with a linear
action of the Lorentz symmetry, so that the Poincaré algebra is not
deformed. However, translations (generated by the pµ) act in a
nontrivial way on position variables.
• Depending on the sign of the coupling constant β, two rather
different models are available:

β > 0 Snyder model
β < 0 anti-Snyder model

They have very different properties. For example, only in the first
case spatial coordinates have a discrete spectrum.



Geometry of the Snyder model

• The subalgebra generated by Jµν and xµ is isomorphic to the de
Sitter/anti-de Sitter algebra, and the Snyder/anti-Snyder
momentum spaces have the same geometry as de Sitter/anti-de
Sitter spacetime respectively (curved momentum space).
• They are the coset space SO(1, 4)/SO(1, 3) for Snyder
(or SO(2, 3)/SO(1, 3) for anti-Snyder)

• It follows that the momentum space of the Snyder model can be
represented as a hyperboloid H of equation (β > 0)

ζ2A =
1

β

embedded in a 5D space of coordinates ζA with signature
(−,+,+,+,+).



• Snyder commutation relations are recovered through the choice
of isotropic (Beltrami) coordinates on H

pµ =
ζµ
βζ4

=
ζµ√

1− βζ2µ

and the identification (MAB are the 5D Lorentz generators)

xµ = Mµ4, Jµν = Mµν .

ζ4ζ1

ζ0



• Note that this implies m2 < 1/β! There is a maximal mass!
• This is a common feature in models with curved momentum
space (DSR).

• NOTE: One may obtain different noncommutative models with
identical position commutation relations but different [xµ, pν ] by
choosing different isotropic parametrizations of the momentum
space and maintaining the identification xµ = Mµ4.
• For example, choosing pµ = ζµ, one obtains

[xµ, xν ] = iβJµν , [xµ, pν ] = i
√

1 + βp2 ηµν

• The most general choice that preserves the Poincaré invariance is

pµ = f (ζ2)ζµ, xµ = g(ζ2)M4µ



Geometry of the anti-Snyder model

• The momentum space of the anti-Snyder model can be
represented analogously to that of Snyder as a hyperboloid of
equation (β < 0)

ζ2A =
1

β

embedded in a 5D space of coordinates ζA with signature
(−,+,+,+,−). No maximal mass appears in this case.

ζ0

ζ1

ζ4

• Again, anti-Snyder commutation relations are recovered through
the choice of isotropic (Beltrami) coordinates

pµ =
ζµ
ζ4

and the identification

xµ = Mµ4, Jµν = Mµν .

• In this case the momentum is unbounded.



GENERALIZATIONS

a) Generalized Snyder models (Meljanac, SM, Štrajn 2016)

• Generalizations of the Snyder model that preserve the Poincaré
invariance and the standard action of Lorentz transformation on
the coordinates, can be obtained by modifying the Heisenberg
algebra, so that

[xµ, xν ] = iβJµν ψ(βp2),

[xµ, pν ] = i
[
ηµνφ1(βp2) + βpµpνφ2(βp2)

]
.

The function φ1 and φ2 are arbitrary, but the Jacobi identity
implies

ψ = φ1φ2 − 2(φ1 + βp2φ2)
dφ1

d(βp2)
.

• These models correspond to arbitrary isotropic parametrizations
of the hyperboloid.



b) Snyder-de Sitter (SdS) model or Triply Special Relativity

• The Snyder model can also be generalized to a curved spacetime
(de Sitter) background (Kowalski-Glikman, Smolin 2004), assuming

[pµ, pν ] = iαJµν

with α ∼ Λ (cosmological constant).
• The other commutation relations are unchanged, except that now

[xµ, pν ] = i(ηµν + αxµxν + βpµpν +
√
αβ(xµpν + pµxν))

• This model depends on two invariant scales, that can be
identified with the Planck scale and the cosmological constant.
• There are indications from quantum gravity theories that the
introduction of α might be necessary.



• The SdS model is dual for the exchange αx ↔ βp. (Guo, Huang,

Wu 2008)

• The phase space of SdS can be embedded in a 6D space as
SO(1,5)

SO(1,3)×O(2) if α, β > 0, or as SO(2,4)
SO(1,3)×O(2) if α, β < 0. (SM 2006)

• Alternatively, the SdS algebra can be obtained directly from that
of Snyder by the nonunitary transformation

xµ = x̂µ + λ
β

α
p̂µ, pµ = (1− λ)p̂µ −

α

β
x̂µ,

where x̂µ, p̂µ are generators of the Snyder algebra and λ a free
parameter.



HOPF ALGEBRA

• In the study of noncommutative models an important tool is
given by the Hopf algebra.
• Since in noncommutative geometry spacetime coordinates are
noncommuting operators, the composition of plane waves e ip·x ,
e iq·x gives rise to nontrivial addition rules for the momenta,
denoted by p ⊕ q, that are described by the coproduct structure
of the Hopf algebra, ∆(p, q).
• Analogously, the opposite of the momentum is determined by
the antipode, S(p), such that p ⊕ S(p) = S(p)⊕ p = 0.
• The Hopf algebra associated to the Snyder model can be
calculated (classically) using the previous geometric representation
of the momentum space as a coset space and calculating the
action of the group multiplication on it. (Girelli, Livine 2011)



Algebraic realizations

• Alternatively, one can use the algebraic formalism of realizations
(Battisti, Meljanac 2010).
• This will be useful in the definition of QFT.
• We define a realization of the noncommutative coordinates xµ in
terms of coordinates ξµ, pµ that satisfy canonical commutation
relations

[ξµ, ξν ] = [ξµ, ξν ] = 0, [ξµ, pν ] = ηµν

by assigning a function xµ(ξµ, pµ) that satisfies the Snyder
commutation relations.



• The xµ and pµ are now interpreted as operators acting on
function of ξµ, as

ξµ B f (ξ) = ξµf (ξ), pµ B f (ξ) = −i∂f (ξ)/∂ξµ.

• The realization of the Snyder model is given by

xµ = ξµ + β ξ ·p pµ + βpµχ(βp2).

• The function χ is arbitrary and does not contribute to the
commutators, but takes into account ambiguities arising from
operator ordering of ξµ and pµ.



• In general, the action of noncommutative plane waves is

e ik·x B e iq·ξ = e iP(k,q)·ξ+iQ(k,q),

e ik·x B 1 = e iK(k)·ξ+iJ (k),

with Kµ(k) ≡ Pµ(k, 0) and J (k) ≡ Q(k , 0).
• It can be shown that Pµ and Q can be determined from the
knowledge of the deformed Heisenberg algebra.
• The generalized addition of momenta is then given by

kµ ⊕ qµ = Dµ(k , q), where Dµ(k , q) = Pµ(K−1(k), q),

and the coproduct is given simply by

∆pµ = Dµ(p ⊗ 1, 1⊗ p).

• The antipode S(pµ), is −pµ for all (generalized) Snyder models.



IMPORTANT: The Snyder addition law turns out to be
nonassociative (and noncommutative). Hence the algebra is
noncoassociative, so strictly not a Hopf algebra.

• For the calculations, it is useful to define also a star product,
that gives a representation of the product of functions of the
noncommutative coordinates x in terms of a deformation of a
product of functions of commuting coordinates ξ.
• In particular, from the previous results one can calculate the star
product of two plane waves:

e ik·ξ ? e iq·ξ = e iD(k,q)·ξ+iG(k,q),

where
G(k , q) = Q(K−1(k), q)−Q(K−1(k), 0).



Star product for the Snyder model

• We consider now a Hermitean realization of Snyder commutation
relations

xµ = ξµ +
β

2
(ξ ·p pµ + pµp ·ξ) = ξµ + β ξ ·p pµ − 5i

2
β pµ,

• The Hermiticity will be important for field theory.
• We get

Dµ(k, q) =
1

1− βk ·q

[(
1 +

β k ·q
1 +

√
1 + βp2

)
kµ +

√
1 + βp2 qµ

]
,

G(k, q) =
5i

2
ln [1− β k ·q] .

and hence

e ik·ξ ? e iq·ξ =
e iD(k,q)·ξ

(1− β k ·q)5/2
.



FIELD THEORY IN NONCOMMUTATIVE SPACES

• Let us consider a QFT for a scalar field φ on a Snyder space.
• Usually, field theory in noncommutative spaces are constructed
by continuing to Euclidean signature and writing the action in
terms of the star product.
• In most cases, a phenomenon called UV/IR mixing occurs:
the counterterms needed for the UV regularization diverge for
vanishing incoming momenta, inducing an IR divergence.
• A model that avoids this problem in Moyal theory was proposed
by Grosse et al. (Grosse, Wulkenhaar 2014).
• Besides the kinetic term φ∂2φ and the interaction term, its
action also contains a term proportional to φ x2φ.



Free field theory in Snyder space

The action functional for a free massive real scalar field φ(x) can
be defined through the star product (Meljanac, SM, Štrajn 2016)

Sfree[φ] =
1

2

∫
d4ξ (∂µφ ? ∂

µφ+ m2φ ? φ)

The star product of two real scalar fields φ(ξ) and ψ(ξ) can be
computed by expanding them in Fourier series,

φ(ξ) =

∫
d4k φ̃(k)e ik·ξ.

Then∫
d4ξ ψ(ξ) ? φ(ξ) =

∫
d4ξ

∫
d4k d4q ψ̃(k) φ̃(q) e ik·ξ ? e iq·ξ

=

∫
d4k d4q ψ̃(k) φ̃(q)

δ(4)
(
D(k , q)

)
(1− β k ·q)5/2

.



But

δ(4)
(
D(k , q)

)
=

δ(4)(q + k)∣∣∣det
(
∂Dµ(k,q)
∂qν

)∣∣∣
q=−k

= (1 + βk2)5/2δ(4)(q + k).

• The two (1 + βk2)5/2 factors cancel and then,∫
d4x ψ(ξ) ? φ(ξ) =

∫
d4x ψ(ξ)φ(ξ),

namely the star product obeys the cyclicity property, as in other
noncommutative models, and hence the free theory is identical to
the commutative one, (this property holds only for the hermitian
representation)

Sfree[φ] =
1

2

∫
d4ξ

(
∂µφ∂µφ+ m2φ2

)
.

• The propagator is therefore the standard one

G (k) =
1

k2 + m2
.



Interacting Snyder field theory (Meljanac, SM, Trampetić, You 2018)

• The interacting theory is much more difficult to investigate.
There are several problems:
- The addition law of momenta is noncommutative and
nonassociative, therefore one must define some ordering for the
lines entering a vertex and then take an average.
- The conservation law of momentum is deformed at vertices, so
loop effects may lead to nonconservation of momentum in a
propagator.
• For example, let us consider the simplest case, a φ4 theory with
interaction

Sint = λ

∫
d4x φ ? (φ ? (φ ? φ))

• The parentheses are necessary because the star product is
nonassociative. Our definition fixes this ambiguity, but other
choices are possible.



With this choice, the 4-point vertex function turns out to be

G (0)(p1, p2, p3, p4)

= (2π)4
∑
σ∈S4

δ
(
D4

(
σ(p1, p2, p3, p4)

))
g3
(
σ(p1, p2, p3, p4)

)
,

where
D4(q1, q2, q3, q4) = q1 +D(q2,D(q3, q4))

g3(q1, q2, q3, q4) = e iG(q2,D(q3,q4))e iG(q3,q4)

and σ denotes all possible permutations of the momenta entering
the vertex.
• With the expressions of the propagator and the vertex one can
finally compute Feynman diagrams.



For example, the one-loop two-point function is given by

G (1)(x1, x2)

=− 1

2

λ

4!

∫
d4p1
(2π)4

d4p2
(2π)4

d4`

(2π)4
e ip1x1

p21 + m2

e ip2x2

p22 + m2

(2π)4

`2 + m2∑
σ∈P4

δ
(
D4

(
σ
(
p1, p2, `,−`

)))
g3
(
σ
(
p1, p2, `,−`

))
.

ℓ ℓ

β1

p1 p2



• To evaluate the diagram, one must consider the 24 permutations
of the momenta entering the vertex.
• Among these, only 8 conserve the momentum (i.e. p1 = −p2),
while the remaining 16 do not.
• At the linear level in β the calculation can be done explicitly,
showing stronger divergences than in the commutative theory.
However the effect of momentum nonconservation are cancelled.
• At nonlinear level, not all diagrams can be explicitly calculated.
However, there are indications that they might be finite, at least
for our choice of the interaction term.
• The phenomenon of UV/IR mixing could however still be present.



• This problem might be avoided defining the theory in a curved
background (SdS model) by a mechanism similar to that of the
GW model (Franchino-Viñas, SM 2019).
• Using the previous relation between SdS and Snyder algebra
(with λ = 0) and the realization of the Snyder algebra, the de
Sitter-invariant free action can be reduced to (up to first order
in α, β)

Sfree =

∫
dx4φ

[
p2 +

α

β
x2 + (m2 − 4α)

+α

(
3

2
x2p2 + x ·p p ·x

)
+
α2

β
x4
]
φ,

• The order zero part is identical to the GW model.
• One may therefore hope that also in this case the IR divergences
are suppressed and one can obtain a finite theory.



CONCLUSIONS

I The Snyder model was proposed with the aim of avoiding UV
divergences in field theory.

I It has several nice properties, like undeformed Lorentz
invariance.

I Unfortunately, QFT on a Snyder background can be studied
only partially, due to computational problems.

I Although there are hints that the theory could be UV finite,
one cannot exclude the presence of the phenomenon UV/IR
mixing.

I However, this should disappear at least in the SdS case. This
topic is presently under study.


