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Introduction : CFT in dimensions d > 2

CFT in dimensions d > 2 have been actively studied in recent
years. Motivations include

- The AdS/CFT correspondence, e.g. N = 4 SYM in R3,1 dual
to 10 D string theory. How does the 10 D quantum gravity
theory emerge from local operators and correlators of CFT ?

- Exotic CFTs without conventional Lagrangian descriptions,
e.g. Argyres-Douglas fixed points in 4D, (0,2) theories in 6D.

- Bootstrap program revived: Use OPE associativity to
determine CFT data.



CFT2s and algebras

CFT2’s very widely studied in 80’s and 90’s and since.

Motivations from critical string theory:
CFT2 plus ghost system = string.

Features:
Infinite dimensional Lie algebras controlling the spectrum and
correlators: Virasoro, Current algebras.
Rep theory of these algebras, extended by considerations of modular
transformations of characters.
Rational conformal field theories, with finitely many primary fields for
these algebras.
“Vertex operator algebras” - mathematical constructions for field
operators, operator product expansions.



CFT2s ( and CFTds) : two kinds of algebras

In the mathematics of CFT2s, there are two kinds of algebras:
the symmetry algebras : infinite dimensional Lie algebras -
Virasoro, current etc.
Algebra of quantum fields - formalized through vertex operator
algebras.
Analogous to constructions in non-commutative geometry: a
quantum space (e.g. a q-sphere, which is an associative
q-deformed coordinate algebra) and a Hopf algebra (e.g.
Uqsu(2) ) acting as a symmetry of the quantum space.
Expect similar in CFTd, except finite dimensional symmetry
algebra (e.g. SO(d,2) instead of Virasoro) and large
multiplicities of irreps coming from the fields/quantum states.



TFT3, TFT2 and algebras

Rational CFT2s were related to Chern Simons Topological field
theory.
Topological : no dependence on the metric, e.g. action uses wedge
products of forms but not the metric.
Mathematical (Axiomatic) definitions of topological field theories
(Atiyah). Some of the simplest TFTs were two dimensional TFT
(TFT2) – essentially algebras – associative finite dimensional
algebras (with an additional non-degeneracy condition) – Frobenius
algebras.



CFT operators : Algebras and quantum states

And important property of CFT (any d ) is the Operator-state
correspondence in radial quantization.

lim
x→0
Oa(x)|0 >= |Oa >

In AdS/CFT, e.g.

Strings in AdS5 × S5 ↔ N = 4 SYM

a good understanding of the quantum states ( and associated
physics) in the quantum gravity on AdS requires good
undeerstanding of the CFT operators, and associated algebraic
structures.



Quantum states in AdS

In string theory on AdS5 × S5, quantum states come from a
variety of constructions:
Gravitons - Fluctuations of the metric field ( + form fields,
fermions etc. ) around the AdS5 × S5 solution of the stringy
Einstein equations. These are in short ( half-BPS) multiplets of
supersymmetry.
Brane configurations (e.g. half-BPS giant graviton branes) and
their quantum fluctuations.
Moduli spaces of supergravity solutions with AdS5 × S5

asymptotics.
Non-overlapping regimes of validity.



Quantum states in CFT4

All these different types of states comes from local operators in
CFT4.
CFT4 is N = 4 SYM with U(N) gauge group, with N arbitrary.
Given local operators Oa of scaling dimension ∆a and a
correlator

〈Oa1Oa2Oa3〉

We can study different regimes e.g.

∆a ∼ 1 as N →∞ =⇒ gravitons
∆a ∼ N as N →∞ =⇒ Branes

∆a ∼ N2 as as N →∞ =⇒ geometries



Combinatorics of correlators captured by TFT2

The interpretation and separation of these different regimes
relies on detailed understanding of the dependence on
correlators on N,∆a – an active and ongoing field ...

A sequence of many papers, led to the understanding that this
combinatorics of dependences of correlators on ∆a,N can be
expressed in terms of TFT2 based on symmetric groups Sn
where n is related to the ∆a.
E.g. Corley, Jevicki, Ramgoolam (2001) ; Berenstein(2004); de Mello Koch, Smolic, Smolic (2006) ; Brown, Heslop,
Ramgoolam (2007), Bhattacharyya, Collins, de Mello Koch (2008); Mattioli,Ramgoolam (2014); Kimura (2014) and
others ... see short review in proceedings of Corfu2015 - arXiv:1605.00843 “Permutations and the combinatorics of
gauge invariants for general N”



Can TFT2 capture the space-time dependence of
correlators in CFT4 (and CFTd d > 4?

“CFT4 as SO(4,2)-invariant TFT2”
R. de Mello Koch and S. Ramgoolam arXiv:1403.6646 [hep-th] (NPB890)

We gave a positive answer for the case of free scalar field,
along with free vector and matrix fields in 4D.



OUTLINE OF TALK

I The CFT4/TFT2 construction for free scalar field:
U(so(4,2)) equivariant TFT2 and quantum field as a
vertex operator.

I Ring structure in the TFT2 and construction of primaries.
I Further directions: conformal quantum field emergent from

algebras and representation theory.



TFT2 - Axiomatic Approach

• Associate a vector space H to a circle - for explicit formulae
choose basis eA.
• Associate tensor products of H to disjoint unions.09 June 2014
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Figure: Geometrical and Algebraic Objects in TFT2



• Interpolating surfaces between circles (cobordisms) are
associated with linear maps between the vector spaces.
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Figure: Cobordisms to Linear Maps in TFT2



In math language, the circles are objects and interpolating
surfaces (cobordisms ) are morphisms in a geometrical
category.

The vector spaces are objects, and linear maps are morphisms
in an algebraic category.

The correspondence is a functor.

All relations in the geometrical side should be mirrored in the
algebraic side.
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Figure: Non-degeneracy



09 June 2014
16:03

   TFT2-morphisms Page 1    

Figure: Associativity



To summarise, TFT2’s correspond to commutative, associative,
non-degenerate algebras - known asFrobenius algebras.

TFT2 with global symmetry group G defined by Moore-Segal.

• The state space is a representation of a group G - which will
be SO(4,2) in our application.

• The linear maps are G-equvariant linear maps.

• State space is infinite dimensional : amplitudes are defined
for surfaces without handles. This is a genus restricted TFT2.
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Figure: G-equivariance



Invariant linear maps and the basic CFT4 2-point function

• Free massless scalar field theory in four dimensions.

• The basic two-point function

〈φ(x1)φ(x2)〉 =
1

(x1 − x2)2

• All correlators of composite operators are constructed from
this using Wick contractions.



Ths theory has SO(4,2) symmetry - here starting point. Lie
algebra spanned by D,Pµ,Mµν ,Kµ - Scaling operator,
translations, SO(4) rotations, and special conformal
transformations.

• In radial quantization, we choose a point, say origin of
Euclidean R4, and we

Limx→0φ(x)|0 >= v+

Limx→0∂µφ(x)|0 >= Pµv+

...

• The state v+ is the lowest energy state, in a lowest-weight
representation.

Dv+ = v+

Kµv+ = 0
Mµνv+ = 0

Higher energy states are generated by Sµ1···µl
I Pµ1 · · ·Pµl v

+,
where SI is a symmetric traceless tensor of SO(4).

More soon : tracelessness related to equations of motion.



There is a dual representation V−, which is a representation
with negative scaling dimensions.

Dv− = −v−

Kµv− = 0
Mµνv− = 0

Other states are generated by acting with K · · ·K .

There is an invariant map η : V+ ⊗ V− → C.

η(Lav ,w) + η(v ,Law) = 0



η(v+, v−) = 1

The invariance condition determines η, e.g

η(Pµv+,Kνv−) = −η(v+,PµKνv−)
= η(v+, (−2Dδµν + 2Mµν)v−) = 2δµν

Using invariance conditions once finds that η(PµPµv+, v) is a
null state. Setting this state to zero (imposing EOM), defines a
quotient of a bigger representation Ṽ+ which is the irreducible
V+. And makes η non-degenerate : no null vectors.

So we see that η is teh kind of thing we need for TFT2 with
SO(4,2) symmetry. It has the non-degeneracy property and
the invariance property.



Before relating this to the 2-point function, let us define a
closely related quantity by taking the second field to the frame
at infinity.

x ′2 =
x2

x2
2

〈φ(x1)φ′(x ′2)〉 = x2
2 〈φ(x1)φ(x2)〉 =

1
(1− 2x1 · x ′2 + x2

1 x ′22 )
≡ F (x1, x ′2)

Now to link CFT4 to TFT2, calculate

η(e−iP·xv+,eiK ·x2v−)

by using invariance and commutation relations as outlined
above.

and find

η(e−iP·xv+,eiK ·x ′
2v−) = F (x1, x2)



So there is an invariant in V+ ⊗V− and thus in V− ⊗V+, but not
in V+ ⊗ V+ or V− ⊗ V−. It is useful to introduce V = V+ ⊕ V−
and define η : V ⊗ V → C.

η =

(
0 η+−
η−+ 0

)
In V we have a state ( THE QUANTUM FIELD )

Φ(x) =
1√
2

e−iP·xv+ + x ′2eiK ·x ′
v−

so that

η(Φ(x1),Φ(x2)) =
1

(x1 − x2)2

This is the basic free field 2-point function, now constructed
from the invariant map η : V ⊗ V → C. The factor of 2 because
η(−,+) and η(+,−) both contribute the same answer.



The TFT2 state space and amplitudes for CFT4 correlators

To get ALL CORRELATORS, we must set up a state space,
which knows about composite operators.

• The states obtained by the standard operator state
correspondence from general local operators are of the form

Pµ1 · · ·Pµn1
φ Pµ1 · · ·Pµn2

φ · · ·Pµ1 · · ·Pµnm
φ

• Particular linear combinations of these are primary fields
which are lowest weight states that generate irreducible
representations ( irreps) of SO(4,2) through action of the
raising operators.



• The list of primary fields in the n-field sector is obtained by
decomposing into irreps the space

Sym(V⊗n
+ )

For the state space H of the TFT2 - which we associate to a
circle in TFT2, we take

H =
∞⊕

n=0

Sym(V⊗n)

where V = V+ ⊕ V−.



This state space is
- big enough to accommodate all the composite

operators
- and admit an invariant pairing,
- small enough for the invariant pairing to be

non-degenerate

Recall

Φ(x) =
1√
2

(e−iP·xv+ + x ′2eiK ·x ′
v−)

The state space contains

Φ(x)⊗ Φ(x)⊗ · · ·Φ(x)

which is used to construct composite operators in the TFT2
set-up.



• The pairing η : H⊗H → C is constructed so as to be able to
reproduce all the 2-point functions of arbitrary composite
operators.

• The H is built from tensor products of V .

• The η is built from products of the elementary η, using Wick
contraction sums.
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Figure: Wick patterns for pairing



This defines the pairing ηAB where A,B take values in the
space H - sum of all n-fold symmetric prducts of V = V+ ⊕ V−.

The building blocks are invariant maps, so the product of these
invariant maps is also invariant.

This is shown to be non-degenerate. Basically if you have a
non-degenerate pairing V ⊗ V → C, it extends to a
non-degenerate pairing on H⊗H → C – by using he sum over
Wick patterns.

Hence

ηAB η̃
BC = δC

A

The snake-cylinder equation.



Similarly can define 3-point functions

CABC

and higher

CABC...

using Wick pattern products of the basic η’s

By writing explicit formulae for these sums over Wick patterns,
we can show that the associativity equations are satisfied.



The CABC give 3-point functions. The CC
AB = CABD η̃

DC give
OPE-coefficients. And the associativity equations of the TFT2
are the crossing equations of CFT4 - which are obtained by
equating expressions for a 4-point correlator obtained by doing
OPEs in two different ways.

An important property of the OPE in this language, illustrated

Sym2(V )⊗ Sym2(V )→ Sym4(V )⊕ Sym2(V )⊕ C

which corresponds, schematically, to

φ2(x)φ2(0)→ φ4 ⊕ φ2 ⊕ 1

Presence of V+,V− important in order to construct this in rep
theory.



PART 2: The ring structures in the state space of the TFT2

The state space in radial quantization is

∞⊕
n=0

Symn(V+)

V+ is isomorphic to a space of polynomials in variables xµ,
quotiented by the ideal generated by xµxµ.
The decomposition of this into irreducible representations is
usefully done by recognizing that this is a problem about rings
(as we saw in Robert’s talk). We will do a quick recap and
compare to the correlator discussion we just had.



Rings

Consider the polynomial ring C[x I
µ] in n × d variables, with

1 ≤ µ ≤ d
1 ≤ I ≤ n

This is a ring : has addition and multiplication. It is also a vector
space over C.

Define “Lowest weight polynomials” as those f ∈ C[x I
µ],

obeying

n∑
I=1

∂f
∂x I

µ

= 0 for all µ

d∑
µ=1

∂2f
∂x I

µx I
µ

= 0 for all I



The ring C[x I
µ] is a representation of Sn.

σ : {1,2, · · · ,n} → { σ(1), σ(2), · · · , σ(n) }

Polynomials transform as

f (x I
µ)→ f (xσ(I)µ )

It will be interesting to consider Sn invariant LWPs - which obey
the LWP equations and

f (xσ(I)µ ) = f (x I
µ)



Problem: Counting and explicitly constructing of primary
operators for general d ,n.

Has been understood for a while for n = 2, and has found
applications in higher spin theory (esp. d = 3).

Result Primary fields for general n are in 1-1 correspondence
with Sn invariant lowest weight polynomials.

This correspondence implies several counting and construction
algorithms for primary fields.



Ring structure of LWPs
The space of lowest weight polynomials is isomorphic, as a
graded vector space, to a quotient ring:

C[x I
µ]/〈

∑
I

x I
µ,
∑
µ

x I
µx I
µ〉

This is a quotient ring

R/I

where I is the ideal generated by quadratic polynomials
q1, · · · ,qn and linear `1, · · · , `d . I is the set

n∑
I=1

rIqI +
d∑
µ=1

r̃µ`µ

where rI , r̃µ ∈ R.
If we drop the linear constraint, we have a ring which
corresponds to all the states in Symn(V+).



Ring structure versus OPE algebra

In the ring structure described above, we have a product which
closes on fixed number of fields. Exists at fixed n in Symn(V+).
The product is a map

Symn(V+)⊗ Symn(V+)→ Symn(V+)

In the operator product expansion, we have

Symn1(V )⊗ Symn2(V )→ ⊗Symn1+n2(V )⊕ Symn1+n2(V )⊕ · · ·

There are TWO products on the space

∞⊕
n=0

Symn(V )



PART 3: Future directions and open problems.

Will be interesting to explore the role of these two products. In
the combinatoric aspects of correlators (the dependences on
∆a,N), observables are related to properties of

∞⊕
n=0

C(Sn)

In this case, again there are two products. One within each n.
Another “outer product”

C(Sn1)⊗ C(Sn2)→ C(Sn1+n2)



These two products, denoted as σ1.σ2 and σ1 ◦ σ2, are used to
express the dependence of correlators on the N,∆a.
And there are “coherence relations” of the form

(σ1 ◦ σ2).(σ3 ◦ σ4) = (σ1.σ2) ◦ (σ2 ◦ σ4)

In the CFT4/TFT2 of primaries :
- are there any analogous coherence relations ? which would
be useful in organising the correlators of the operators
constructed with the help of of the ring structure.



Beyond free fields, can we extend the CFT4/TFT2
correspondence can be extended to perturbative CFTs – i.e.
CFT in weak coupling expansions.

Preliminary results in ongoing work (with Robert) suggest : Yes.

Strongly coupled CFTs ??

Another longer term goal for the CFT4/TFT2 program ... Can
we get the same TFT2 as N = 4 SYM from string theory on
AdS5. Could be an avenue for better understanding of
AdS/CFT.


