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Quantization of gravity — A fundamental problem in theoretical physics 

A direction toward resolution 

- Emergent spacetime — Spacetime should be generated in the infrared.

Introduction

- Fundamental theory does not contain classical spacetime in its 
formulation.  

Perturbative quantization of general relativity fails due to 
unrenormalizable ultraviolet divergencies.



Does the trajectory follow GR ?

Can be regarded as a classical spacetime ?

Ψ

There are various proposals in this direction.

In principle, we can check each proposal by its wave function.

Fundamental variables



The wave fn. of a tensor model in the Hamilton formalism  (CTM)             

Peaks exist at Lie-group symmetric ! .Pabc

ha′�
a hb′�

b hc′�
c P̄a′�b′�c′� = P̄abc, h ∈ H : Lie group representation

!P113

!P333Ψ

Obster, NS, arXiv:1710.07449

Ex. of !N = 3

Peak with !H = SO(2,1)

This property is interesting, because our spacetime has symmetries.

Sol. of !ℋ̂a |Ψ⟩ = �̂�ab |Ψ⟩ = 0 a, b, ⋯ = 1,2,⋯, N

(Mixed signature in general)



This phenomenon can be qualitatively explained by the quantum 
coherence of the integration contained in the wave function. 

φ(Pabc) = ∫ℝN+1

dϕ̃dϕ ei(Pabcϕaϕbϕc−ϕ2ϕ̃+4ϕ̃3/27λ)

Ψ(Pabc) = φ(Pabc)RT /2

ϕ ∈ ℝN ϕ̃ ∈ ℝ

If !  , the integration along the gauge orbit 

!  has coherent contributions, and !  takes large values. 

However, if not, the integration is a sum of !  with rather random 

phases ! , and !  tends to be small.

ha′�
a hb′�

b hc′ �
c P̄a′�b′�c′� = P̄abc, h ∈ ∃H

ha′�
a ϕ̄a′� φ(Pabc)

eiθ

θ φ(Pabc)

P̄abcϕ̄aϕ̄bϕ̄c

RT = (N + 2)(N + 3)/2



We want to know more about the wave function, enough to take 
the !  limit. But presently hard.N → ∞

We perform the two simplifications to !  for start.Ψ(Pabc) = φ(Pabc)RT /2

φ̄(Pabc) = ∫ℝN

dϕ eiPabcϕaϕbϕc− k ϕ2

φ(Pabc) = ∫ℝN+1

dϕ̃dϕ ei(Pabcϕaϕbϕc−ϕ2ϕ̃+4ϕ̃3/27λ)

Fix !ϕ̃

(1)

(2) Integrate over !Pabc

∫
∞

−∞
dP e− 1

4λ P2 Ψ(P)2 = ∫
∞

−∞
dP e− 1

4λ P2 φ̄(P)R

The symmetry-peak 
relation is kept. 

(Euclidean)



= ∫
∞

−∞
dP e− 1

4λ P2 (∫ℝN

dϕ eiPabcϕaϕbϕc− k ϕ2)
R

= ∫
∞

−∞
dP

N,R

∏
a,j=1

dϕ j
a e− 1

4λ P2+∑R
j=1 i Pabcϕ j

aϕ
j
bϕ

j
c− k ϕ j

aϕ j
a

A model with !ϕi
a (a = 1,2,⋯N, i = 1,2,⋯, R)

The power 
replaced by 
replicas

Gaussian integration over !Pabc

∫
∞

−∞
dP e− 1

4λ P2 φ̄(P)R R = RT = (N + 2)(N + 3)/2



ZN,R(λ, k) = ∫ℝNR

dϕ e−λ U(ϕ)−k ϕ2

dϕ =
N,R

∏
a,i=1

dϕi
a U(ϕ) =

R

∑
i,j=1

(ϕi
aϕ

j
a)3 ϕ2 =

R

∑
i=1

ϕi
aϕi

a

! ≥ 0

The !  indices in !  are triply contracted. 
The symmetry of the model is ! .
So !  is not diagonalizable in general. 

Our matrix model cannot be solved as the usual matrix models. 

i, j U(ϕ)
O(N) × SR

ϕi
a

The matrix model Dynamical variable : !  matrix !N × R ϕi
a



This matrix model is similar to that appeared in the replica trick of the 
spherical p-spin model for spin glasses.

Spherical constraint 

Spherical p-spin model The tensor model

Flat space

!RT = (N + 2)(N + 3)/2R → 0

Opposite signs of the interactions

∫ϕiaϕia = 1
each i

dϕ eλ∑R
i,j=1 (ϕi

aϕ j
a)3

There are some critical differences.

  A. Crisanti, H.-J. Sommers, Z. Phys. B 87, 341 (1992). 



We have performed

Monte Carlo simulations with the Metropolis update method. 
Analytic computations in terms of a perturbative method 

It seems necessary to reanalyze our model from the scratch.

(S1 → S2 → S3 → ⋯)

R ∼ (N + 1)(N + 2)/2
R

ϕi
a ∼ 0 ϕi

a ≁ 0

Monte Carlo extremely slow.
High viscosity fluid? Glass? 

Transition region

The tensor model
!RT = (N + 2)(N + 3)/2

0

Good agreement between 
numerical and analytic 
results.

The two results deviate

Dimensional transitions 
of the configurations

Summary of our results

Good agreement between 
numerical and analytic 
results.



- There is a transition region around ! .R ∼ Rc = (N + 1)(N + 2)/2

U :=
R

∑
i,j=1

(ϕi
aϕ

j
a)3

Expectation values of observables
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- The analytic computation and the simulation do not agree well in 
the transition region, while they agree well in the outside region.

Results of the Monte Carlo and analytic computations
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Tr(ϕtϕ) :=
R

∑
i=1

ϕi
aϕi

aUd :=
R

∑
i=1

(ϕi
aϕi

a)3

Similar results for other observables.

- Monte Carlo suggests a smoother transition (even a crossover) 
than the analytic computation. But not conclusive.



Topological properties of the configurations !ϕi
a

The matrix model is the integral of a wave function, and its peaks may 
dominate. In such cases, !  along the gauge orbits may 
become the dominant configurations.

ϕi
a (i = 1,2,…, R)

!H

ha′�
a ϕa′�, h ∈ H

ϕ1
a

ϕ2
a

ϕi
a

|ϕi |

Sd for H = SO(d + 1)

Caution : If all the Monte Carlo datas are just piled up, the gauge orbits 
take arbitrary directions in ! -dimensions and non-trivial structures 
cannot be seen. We have to analyze each data and align them.

N

ϕ1
a

|ϕ1 |
ϕ2

a

|ϕ2 |

Gauge orbit

We analyze the topology of  !  generated by the 
Monte Carlo simulations. 

ϕi
a/ |ϕi | (i = 1,2,…, R)

Normalize



Perform principal component analysis to ! , and realign.ϕi
a/ |ϕi |

Read dimensions from the distributions of  !cos−1(ϕi
aϕ

j
a/ |ϕi | |ϕ j | )

∝ sind−1(θ)

Use a method in topological data analysis (persistent homology)

😁 Clearly seen
😩 Dimensions be lower

😁 Easy
😩 Indirect

😁 Direct method　😩 be subject to noises

We analyzed the topological aspects by three different methods.



Principal component analysis for ! .N = 4, k = 0.01, λ = 1

Each Monte Carlo data !  is analyzed 
and aligned, and main three dimensional parts are plotted 
for all data. 

ϕi
a/ |ϕi | (i = 1,2,…, R)

!R = 10 !R = 15 !R = 25!R = 20

S0 → S1 → S2

Density plots of the points

(Rc = (N + 1)(N + 2)/2 = 15)



The fitting of angular distribution 

!R = 10 !R = 15

!R = 25!R = 20
S1 → S2 → S3

∝ sind−1(θ)



 !N = 4, k = 0.01, λ = 1

R=10
PH1 PH2 PH3

ubirth

udeath udeathudeath

ubirthubirth

PH3PH2PH1 udeathudeathudeath

ubirthubirthubirth

R=15

Analysis of persistent homology



R=20
PH3PH2PH1 udeathudeathudeath

ubirthubirthubirth

PH3PH2PH1 udeathudeathudeath

ubirthubirthubirth

R=25

S1 → S2 → S3



We have observed the transition of dimensions !  around 
! , more or less depending on the methods.

S1 → S2 → S3

R ∼ Rc = (N + 1)(N + 2)/2

For larger ! , higher symmetric peaks are more enhanced

in ! .

R

Z = ∫ dP φ̄(P)Re−P2/4λ

This transition is actually consistent with the peak-symmetry relation. 

SO(3)
SO(2)

Higher symmetric peaks are high, 
but there exist less.

Lower symmetric peaks are low, 
but there exist more.



Analytic computation

ZN,R(λ, k) := ∫ℝNR

dϕ e−λ∑R
i,j=1 (ϕi

aϕ j
a)3−k∑R

i=1 ϕi
aϕi

a

= ∫
∞

0
dr f(λr6) e−kr2

f(t) := ∫SNR−1

dϕ̃ e−t∑R
i,j=1 (ϕ̃i

aϕ̃ j
a)3

!  is an entire function: Perturbative series converges for !f(t) | t | < ∞



In the leading order of ! , this is to sum over all the necklace diagrams. 1/R

f(t) = (1 +
12t

N3R2 )
− N(N − 1)(N + 4)

12

(1 +
6(N + 4)t

N3R2 )
− N

2

We have also computed the next-leading order, but it does not 
explain the deviation between the numerical and analytical results.

L.Lionni, NS arXiv:1903.05944

Ex. of !  n = 3

Result: 



(S1 → S2 → S3 → ⋯)

R ∼ (N + 1)(N + 2)/2
R

ϕi
a ∼ 0 ϕi

a ≁ 0

Monte Carlo extremely slow.
High viscosity fluid? Glass? 

Transition region

The tensor model
!RT = (N + 2)(N + 3)/2

0

Good agreement between 
numerical and analytics 
results.

The two results deviate

Dimensional transitions 
of the configurations

Summary

Good agreement between 
numerical and analytics 
results.

Future directions
Improve the numerical and analytic computations to 
fully understand. Tempering, Hybrid MC.

Deal with the matrix model really derived from the tensor model. 
Have to deal with the sign problem.


