19TH HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY, CORFU, GREECE

Workshop on Connecting Insights in Fundamental Physics: Standard

Model and Beyond

AUGUST 31 - SEPTEMBER 11, 2019

Continuum Naturalness

- particle without particle

Sept. 8, 2019

With C. Csaki, S. Lombardo, G. Lee, O. Telem; JHEP 2019(03)
With C. Csaki, S. Lombardo, G. Lee, O. Telem work in progress
With C. Csaki, W. Xue; work in progress

Naturalness Paradigm Under Pressure

♦ Naturalness "typically" implies new colored top partners

~TeV scale to cut off the top contribution to the Higgs potential

not too many theoretical frameworks;

two major ones

AdS/CFT warped extra dimension (RS setup)

Supersymmetry: stop

Higgs is a fundamental scalar, just like many other SUSY partners

Composite Higgs: Fermionic top partners (partial compositeness)

Higgs is a composite resonance, just like many composite resonances in the theory of strong dynamics

Naturalness Paradigm Under Pressure

♦ Naturalness "typically" implies new colored top partners

~TeV scale to cut off the top contribution to the Higgs potential

*Neutral Naturalness is not discussed in this talk

not too many theoretical frameworks;

two major ones

AdS/CFT warped extra dimension (RS setup)

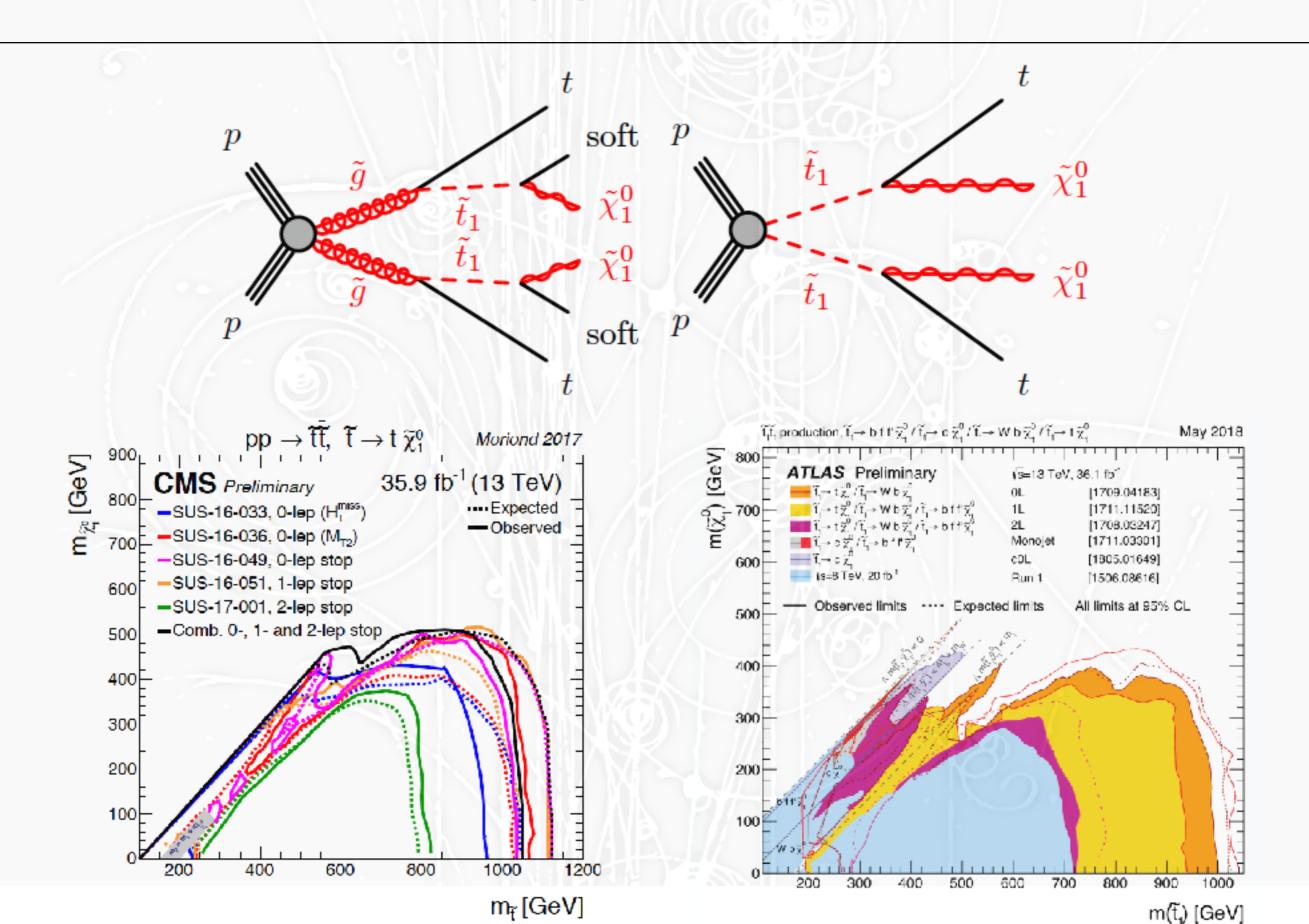
Supersymmetry: stop

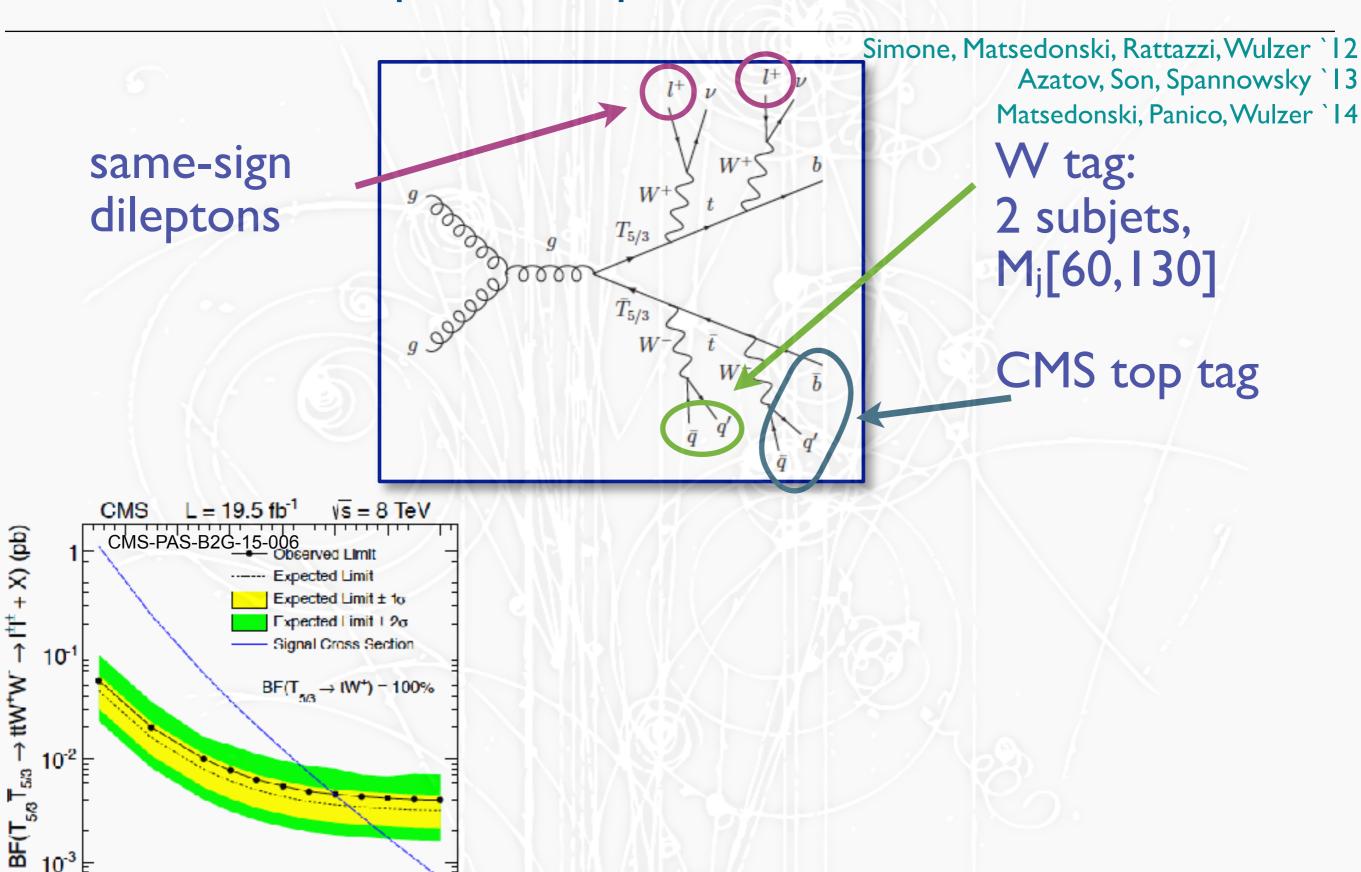
Higgs is a fundamental scalar, just like many other SUSY partners

Composite Higgs: Fermionic top partners (partial compositeness)

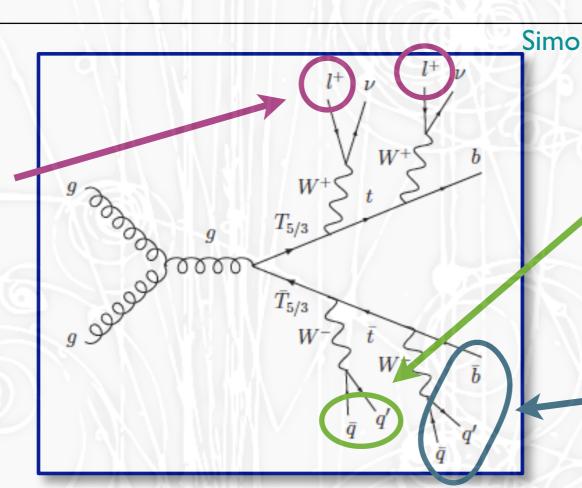
Higgs is a composite resonance, just like many composite resonances in the theory of strong dynamics

SUSY top partner searches





", mass (GeV)

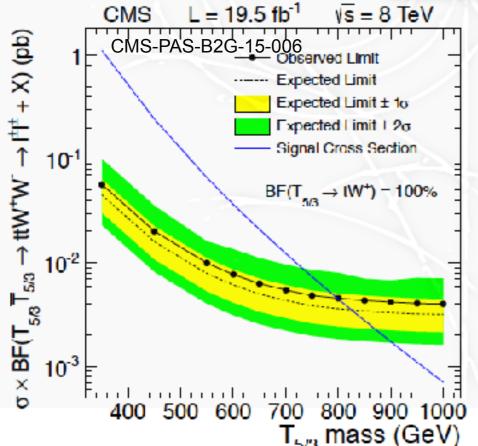


Simone, Matsedonski, Rattazzi, Wulzer `12 Azatov, Son, Spannowsky `13

Matsedonski, Panico, Wulzer 14

W tag: 2 subjets, $M_{i}[60, 130]$

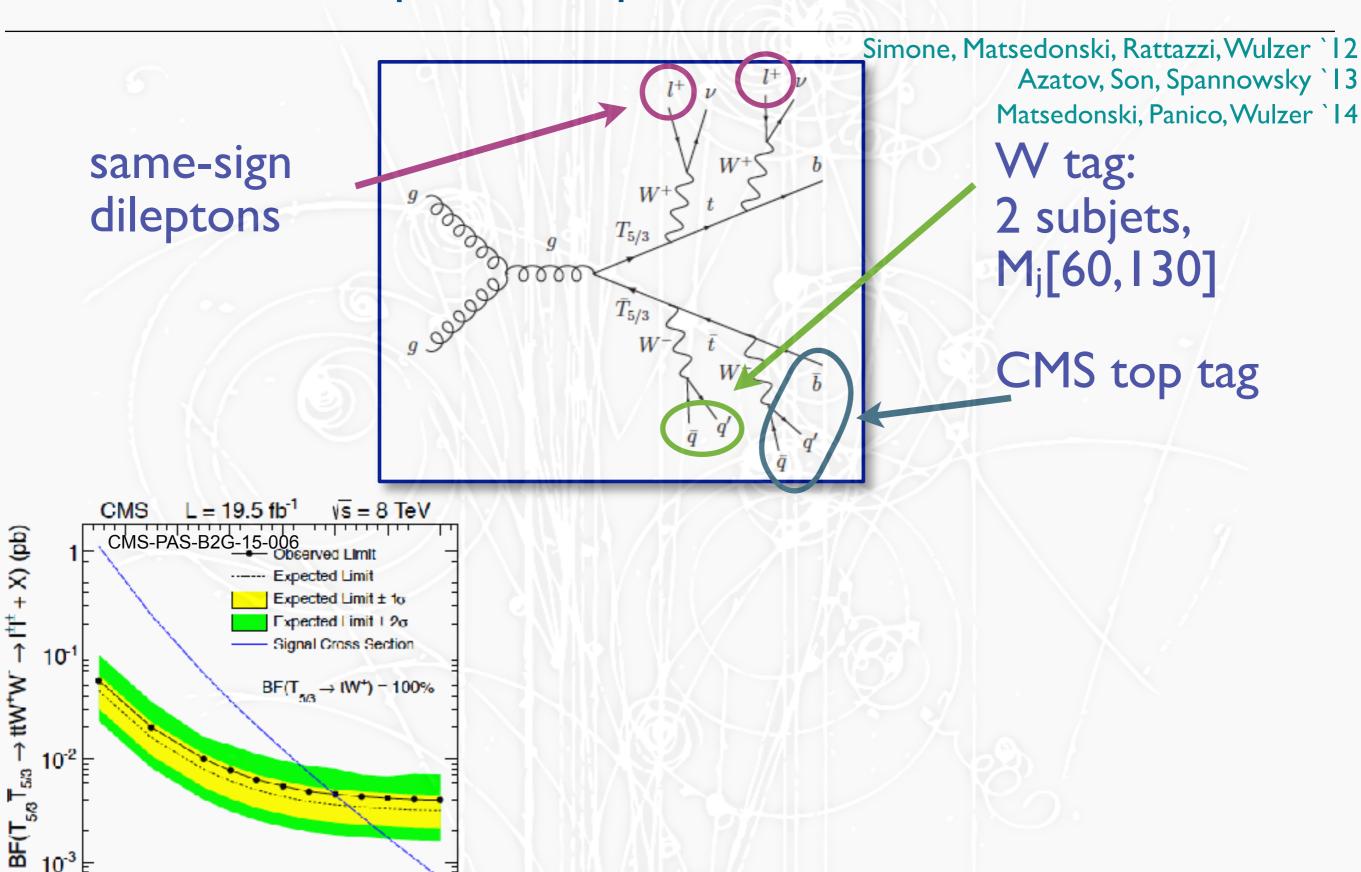
CMS top tag



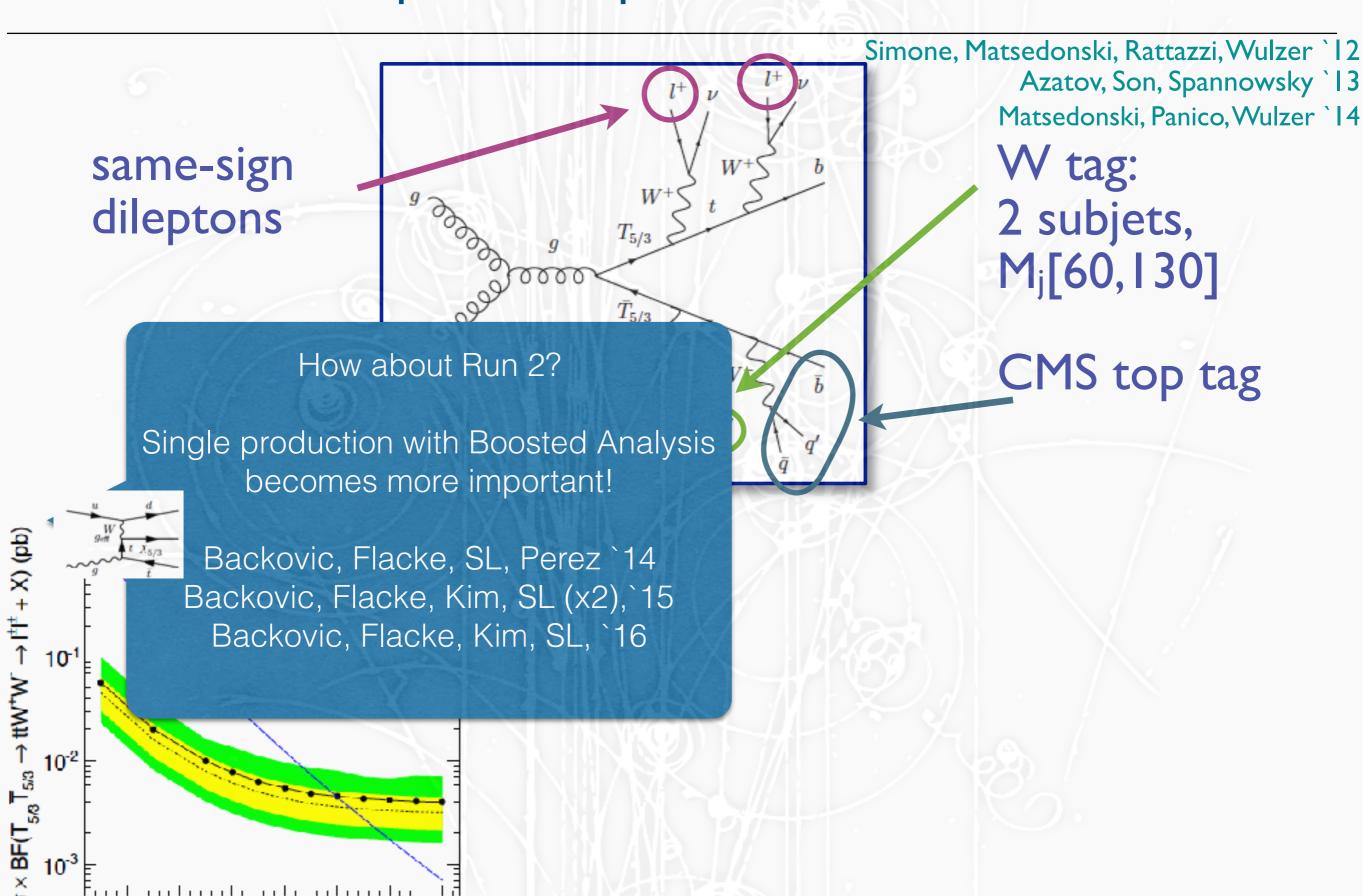
Oblique parameter fits of LEP & Tevatron data gave f ≥ 800GeV

Grojean, Matsedonskyi, Panico `13

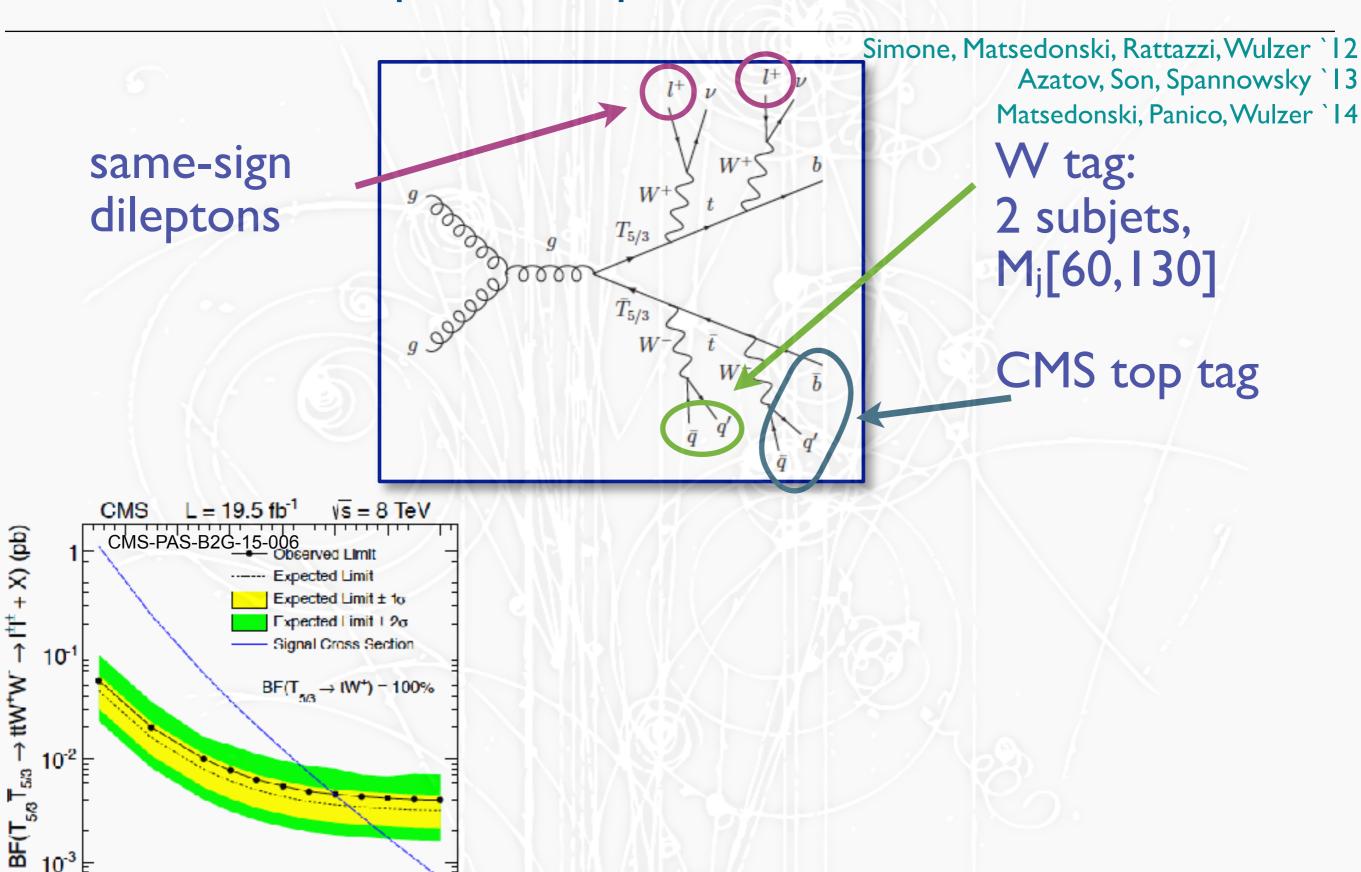
Ciuchini, Franco, Mishima, Silvestrini `13



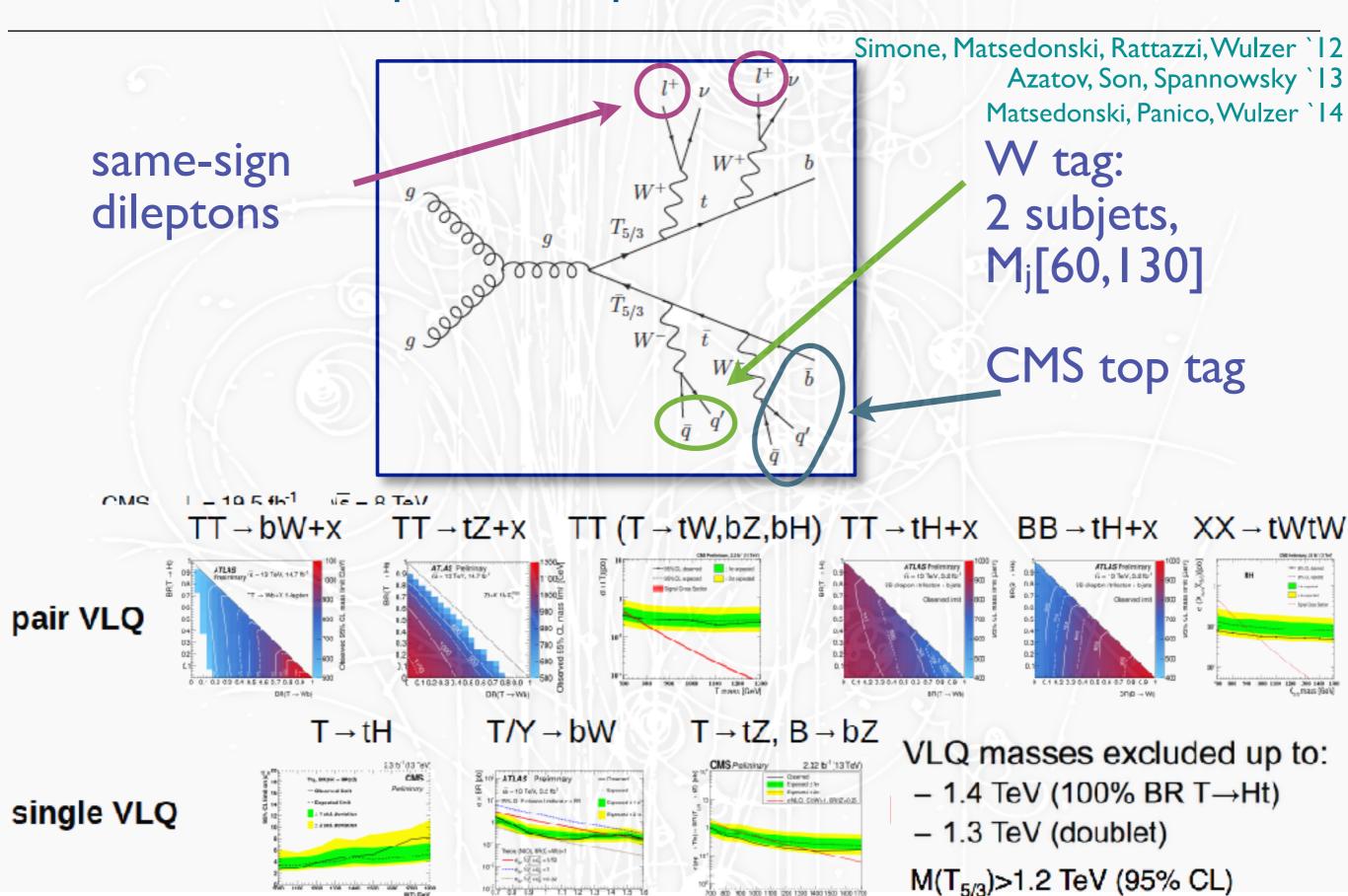
", mass (GeV)



, mass (GeV)

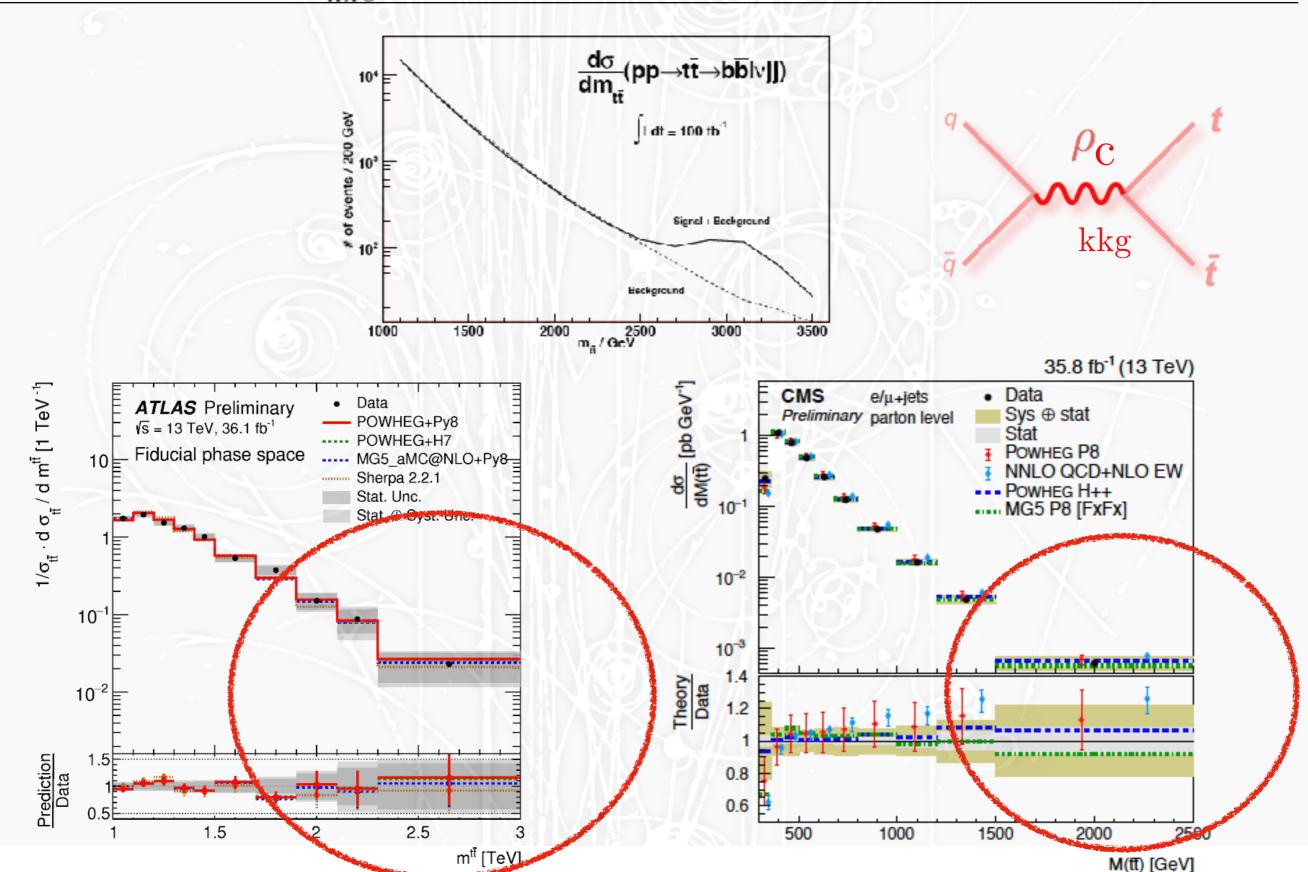


", mass (GeV)

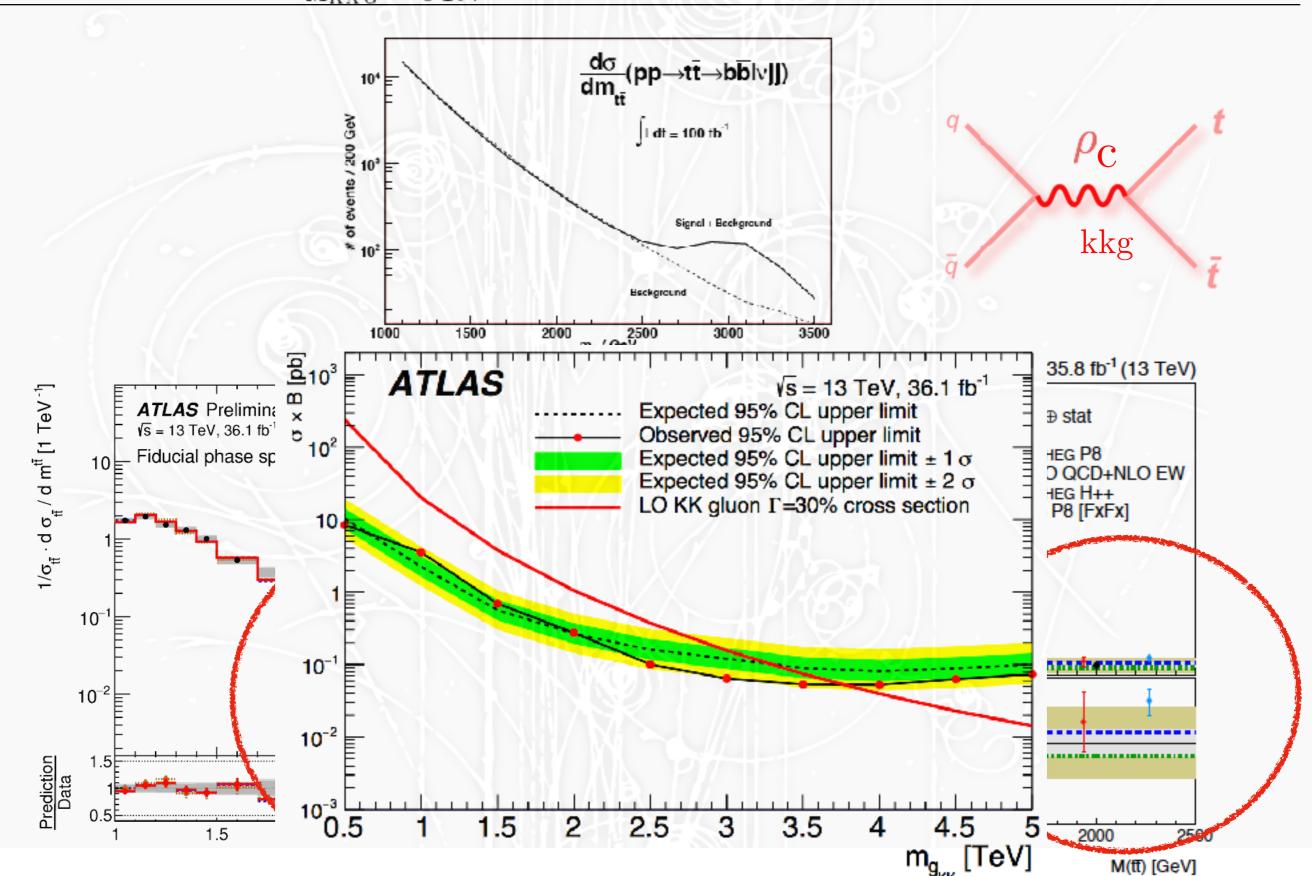


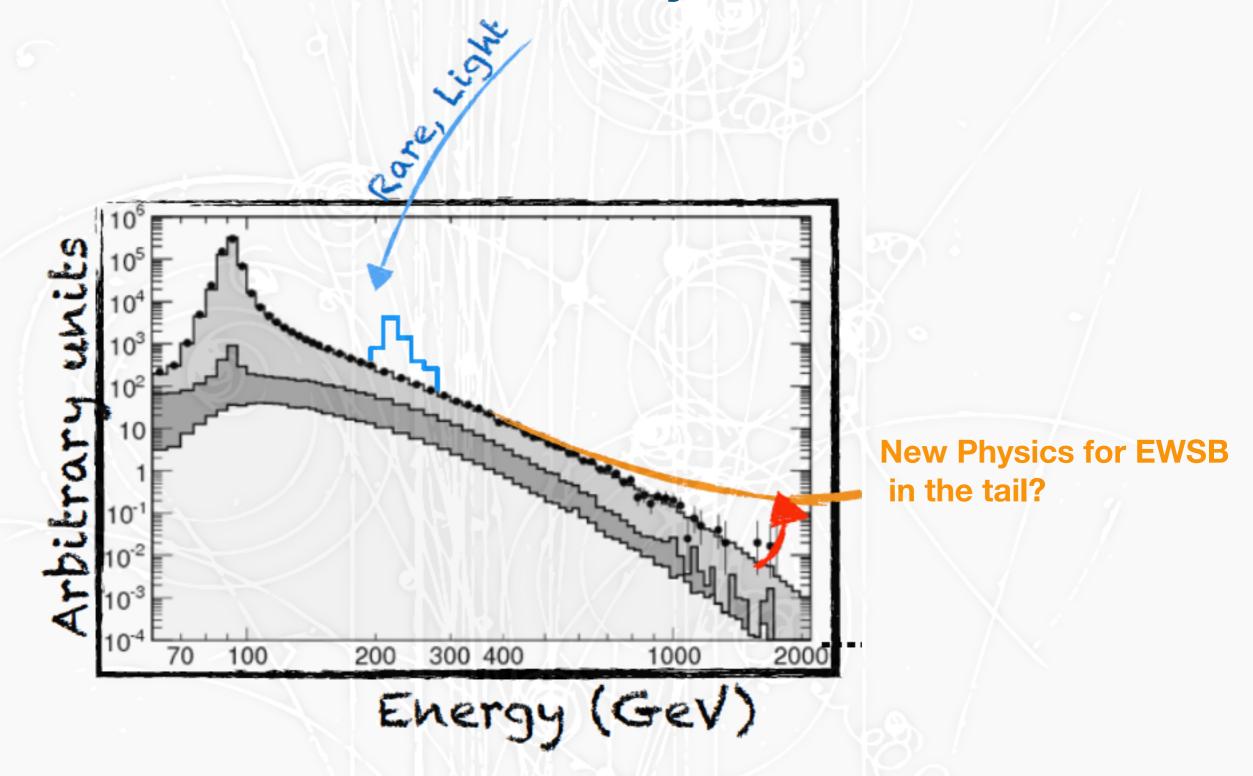
T_{5/3} mass (GeV)

 $M_{KKG} = 3 \text{ TeV}$



 $M_{KKG} = 3 \text{ TeV}$

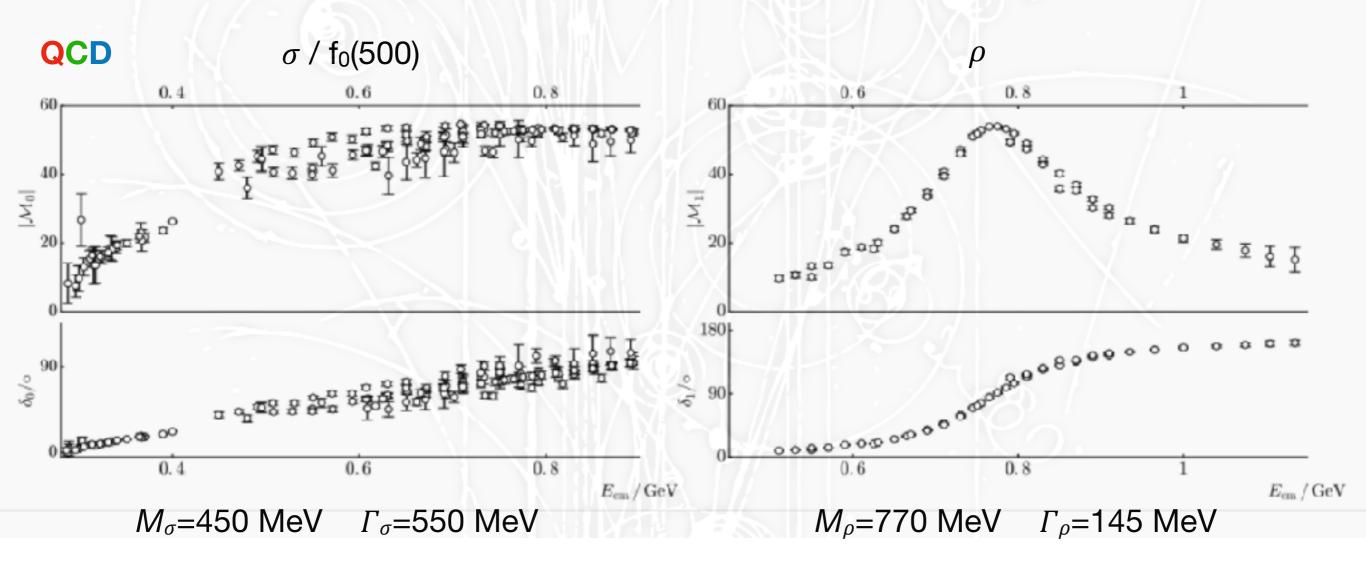




picture adapted from Francesco Riva

- ♦ New Physics may appear solely as a continuum
 - -approximately conformal sector (i.e. CFT broken by IR cutoff)
 - -multi-particle states with strong dynamics (branch cut at $4m_{\pi^2}$ in $\pi\pi\to\pi\pi$ scattering)

- ♦ New Physics may appear solely as a continuum
 - -approximately conformal sector (i.e. CFT broken by IR cutoff)
 - -multi-particle states with strong dynamics (branch cut at $4m_{\pi^2}$ in $\pi\pi\to\pi\pi$ scattering)

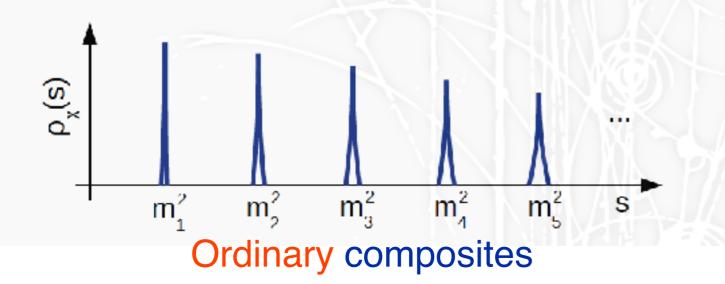


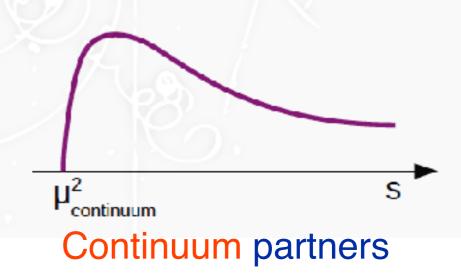
Particle Without Particle

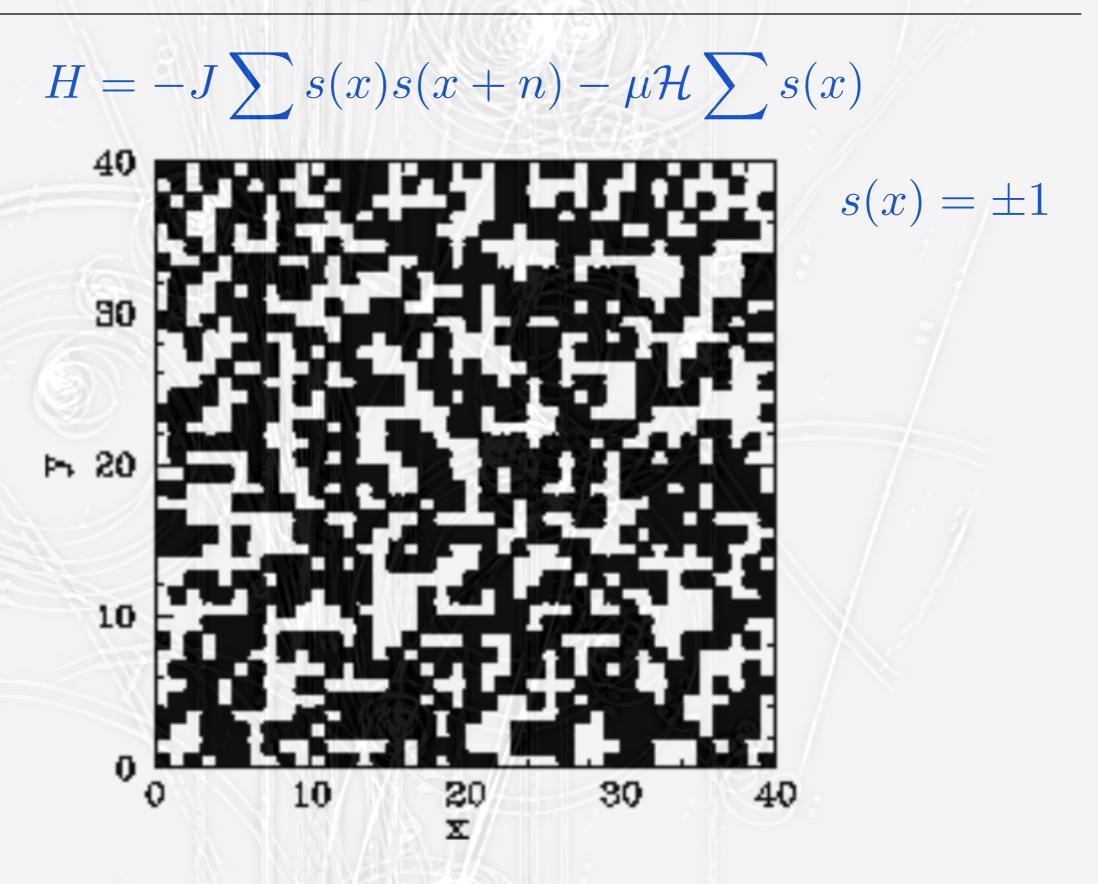
- ♦ New Physics may appear solely as a continuum
 - If the new strong dynamics responsible for furnishing a composite Higgs is near a quantum critical point, the composite spectrum may effectively consist of a continuum with a mass gap.
 - Idea: they may not be ordinary particles but form a continuum with a mass gap (similar to gapless unparticles like Terning et al. also used gapped for SUSY)

Particle Without Particle

- ♦ New Physics may appear solely as a continuum
 - If the new strong dynamics responsible for furnishing a composite Higgs is near a quantum critical point, the composite spectrum may effectively consist of a continuum with a mass gap.
 - Idea: they may not be ordinary particles but form a continuum with a mass gap (similar to gapless unparticles like Terning et al. also used gapped for SUSY)







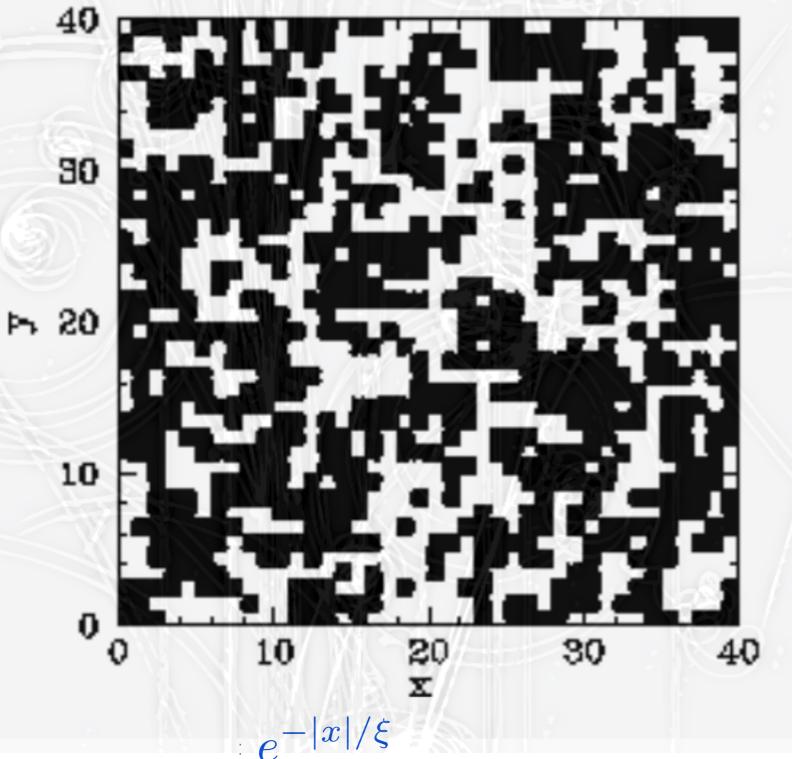
$$H = -J\sum s(x)s(x+n) - \mu\mathcal{H}\sum s(x)$$

$$s(x) = \pm 1$$

$$s(x) = \pm 1$$

$$s(x) = \pm 1$$

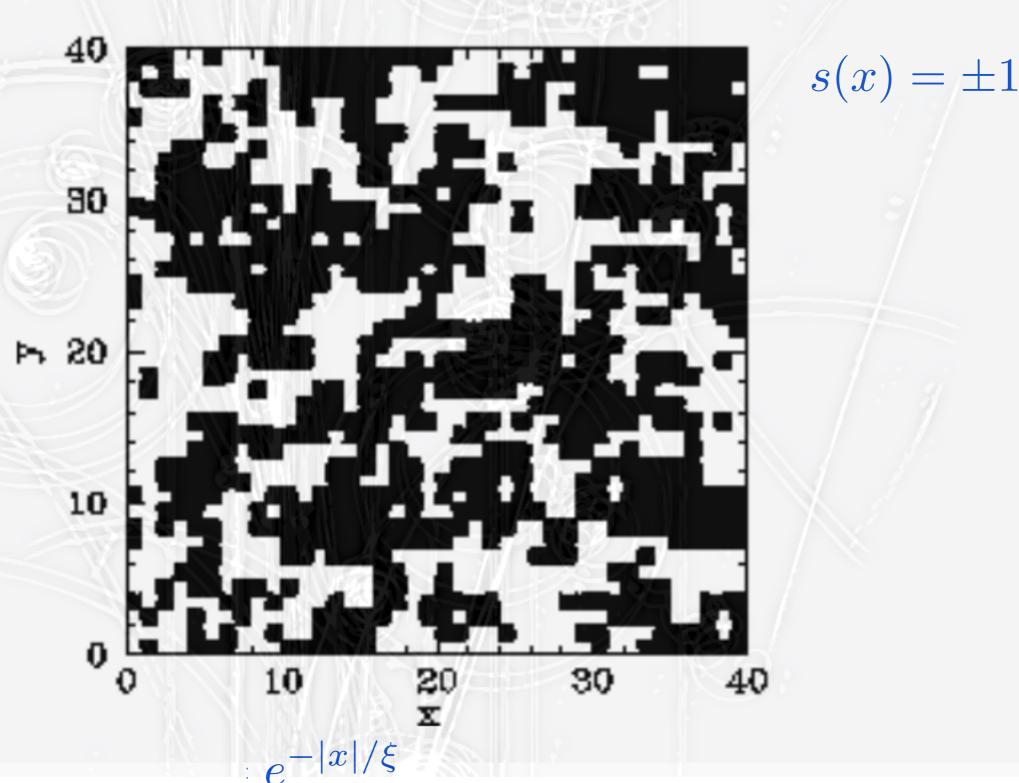
$$H = -J \sum s(x)s(x+n) - \mu \mathcal{H} \sum s(x)$$



 $s(x) = \pm 1$

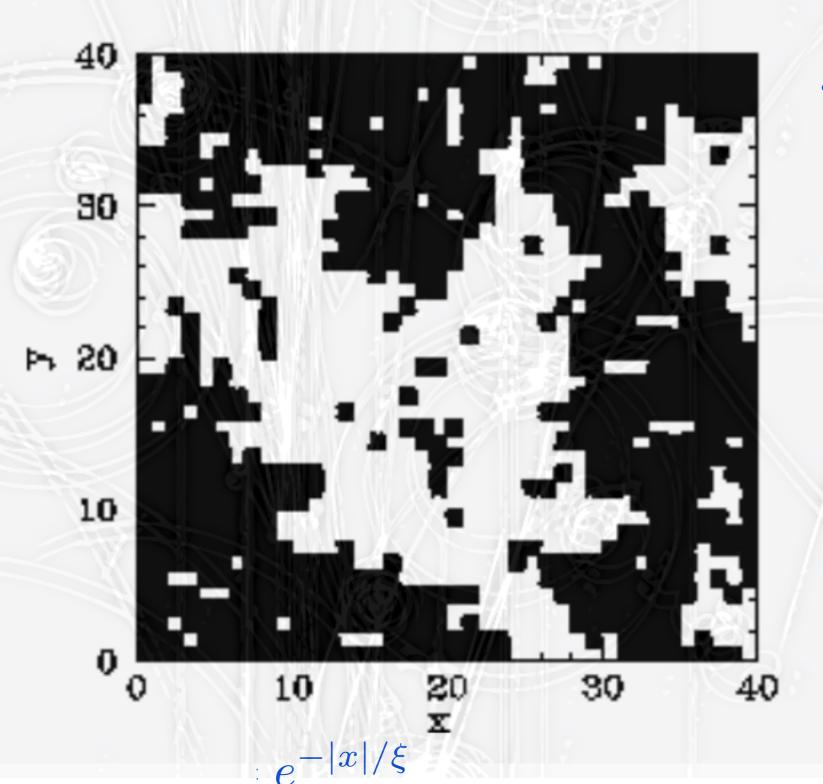
Richard Fitzpatrick

$$H = -J \sum s(x)s(x+n) - \mu \mathcal{H} \sum s(x)$$



Richard Fitzpatrick

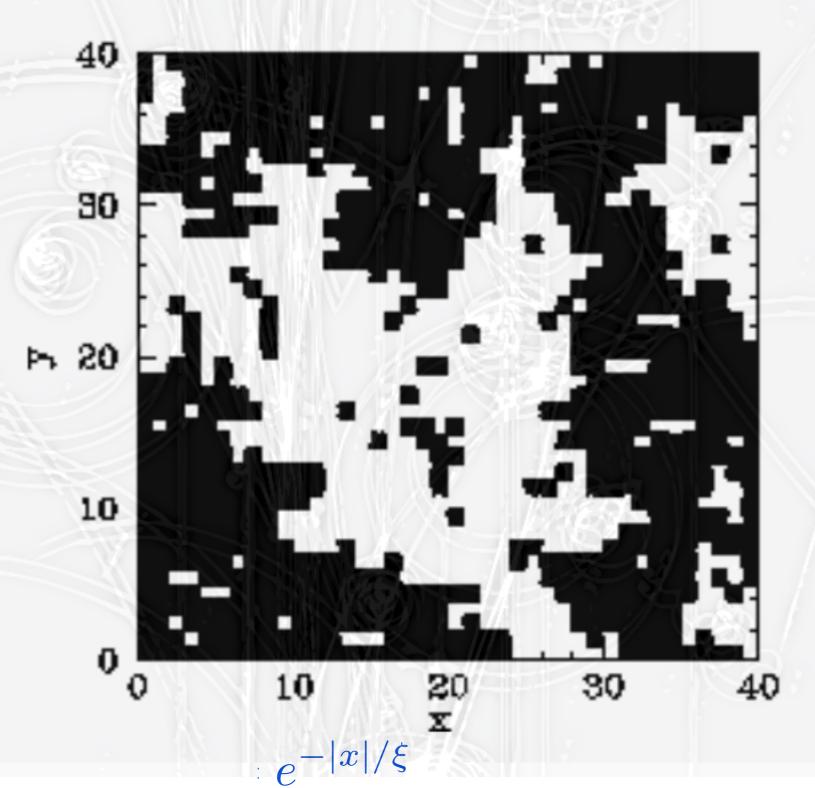
$$H = -J \sum s(x)s(x+n) - \mu \mathcal{H} \sum s(x)$$



 $s(x) = \pm 1$

Richard Fitzpatrick

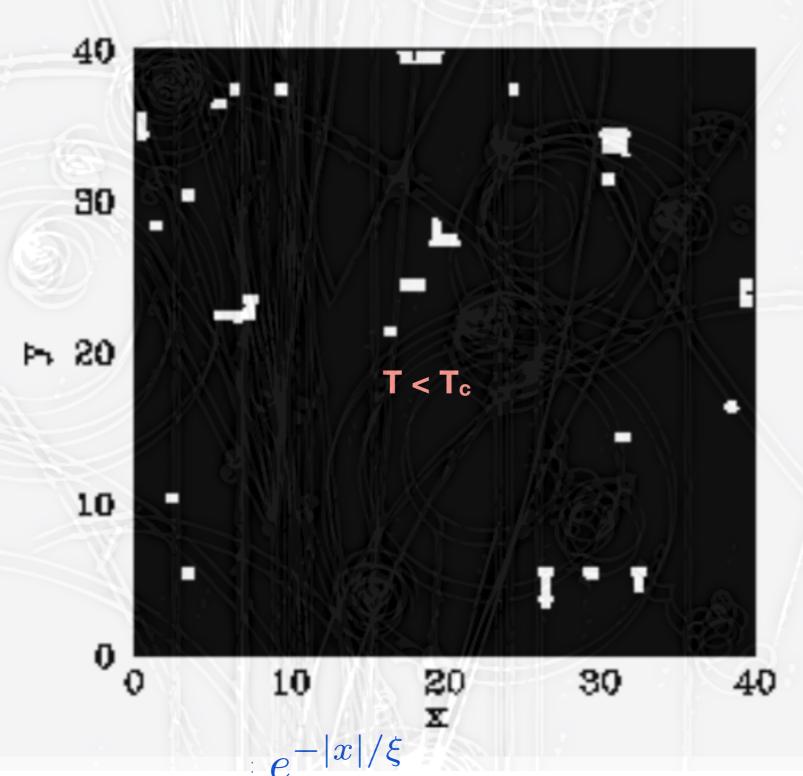
$$H = -J \sum s(x)s(x+n) - \mu \mathcal{H} \sum s(x)$$



 $s(x) = \pm 1$

 $\lim_{T \to T_c} \xi = \infty$

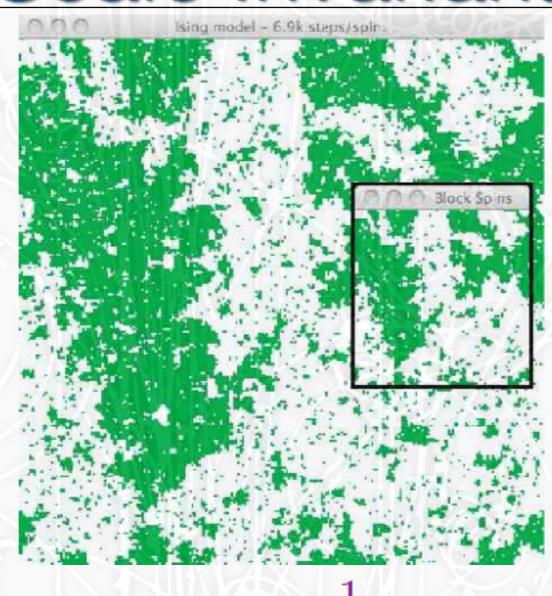
$$H = -J \sum s(x)s(x+n) - \mu \mathcal{H} \sum s(x)$$



 $s(x) = \pm 1$

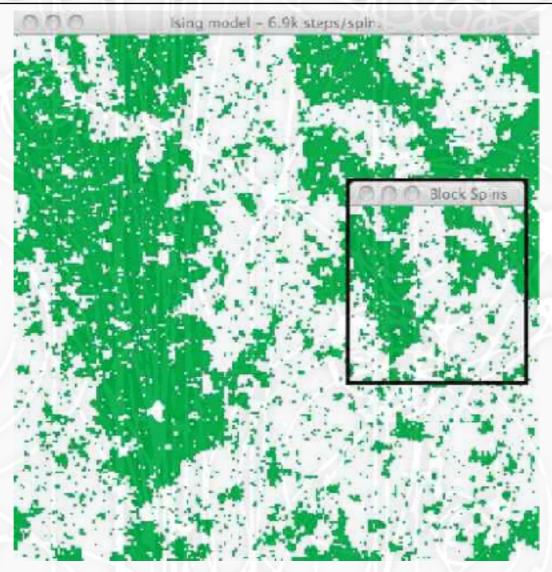
 $\lim_{T \to T_c} \xi = \infty$

Critical Ising Model is Scale Invariant



at T=Tc
$$\langle s(0)s(x)\rangle \propto \frac{1}{|x|^{2\Delta-1}}$$

Critical Ising Model is Scale Invariant

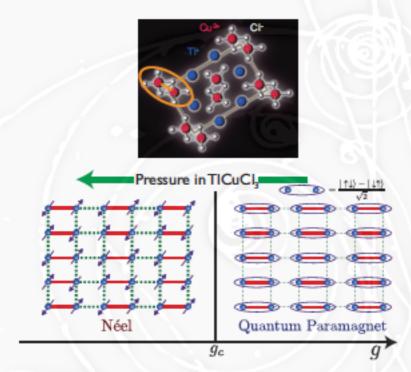


at T=T_c
$$\langle s(0)s(x)\rangle \propto \frac{1}{|x|^{2\Delta-1}} = \int d^3p \, \frac{e^{ip\cdot x}}{|p|^{4-2\Delta}}$$
 critical exponent

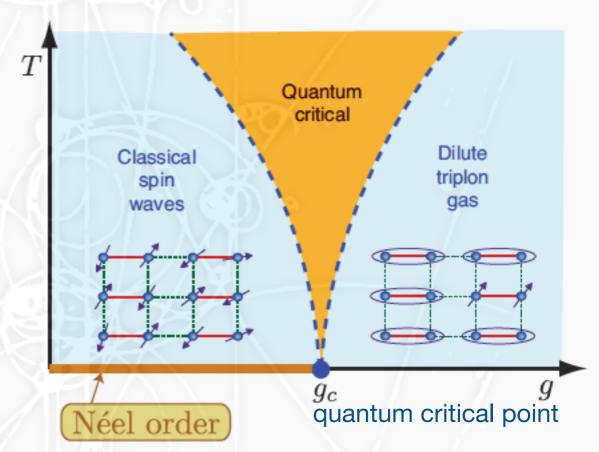
Bellazzini, Csaki, Hubisz, SL, Serra, Terning (PRX 2016)

Higgs & Quantum Phase Transition

Condensed matter systems can produce a light scalar by tuning the parameters close to a critical value where a continuous phase transition occurs.



Sachdev, arXiv:1102.4268



Higgs & Quantum Phase Transition

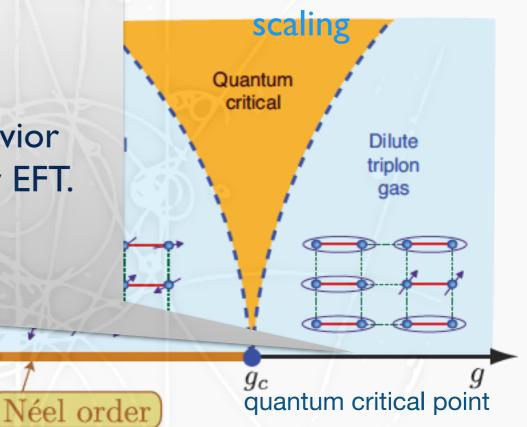
Condensed matter systems can produce a light scalar by tuning the parameters close

@2nd order QPT, @ critical point, all masses vanish & the theory is scale invariant, characterized by the dimensions of the field,

and at low energies we will see the universal behavior of some fixed point that constitutes the low-energy EFT.

Néel Quantum Paramagnet g_c

Sachdev, arXiv:1102.4268



Higgs & Quantum Phase Transition

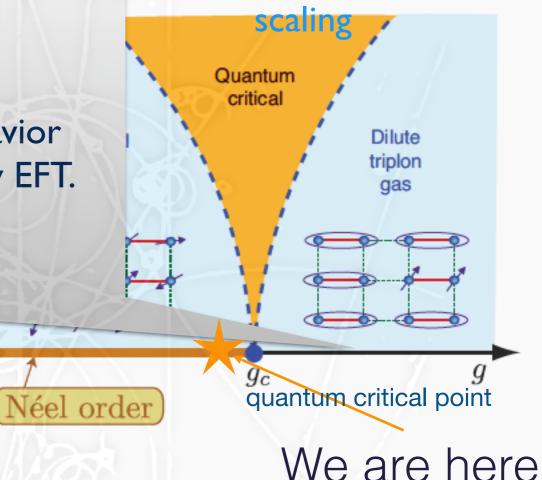
Condensed matter systems can produce a light scalar by tuning the parameters close

@2nd order QPT, @ critical point, all masses vanish & the theory is scale invariant, characterized by the dimensions of the field,

and at low energies we will see the universal behavior of some fixed point that constitutes the low-energy EFT.

Néel Quantum Paramagnet

Sachdev, arXiv:1102.4268



Higgs & Quantum Phase Transition

Condensed matter systems can produce a light scalar by tuning the parameters close

@2nd order QPT, @ critical point, all masses vanish & the theory is scale invariant, characterized by the dimensions of the field,

and at low energies we will see the universal behavior of some fixed point that constitutes the low-energy EFT.

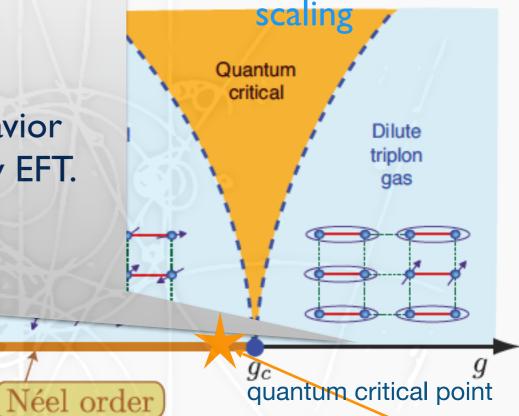
Néel Quantum Paramagnet

Sachdev, arXiv:1102.4268

What is the nature of electroweak phase transition?

Does the underlying theory also have a QPT?

If so, is it more interesting than mean-field theory?



We are here

Higgs & Quantum Phase Transition

Condensed matter systems can produce a light scalar by tuning the parameters close

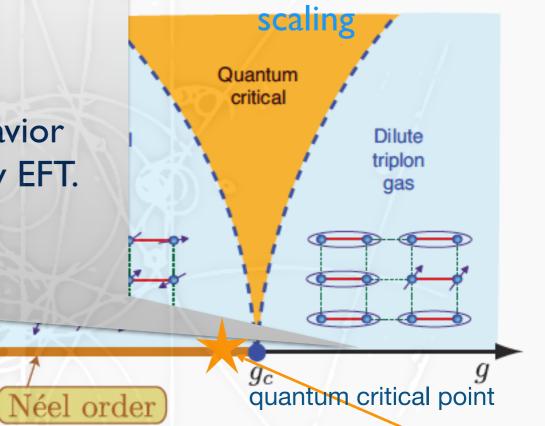
@2nd order QPT, @ critical point, all masses vanish &

the theory is scale invariant, characterized by the

dimensions of the field,

and at low energies we will see the universal behavior of some fixed point that constitutes the low-energy EFT.

Sachdev, arXiv:1102.4268



We are here

- What is the nature of electroweak phase transition?
- Does the underlying theory also have a QPT?
- If so, is it more interesting than mean-field theory?

$$G(p)\sim rac{i}{p^2}$$
 vs. $G(p)\sim rac{i}{(p^2)^{2-\Delta}}$ or $G(p)\sim rac{i}{(p^2-\mu^2)^{2-\Delta}}$

AdS/CFT

$$\left\langle e^{\int d^4x \phi_0(x) \mathcal{O}(x)} \right\rangle_{\mathrm{CFT}} \approx e^{S_{5\mathrm{Dgravity}}[\phi(x,z)|_{z=0} = \phi_0(x)]}$$

$$ds^2 = \frac{R^2}{z^2} \left(dx_\mu^2 - dz^2 \right)$$

 $\mathcal{O} \subset \mathrm{CFT} \leftrightarrow \phi$ AdS₅ field

AdS/CFT

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(dx_{\mu}^{2} - dz^{2} \right)$$
$$z > \epsilon$$

$$S_{bulk} = \frac{1}{2} \int d^4x dz \sqrt{g} (g^{\alpha\beta} \partial_{\alpha} \phi \partial_{\beta} \phi + m^2 \phi^2)$$

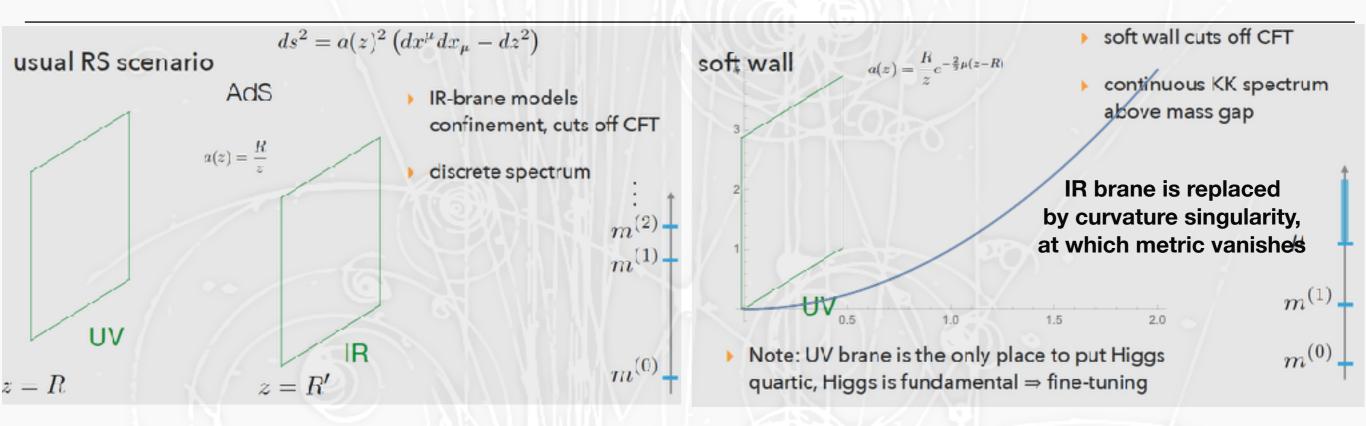
$$\phi(p,z) = az^2 J_{\nu}(pz) + bz^2 J_{-\nu}(pz)$$

$$\Delta[\mathcal{O}] = 2 \pm \nu = 2 \pm \sqrt{4 + m^2 R^2}$$

$$<\mathcal{O}(p)\mathcal{O}(p)> \propto \frac{\delta^{(4)}(p+p')}{(2\pi)^2}(p^2)^{\Delta-2}$$

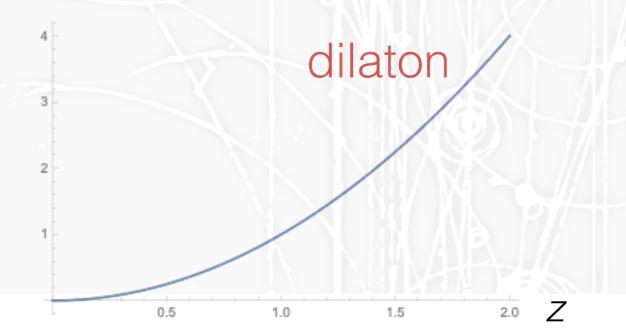
Witten, Klebanov 99'

broken CFT

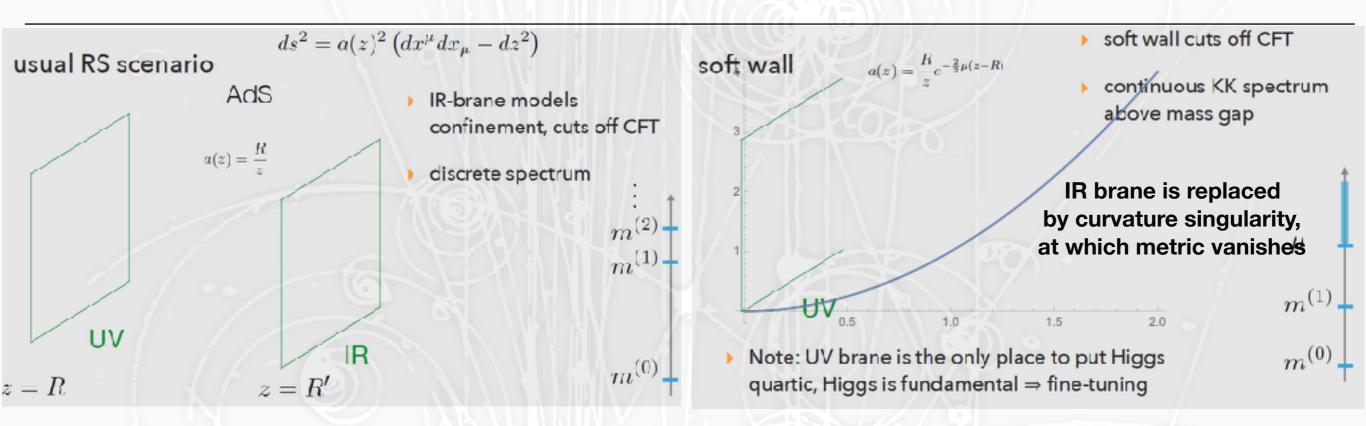


- * Randall Sundrum 2 (only UV brane and bulk): cuts from 0 (CFT)
- * RS1: putting IR cutoff at TeV
- New type of IR cutoff (soft wall) gives rise to a different phenomenology

Karch, Katz, Son, Stephaniv 06

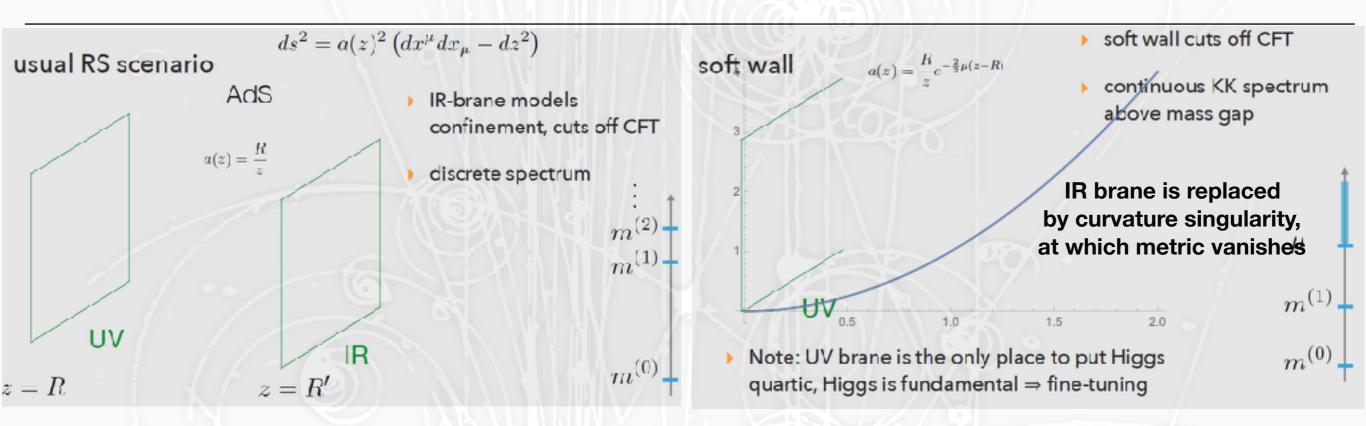


broken CFT



- Randall Sundrum 2 (only UV brane and bulk): cuts from 0 (CFT)
- * RS1: putting IR cutoff at TeV
- New type of IR cutoff (soft wall) gives rise to a different phenomenology

broken CFT



- * Randall Sundrum 2 (only UV brane and bulk): cuts from 0 (CFT)
- * RS1: putting IR cutoff at TeV
- New type of IR cutoff (soft wall) gives rise to a different phenomenology

Karch, Katz, Son, Stephaniv 06

broken CFT by IR cutoff

$$S_{\text{int}} = \frac{1}{2} \int d^4x dz \sqrt{g} \phi \mathcal{H}^{\dagger} \mathcal{H}$$

$$\phi = \left(\frac{\mu z}{R}\right)$$

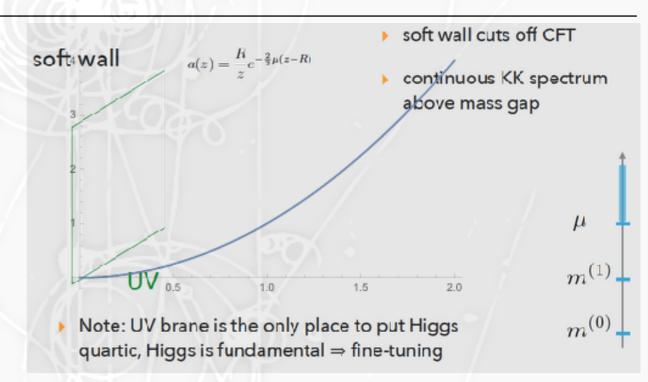
$$z^5 \partial_z \left(\frac{1}{z^3} \partial_z \mathcal{H}\right) - z^2 (p^2 - \mu^2) \mathcal{H} - m^2 R^2 \mathcal{H} = 0$$

$$< \mathcal{O}(p) \mathcal{O}(p) > \propto \frac{\delta^{(4)} (p + p')}{(2\pi)^2} (p^2 - \mu^2)^{\Delta - 2}$$

$$[\partial^2 - \mu^2]^{2-\Delta} \delta(x-y)$$

$$ds^2 = a(z) \left(dx^{\mu} dx_{\mu} - dz^2 \right)$$

 $a(z) = \frac{R}{z} e^{-\frac{2}{3}\mu(z-R)^{\nu}}$
 $S_{\text{gauge}} = \int d^5x - \frac{1}{4}a(z)F_{MN}^{a2}$



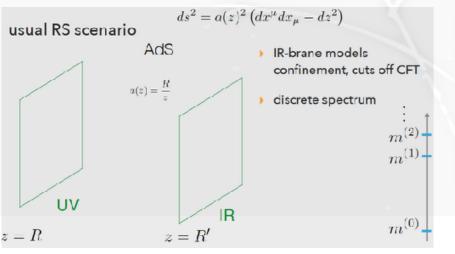
 $\left(a^{-1}\partial_z(a\partial_z) + p^2\right)f = 0$ EOM:

$$f = a^{-\frac{1}{2}}\Psi$$

"Schrödinger Eqn".:
$$\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi, \quad V(z) = \frac{a''}{2a} - \frac{a'^2}{4a^2}$$

$$V(z)\big|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$$

 $V(z)\Big|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$ => continuum begins at: $p^2=(\mu/3)^2$



 $\rightarrow \infty$

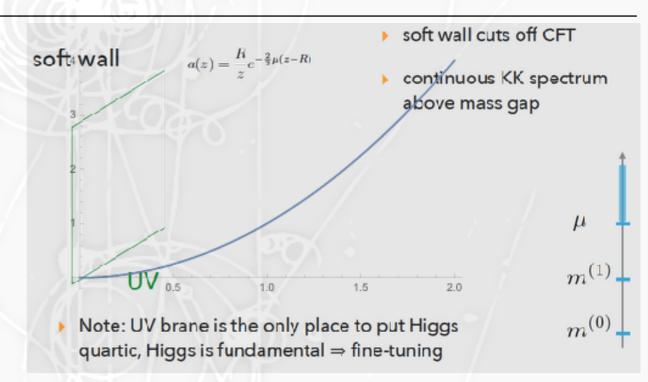
(infinite well)

=> KK towers

$$ds^{2} = a(z) \left(dx^{\mu} dx_{\mu} - dz^{2} \right)$$

$$a(z) = \frac{R}{z} e^{-\frac{2}{3}\mu(z-R)^{\nu}}$$

$$S_{\text{gauge}} = \int d^{5}x - \frac{1}{4}a(z)F_{MN}^{a2}$$



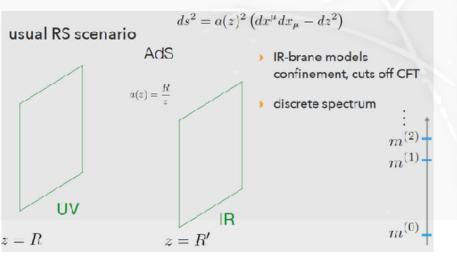
 $\left(a^{-1}\partial_z(a\partial_z) + p^2\right)f = 0$ EOM:

$$f = a^{-\frac{1}{2}}\Psi$$

"Schrödinger Eqn".:
$$\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi, \quad V(z) = \frac{a''}{2a} - \frac{a'^2}{4a^2}$$

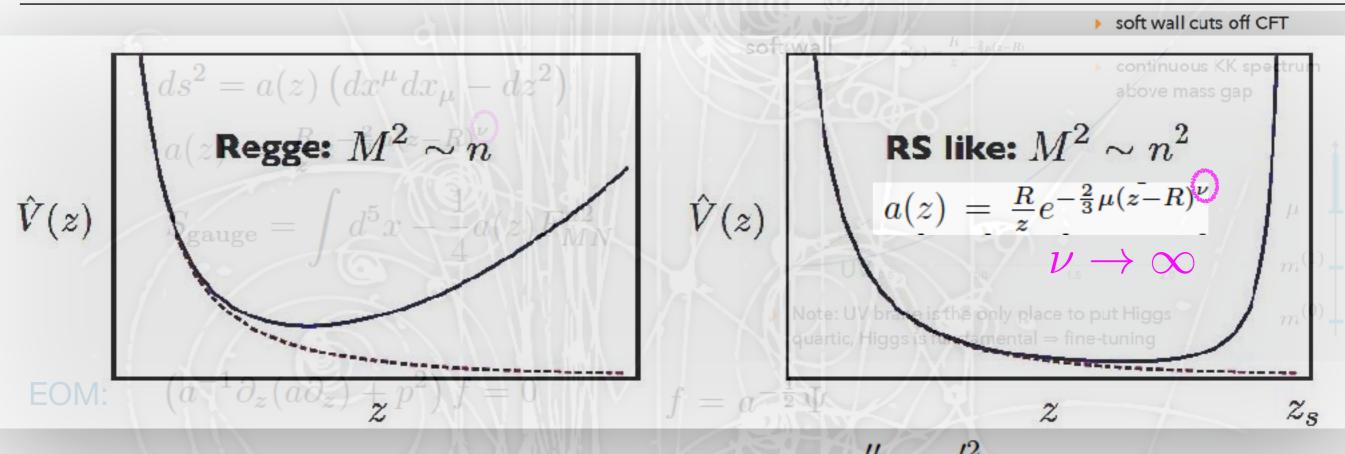
$$V(z)|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$$

 $V(z)\Big|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$ => continuum begins at: $p^2=(\mu/3)^2$



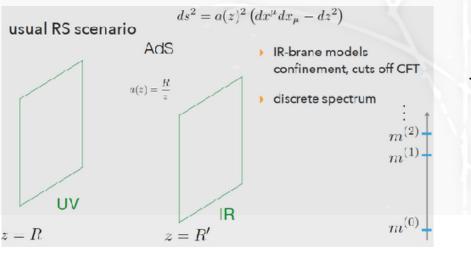
(infinite well) $\rightarrow \infty$

=> KK towers



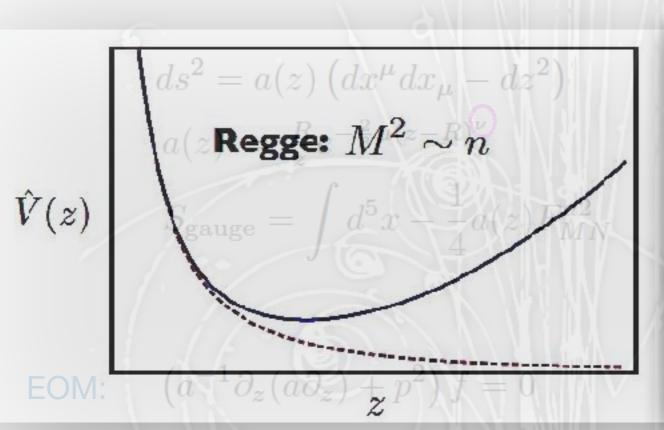
"Schrödinger Eqn".:
$$\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi, \quad V(z) = \frac{a''}{2a} - \frac{a'^2}{4a^2}$$

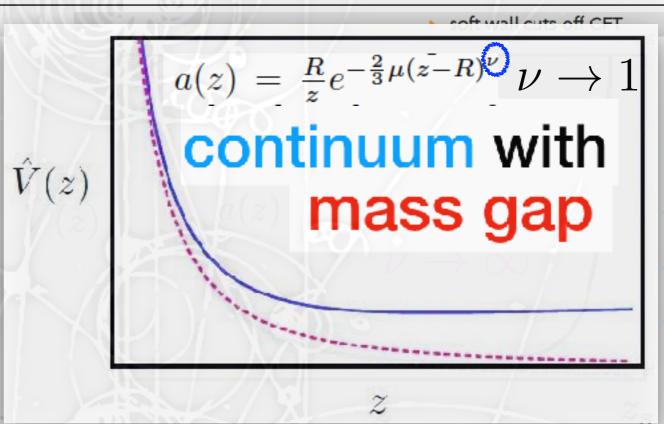
$$V(z)|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$$
 => continuum begins at: $p^2=(\mu/3)^2$



 $\rightarrow \infty$

(infinite well) => KK towers

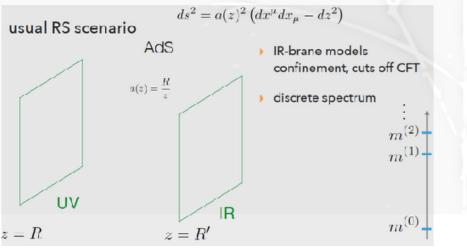




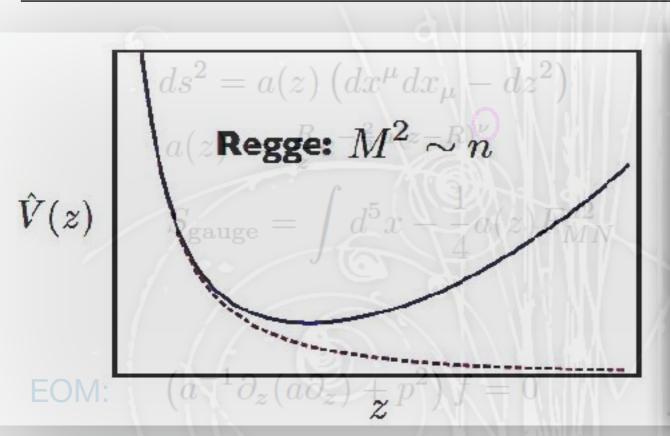
"Schrödinger Eqn".:
$$\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi, \quad V(z) = \frac{a''}{2a} - \frac{a'^2}{4a^2}$$

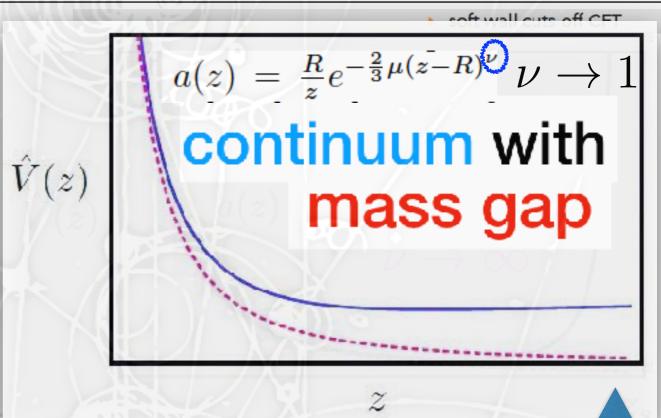
$$V(z)\big|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$$

 $V(z)|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$ => continuum begins at: $p^2=(\mu/3)^2$



 $\rightarrow \infty$ (infinite well) => KK towers



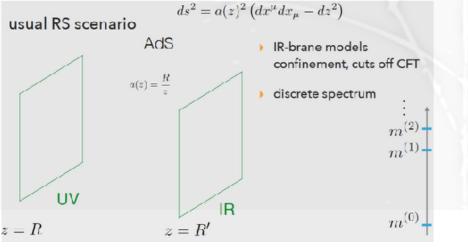


"Schrödinger Eqn".: $\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi$, V(z)

Stabilization of this setting:

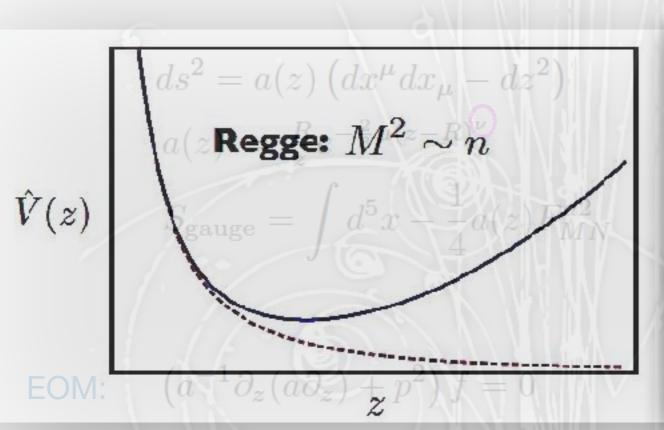
 $V(z)|_{z\to\infty} \to \left(\frac{\mu}{3}\right)^2 \Longrightarrow cc$

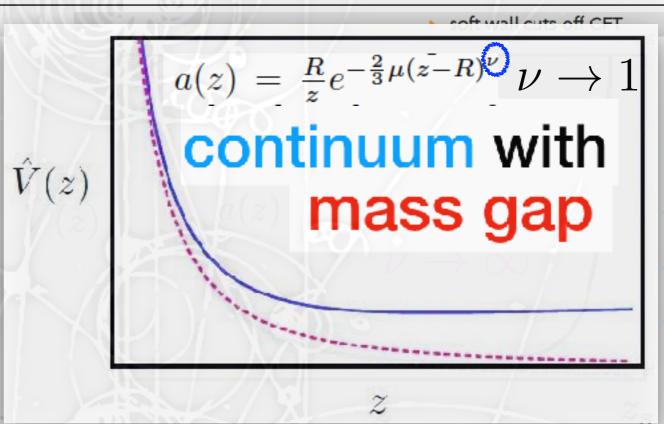
Batell, Gherghetta, Sword '08 Cabrer, Gersdorff, Quiros '09



 $ightarrow \infty$ (infinite well)

=> KK towers

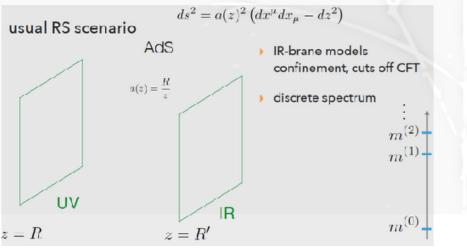




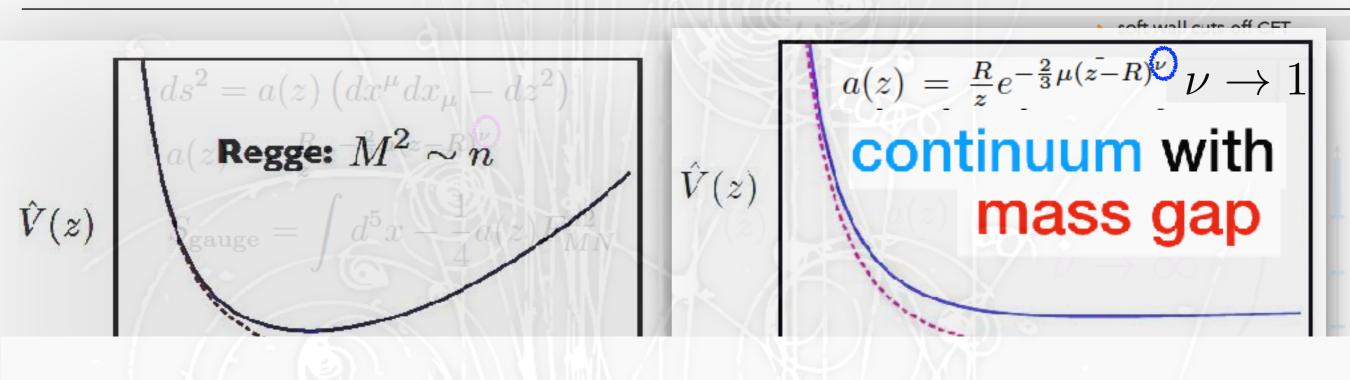
"Schrödinger Eqn".:
$$\left(-\partial_z^2 + V(z)\right)\Psi = p^2\Psi, \quad V(z) = \frac{a''}{2a} - \frac{a'^2}{4a^2}$$

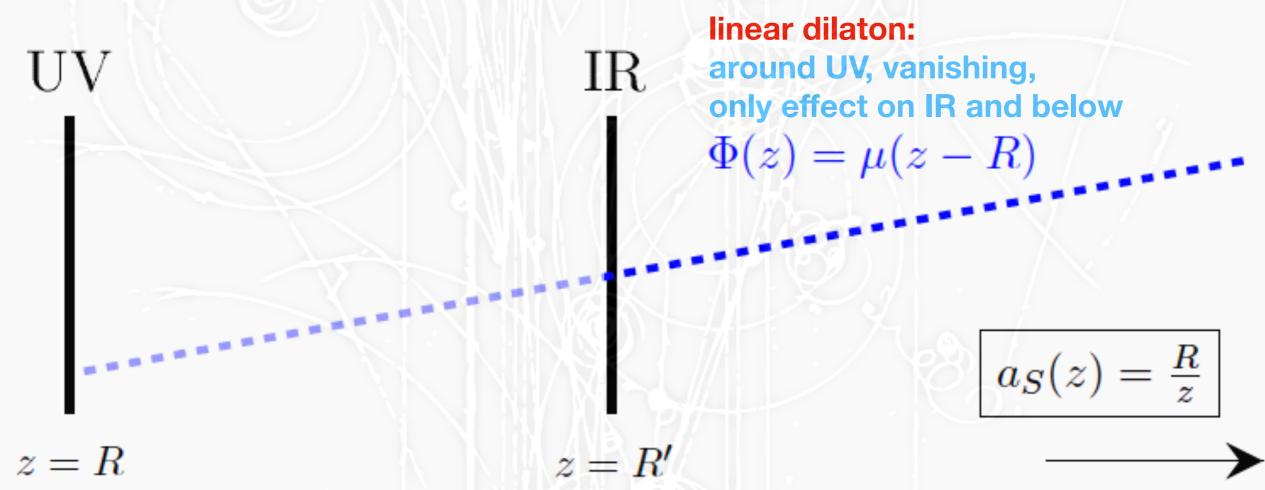
$$V(z)\big|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$$

 $V(z)|_{z\to\infty}\to \left(\frac{\mu}{3}\right)^2$ => continuum begins at: $p^2=(\mu/3)^2$



 $\rightarrow \infty$ (infinite well) => KK towers





The Quantum Critical higgs

- * At a QPT the approximate scale invariant theory is characterized by the scaling dimension Δ of the gauge invariant operators. SM: $\Delta = 1 + O(\alpha/4\pi)$
- * We want to present a general class of theories describing a higgs field near a non-mean-field QPT.
- * In such theories, in addition to the pole (Higgs), there can also be a higgs continuum, representing additional states associated with the dynamics underlying the QPT $G_h(p^2) = \frac{i}{p^2 m_h^2} + \int_{u^2}^{\infty} dM^2 \frac{\rho(M^2)}{p^2 M^2}$

 $\widetilde{S}_{\text{particle}}$ $\widetilde{M}_{\text{particle}}$ $\widetilde{M}_{\text{particle}}$ $\widetilde{M}_{\text{particle}}$ $\widetilde{M}_{\text{particle}}$

Modeling the QCH: generalized free fields

Generalized Free Fields Polyakov, early '70s- skeleton expansions

CFT completely specified by 2-point function - rest vanish

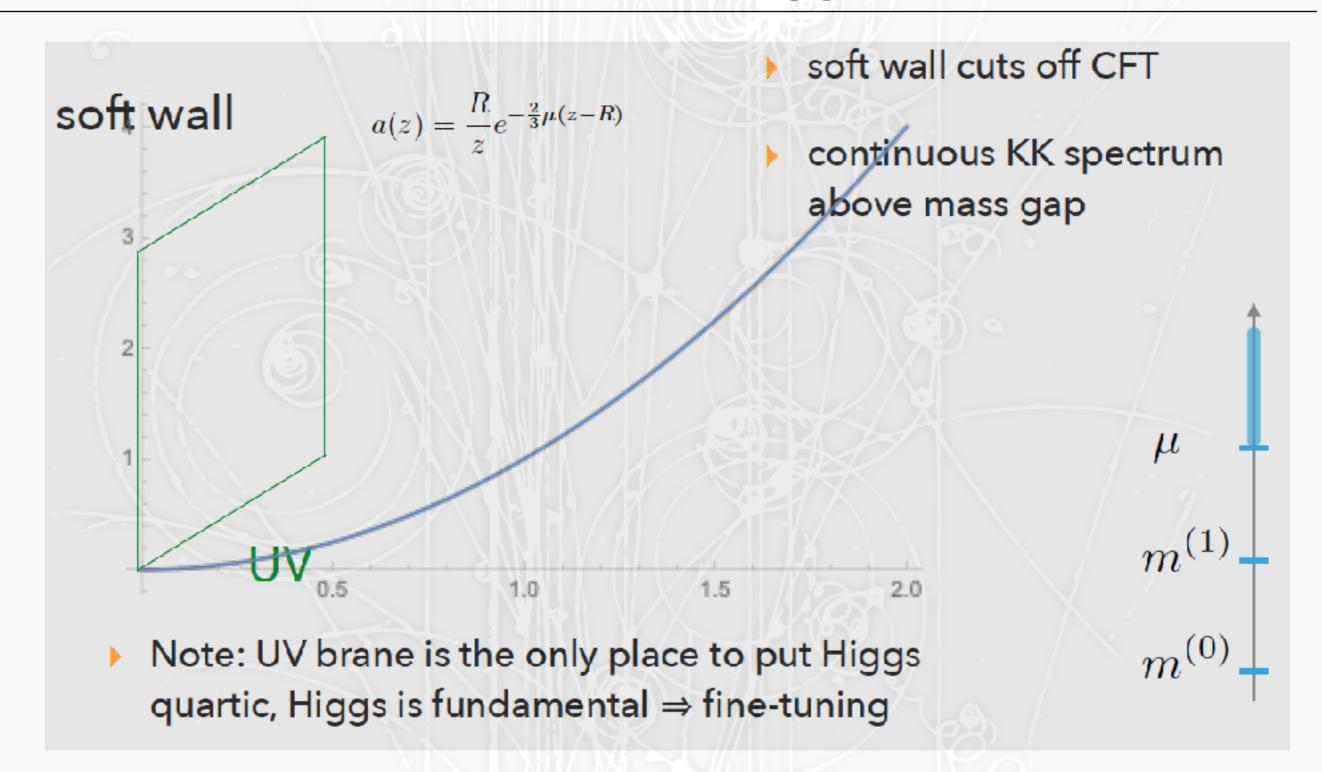
Scaling - 2-point function:
$$G(p^2) = -\frac{i}{\left(-p^2+i\epsilon\right)^{2-\Delta}}$$

Can be generated from: $\mathcal{L}_{\mathrm{GFF}} = -\hbar^{\dagger} \left(\partial^{2}\right)^{2-\Delta} \hbar$ hep-ph/0703260

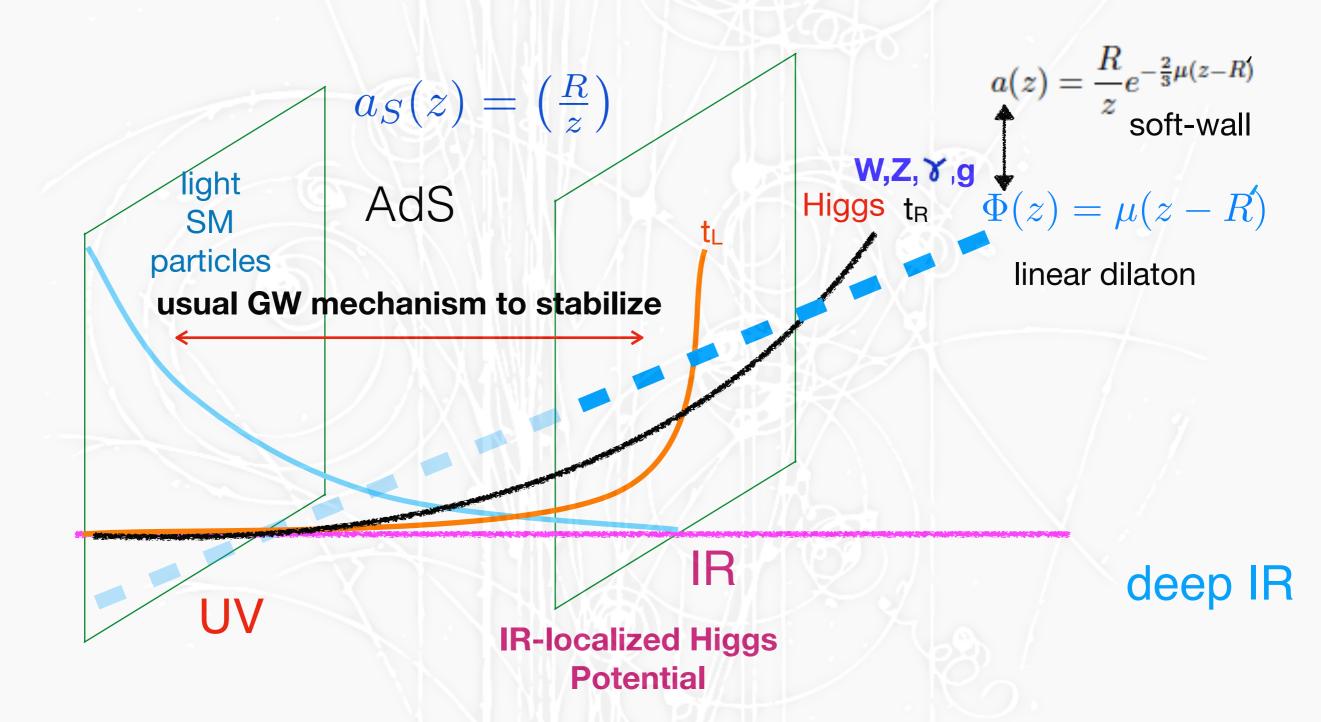
Branch cut starting at origin - spectral density purely a continuum:

$$G(p) \sim \int_{\mu^2}^{\infty} dM^2 \frac{\rho(M^2)}{p^2 - M^2}$$

Quantum Critical Higgs

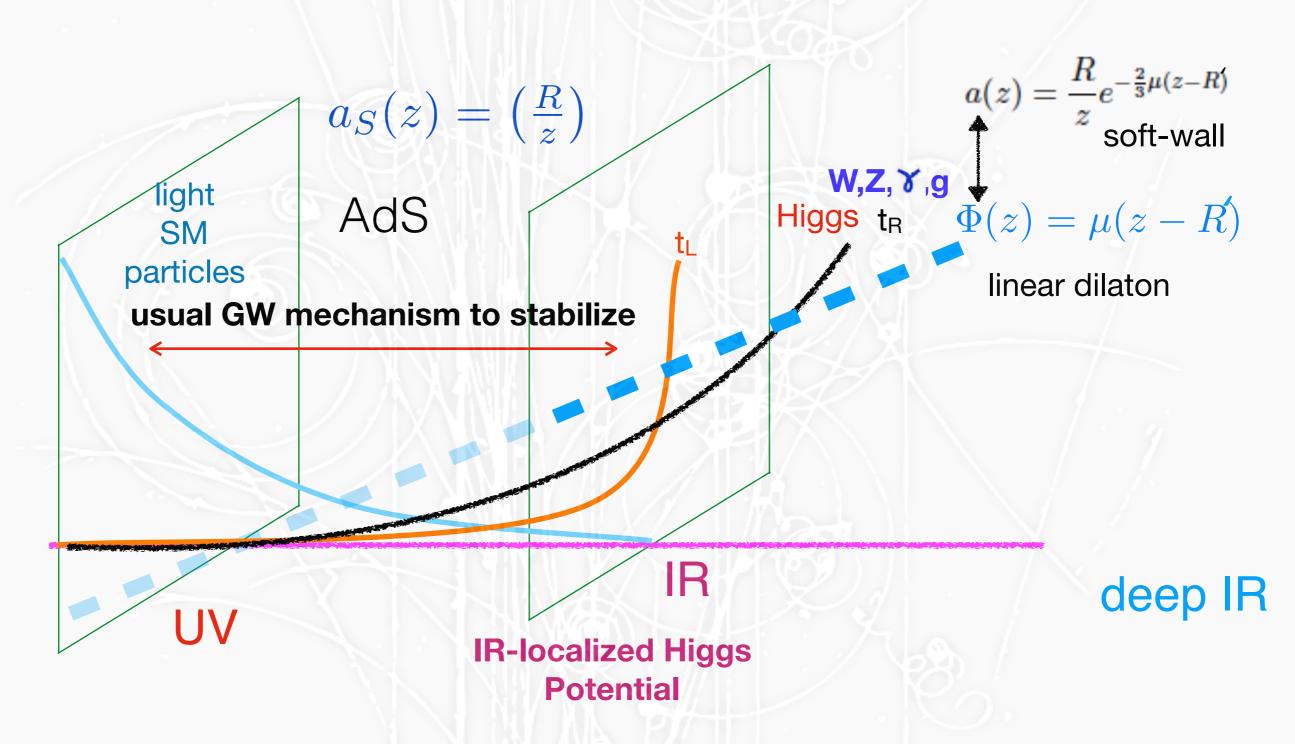


A Natural Quantum Critical Higgs: 5D linear dilaton



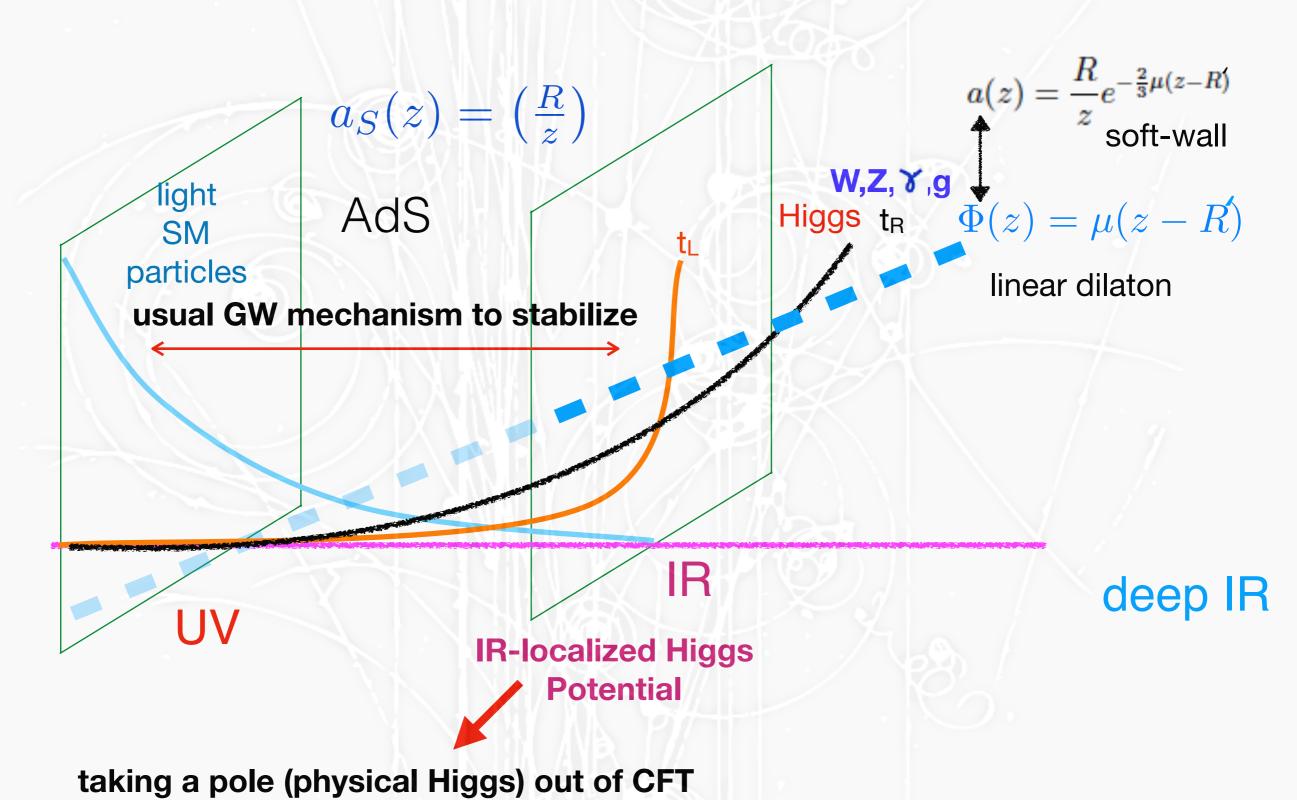
A Natural Quantum Critical Higgs: 5D linear dilaton

Higgs arises from CFT with a domain wall (IR brane)



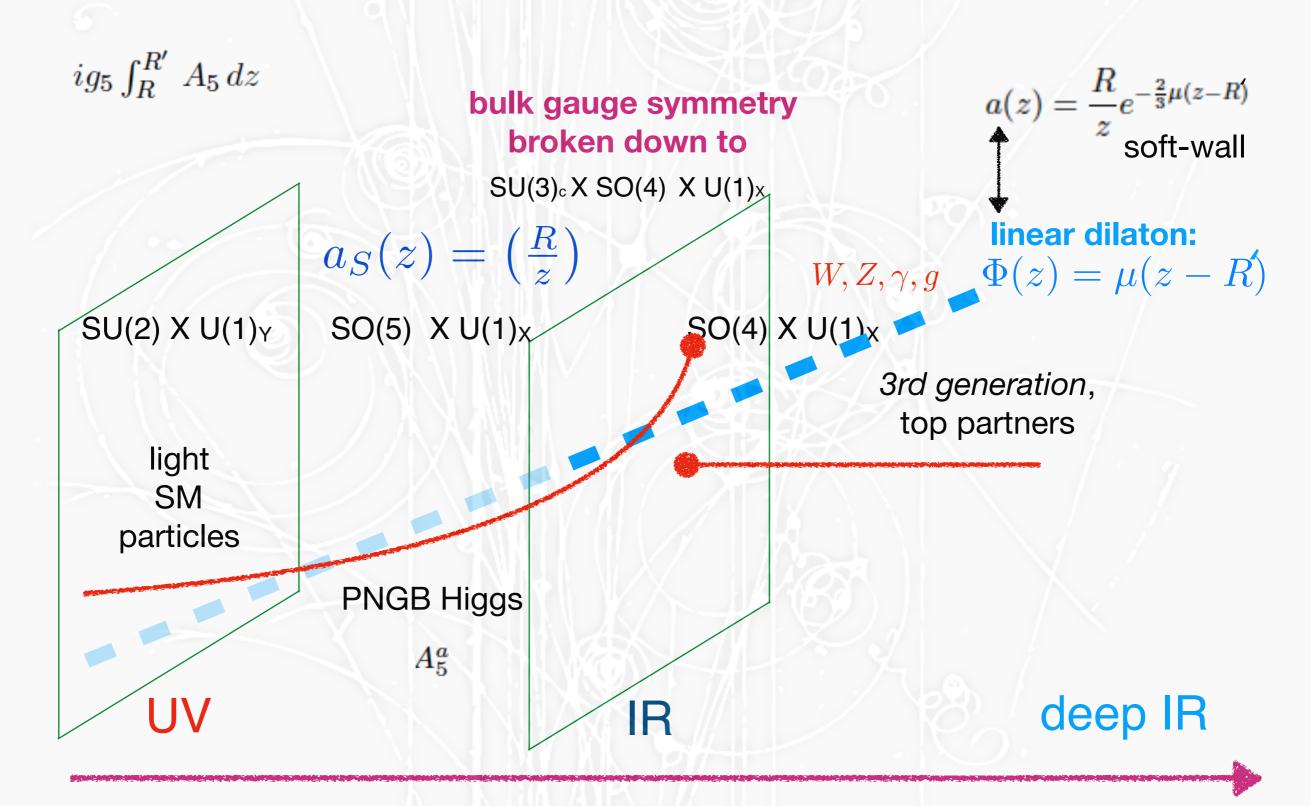
A Natural Quantum Critical Higgs: 5D linear dilaton

Higgs arises from CFT with a domain wall (IR brane)



=> arises as a composite bound state of CFT

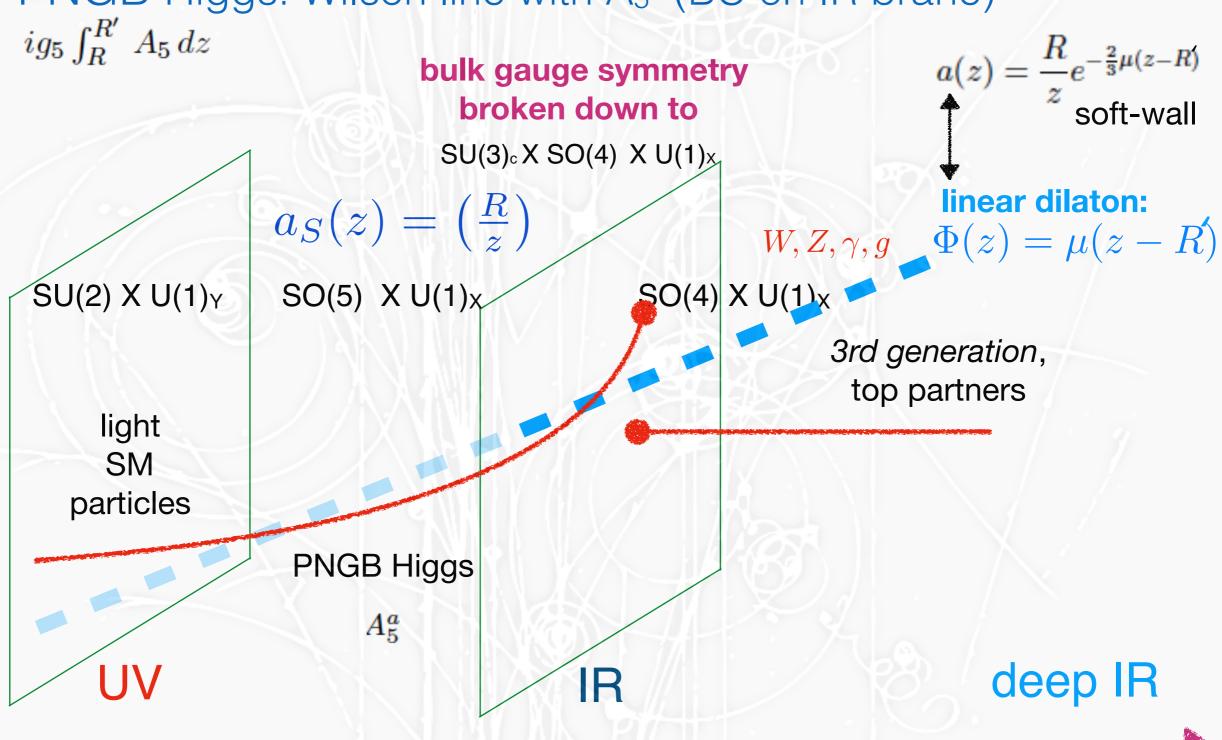
A "more" Natural model: Linear Dilaton



theory gets closed to a fixed point, but then gets a mass gap

A "more" Natural model: Linear Dilaton

PNGB Higgs: Wilson line with A₅ (BC on IR brane)



theory gets closed to a fixed point, but then gets a mass gap

Csaki, Lombardo, Lee, SL, Telem; to appear soon

- ♦ MCHM (Agashe, Contino, Pomarol) => continuum version
 - elementary fields which mix with the composite operators and the

form factors:
$$\mathcal{L}_{\text{top}} = \bar{t}_L \not p \Pi_L(p) t_L + \bar{t}_R \not p \Pi_R(p) t_R + \bar{t}_L M(p) t_R + h.c.$$

- 2-point function <tt> is given by

$$-i\Pi_t(p)=rac{1}{p-rac{M(p)}{\sqrt{\Pi_L(p)\Pi_R(p)}}}=\int dm^2rac{p+m}{p^2-m^2}
ho_t(m^2)$$

Csaki, Lombardo, Lee, SL, Telem; to appear soon

- ♦ MCHM (Agashe, Contino, Pomarol) => continuum version
 - elementary fields which mix with the composite operators and the

form factors:
$$\mathcal{L}_{\text{top}} = \bar{t}_L \not p \Pi_L(p) t_L + \bar{t}_R \not p \Pi_R(p) t_R + \bar{t}_L M(p) t_R + h.c.$$

- 2-point function <tt> is given by

$$-i\Pi_t(p)=rac{1}{p-rac{M(p)}{\sqrt{\Pi_L(p)\Pi_R(p)}}}=\int dm^2rac{p+m}{p^2-m^2}
ho_t(m^2)$$

- non-local effective action: $S_{\text{eff}} = \int d^4x \, d^4y \, \bar{\psi}(x) (i \partial \!\!\!/ y - m) \Sigma(x-y) \psi(y)$

Csaki, Lombardo, Lee, SL, Telem; to appear soon

- ♦ MCHM (Agashe, Contino, Pomarol) => continuum version
 - elementary fields which mix with the composite operators and the

form factors:
$$\mathcal{L}_{\text{top}} = \bar{t}_L \not p \Pi_L(p) t_L + \bar{t}_R \not p \Pi_R(p) t_R + \bar{t}_L M(p) t_R + h.c.$$

- 2-point function <tt> is given by

$$-i\Pi_t(p)=rac{1}{p\!\!\!/-rac{M(p)}{\sqrt{\Pi_L(p)\Pi_R(p)}}}=\int dm^2rac{p\!\!\!/+m}{p^2-m^2}
ho_t(m^2)$$

- non-local effective action: $S_{\text{eff}} = \int d^4x \, d^4y \, \bar{\psi}(x) (i \partial_y - m) \Sigma(x - y) \psi(y)$

- gauge invariant way: $S_{\text{eff}} = \int \frac{d^4 p \, d^4 k}{(2\pi)^8} \, \bar{\psi}(k) (p - m) \Sigma(p^2) F(k - p, p)$

$$\rho_h = \frac{1}{\pi} \text{Im} \Sigma^{-1}$$
 $F(x,y) = \mathcal{P} \exp\left(-igT^a \int_x^y A^a \cdot dw\right) \psi(y)$

Continuum States Csaki, Lombardo, Lee, SL, Telem

◆ To describe the continuum (for example Weyl fermions)

$$\mathcal{L}_{\chi} = -i\bar{\chi}\bar{\sigma}^{\mu}p_{\mu}\chi \qquad \qquad \qquad \mathcal{L}_{\chi}^{\text{cont.}} = -i\bar{\chi}\frac{\bar{\sigma}^{\mu}p_{\mu}}{p^{2}G(p^{2})}\chi$$

♦ G proportional to the 2-point function

$$\langle \bar{\chi} \chi \rangle^{\text{cont}} = i \sigma^{\mu} p_{\mu} G(p^2)$$

Poles correspond to particles, branch cuts to continuum.

Characterized information written in terms of spectral density

$$G(p^2) = \int_0^\infty \frac{\rho(s)}{s - p^2 + i\epsilon} ds$$
, $\rho(s) = \frac{1}{\pi} \text{Im} G(s)$

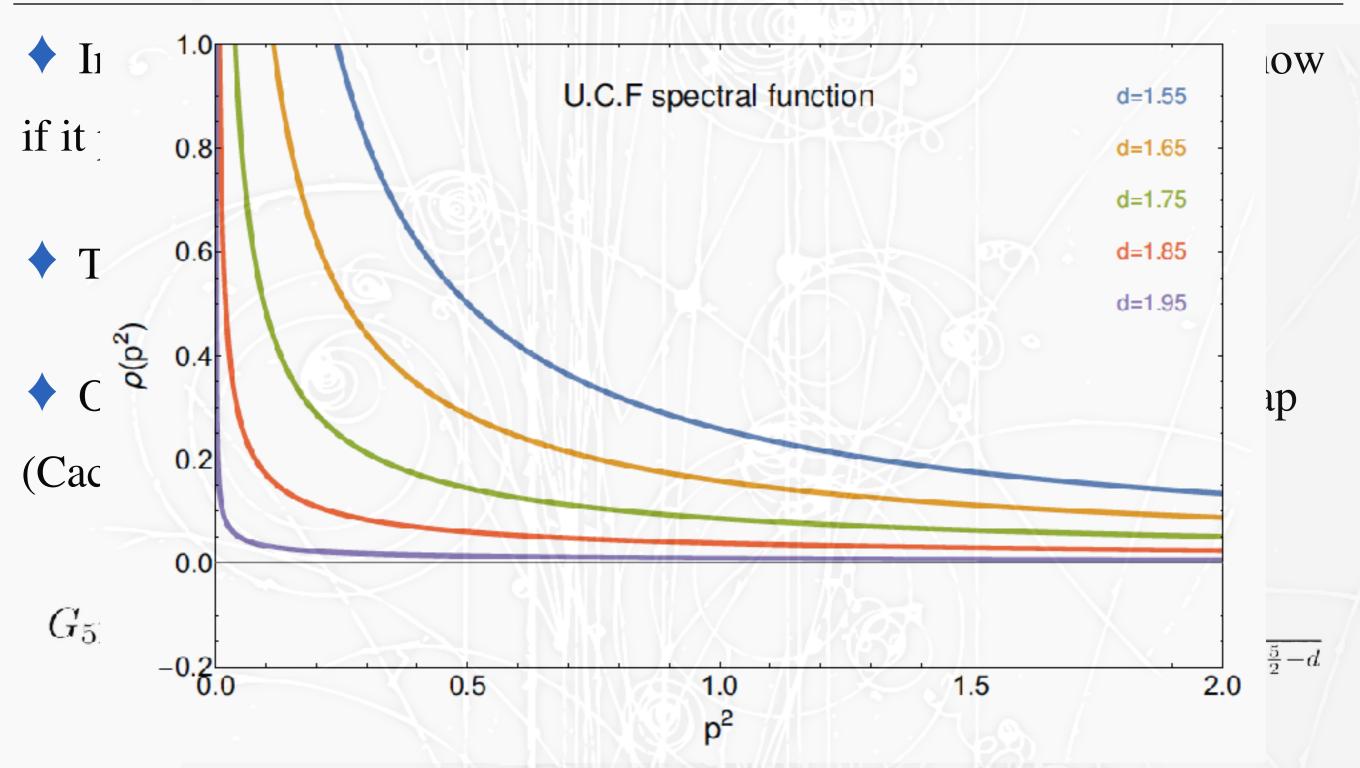
Unparticle Spectral densities (5D model)

- ♦ In principle could just input the ρ (s) spectral density, but don't know if it provides unitary, causal QFT
- ightharpoonup To make sure we don't use inconsistent ρ 's get them from 5D
- ♦ Old story: RS2 gives a model of continuum fermions without a gap (Cacciapaglia, Marandella, Terning)

$$G_{ ext{5D}}(p^2) \propto rac{\Gamma\left(rac{1}{2}-c
ight)}{4^c\Gamma\left(rac{1}{2}+c
ight)} rac{1}{(-p^2)^{rac{1}{2}-c}} \qquad \qquad G_{ ext{4D}}(p^2) \propto rac{\Gamma\left(rac{5}{2}-d
ight)}{4^{d-2}\Gamma\left(d-rac{3}{2}
ight)} rac{1}{(-p^2)^{rac{5}{2}-d}}$$

♦ Boundary RS2 Green's fn = 4D ungapped continuum fermion ("unparticle")

Unparticle Spectral densities (5D model)

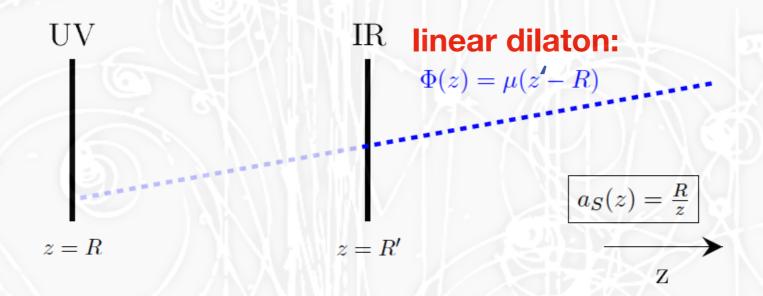


◆ Boundary RS2 Green's fn = 4D ungapped continuum fermion ("unparticle")

Gapped Continuum

Csaki, Lombardo, Lee, SL, Telem

- ♦ To introduce mass gap, we need to modify the 5D background
- ♦ Introduce linear dilaton into AdS



- $\blacklozenge \Phi(z)$ linear dilaton around the UV brane vanishing
 - won't have effect until IR $(z\sim 1/\mu)$
- ◆ Linear dilaton models the details of the IR dynamics (e.g. theory modified by dynamics of some composite mesons bellow IR scale, leading into gapped continuum)

Gapped Continuum

Csaki, Lombardo, Lee, SL, Telem

- ♦ Fermion EOM's in this background can be solved exactly
- Fermion Lagrangian in "string frame" $a_S(z) = \frac{R}{z}$

$$\mathcal{L}_S = e^{-2\Phi(z)} a_S^5(z) \left[a_S^{-1}(z) \mathcal{L}_{kin} + \frac{1}{R} \left(c + y \Phi(z) \right) \left(\psi \chi + \bar{\chi} \bar{\psi} \right) \right]$$

♦ Kinetic term conventional

bulk Yukawa coupling between the dilaton and the bulk fermion

$$\mathcal{L}_{\rm kin} = -i\bar{\chi}\bar{\sigma}^{\mu}p_{\mu}\chi - i\psi\sigma^{\mu}p_{\mu}\bar{\psi} + \frac{1}{2}\left(\psi\overleftrightarrow{\partial}_{5}\chi - \bar{\chi}\overleftrightarrow{\partial}_{5}\bar{\psi}\right)$$

• Go to Einstein frame to see physics best $a(z) = a_S(z) e^{-\frac{2}{3}\Phi(z)}$

$$\mathcal{L}_E = a^4(z)\mathcal{L}_{kin} + a^5(z)\frac{\hat{c}(z)}{R}\left(\psi\chi + \bar{\chi}\bar{\psi}\right)$$

• Effective mass parameter $\hat{c}(z) \equiv (c + y\Phi(z))e^{\frac{2}{3}\Phi(z)}$

Solutions to the bulk equations

Schrödinger form for the EOM

Csaki, Lombardo, Lee, SL, Telem

$$-\hat{\chi}''(z) + V_{\text{eff}}(z)\,\hat{\chi}(z) = p^2\hat{\chi}(z)\,, \qquad \hat{\chi}(z) = \left(\frac{R}{z}\right)^2 \chi(z)$$

Effective potential

$$V_{\text{eff}}(z) = \frac{c(c+1) + y\Phi(z)(2c + y\Phi(z) + 1) - yz\Phi'(z)}{z^2}$$

- Gapped continuum if $V_{\text{eff}}(z \to \infty) = \text{const} > 0$
- ♦ To achieve that, need a linear dilaton

$$\Phi(z) = \mu(z - R)$$
 with $\mu \sim 1 \,\text{TeV}$

 \blacklozenge will give: $V_{\rm eff}(z \to \infty) = y^2 \mu^2$

♦ 5D holographic model with a linear dilaton

$$S_f = \int d^5x \, a(z)^4 \bar{\Psi} \left(i \gamma^M \partial_M + 2i \frac{a'(z)}{a(z)} \gamma^5 - \frac{a(z)c(z)}{R} \right)$$

$$c(z) = (c + \mu(z - R)) e^{\frac{2}{3}\mu(z - R)}$$
$$-i\bar{\sigma}^{\mu}\partial_{\mu}\chi - \partial_{5}\bar{\psi} - 2\frac{a'}{a}\bar{\psi} + \frac{ac}{R}\bar{\psi} = 0$$
$$-i\sigma^{\mu}\partial_{\mu}\bar{\psi} + \partial_{5}\chi + 2\frac{a'}{a}\chi + \frac{ac}{R}\chi = 0.$$

$$\chi = g(z)\chi(z)$$

 $\bar{\psi}(z) = \bar{f}(z)\bar{\psi}(x)$

$$\begin{split} \chi(z) &= A\,a^{-2}(z)\;W\left(-\frac{c\mu y}{\Delta},c+\frac{1}{2},2\Delta z\right)\,,\\ \psi(z) &= A\,a^{-2}(z)\;W\left(-\frac{c\mu y}{\Delta},c-\frac{1}{2},2\Delta z\right)\frac{\mu y-\Delta}{p}\,, \end{split}$$

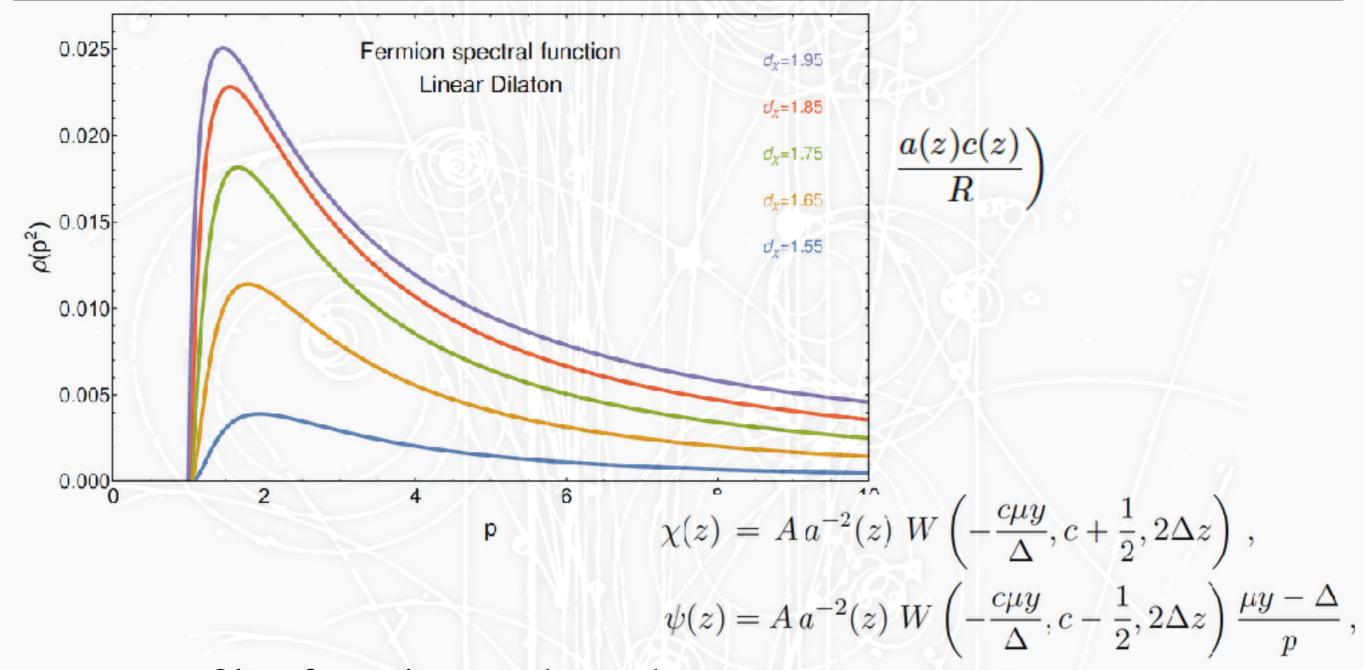
♦ 5D holographic model with a linear dilaton

$$\begin{split} S_f &= \int d^5x \, a(z)^4 \bar{\Psi} \left(i \gamma^M \partial_M + 2 i \frac{a'(z)}{a(z)} \gamma^5 - \frac{a(z)c(z)}{R} \right) \\ c(z) &= (c + \mu(z - R)) \, e^{\frac{2}{3}\mu(z - R)} \\ - i \bar{\sigma}^\mu \partial_\mu \chi - \partial_5 \bar{\psi} - 2 \frac{a'}{a} \bar{\psi} + \frac{ac}{R} \bar{\psi} = 0 \\ - i \sigma^\mu \partial_\mu \bar{\psi} + \partial_5 \chi + 2 \frac{a'}{a} \chi + \frac{ac}{R} \chi = 0. \\ \chi &= g(z) \chi(z) \\ \bar{\psi}(z) &= \bar{f}(z) \bar{\psi}(x) \end{split} \qquad \chi(z) = A \, a^{-2}(z) \, W \left(-\frac{c\mu y}{\Delta}, c + \frac{1}{2}, 2\Delta z \right) \, , \\ \psi(z) &= A \, a^{-2}(z) \, W \left(-\frac{c\mu y}{\Delta}, c - \frac{1}{2}, 2\Delta z \right) \frac{\mu y - \Delta}{n} \, , \end{split}$$

profile of continuum depends
 on the scaling dimension of the fields

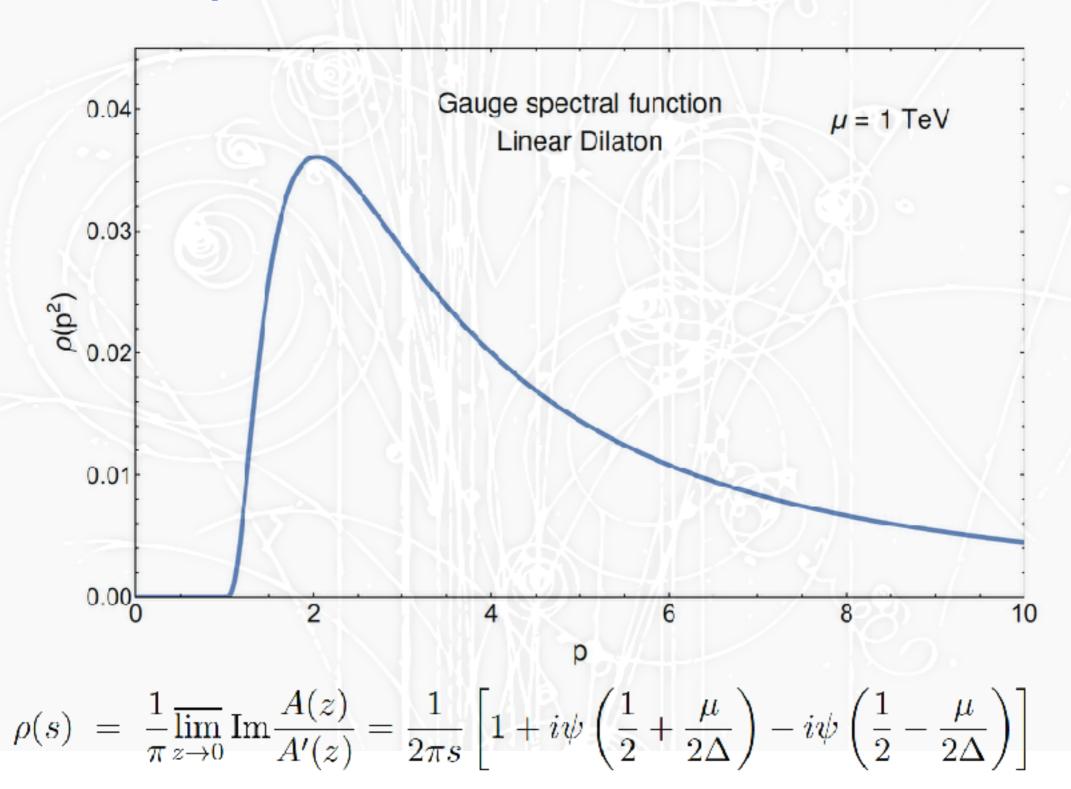
Gapped Continuum

Csaki, Lombardo, Lee, SL, Telem



profile of continuum depends
 on the scaling dimension of the fields

♦ Similar story for Gauge Boson



A Realistic Model

- ♦ Need the usual Composite Higgs setup in addition
- ♦ Bulk gauge group $G = SO(5) \times U(1)_X$ \longrightarrow $SO(4) \times U(1)_X$ breaking on IR brane via BCs
- On UV brane, $G = SO(5) \times U(1)_X$ \longrightarrow $SU(2)_L \times U(1)_Y$ $Y = T_R^3 + X$
- ♦ Wilson line for Higgs: $ig_5 \int_R^{R'} A_5 dz$ (No other physical Wilson line beyond IR brane)
- Bulk fermions

$$Q_{L}(\mathbf{5})_{\frac{2}{3}} \rightarrow q_{L}(\mathbf{2})_{\frac{1}{6}} + \tilde{q}_{L}(\mathbf{2})_{\frac{7}{6}} + y_{L}(\mathbf{1})_{\frac{2}{3}},$$

$$T_{R}(\mathbf{5})_{\frac{2}{3}} \rightarrow q_{R}(\mathbf{2})_{\frac{1}{6}} + \tilde{q}_{R}(\mathbf{2})_{\frac{7}{6}} + t_{R}(\mathbf{1})_{\frac{2}{3}},$$

$$B_{R}(\mathbf{10})_{\frac{2}{3}} \rightarrow q'_{R}(\mathbf{2})_{\frac{1}{6}} + \tilde{q}'_{R}(\mathbf{2})_{\frac{7}{6}} + x_{R}(\mathbf{3})_{\frac{2}{3}} + y_{R}(\mathbf{1})_{\frac{7}{6}} + \tilde{y}_{R}(\mathbf{1})_{\frac{1}{6}} + b_{R}(\mathbf{1})_{-\frac{1}{3}}$$

A Realistic Model

♦ To generate Yukawa couplings, need localized mass terms

$$S_{\rm IR} = \int d^4x \sqrt{g_{\rm ind}} \left[M_1 \bar{z}_L t_R + M_4 \left(\bar{q}_L q_R + \bar{\tilde{q}}_L \tilde{q}_R \right) + M_b \left(\bar{q}_L q_R' + \bar{\tilde{q}}_L \tilde{q}_R' \right) \right]$$

♦ A realistic benchmark point

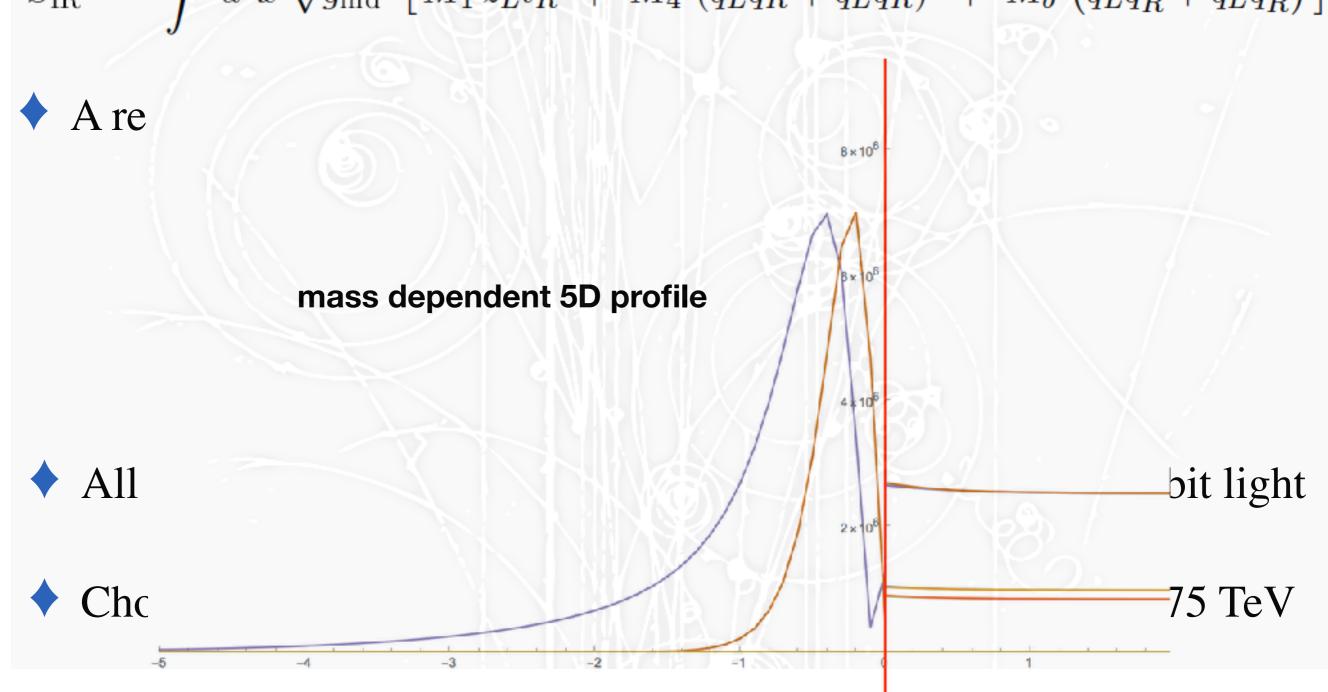
$$R/R' = 10^{-16}$$
, $1/R' = 2.81$ TeV, $\mu = 1$ TeV, $y = 1.75$, $r = 0.975$, $\sin \theta = 0.39$, $c_Q = 0.2$, $c_T = -0.22$, $c_B = -0.03$, $M_1 = 1.2$, $M_4 = 0$, $M_b = 0.017$.

- ♦ All SM parameters correctly reproduced with top slightly a bit light
- ♦ Choose safe point where gauge cont. at 1 TeV, fermion at 1.75 TeV

A Realistic Model

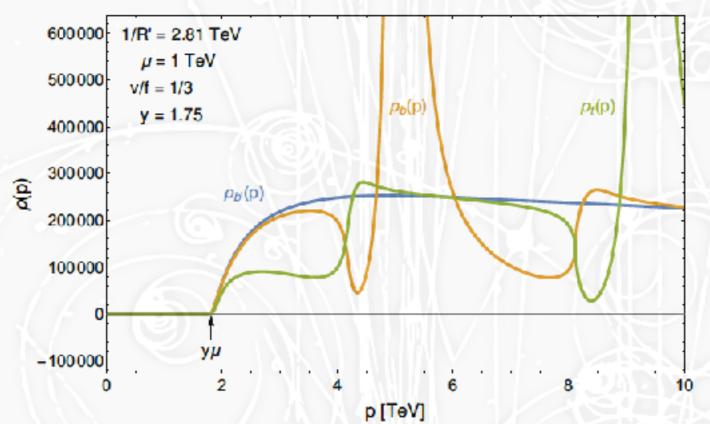
♦ To generate Yukawa couplings, need localized mass terms

$$S_{\rm IR} = \int d^4x \sqrt{g_{\rm ind}} \left[M_1 \bar{z}_L t_R + M_4 \left(\bar{q}_L q_R + \bar{\tilde{q}}_L \tilde{q}_R \right) + M_b \left(\bar{q}_L q_R' + \bar{\tilde{q}}_L \tilde{q}_R' \right) \right]$$

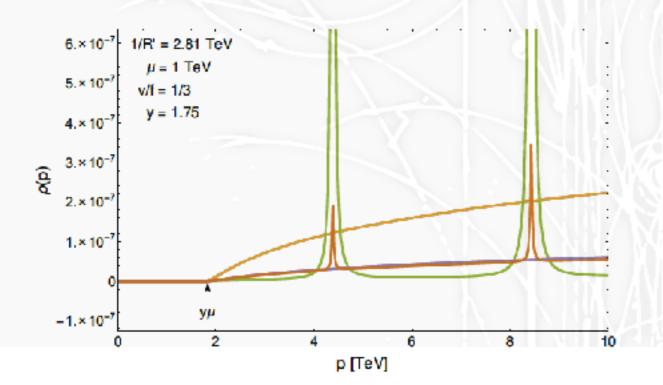


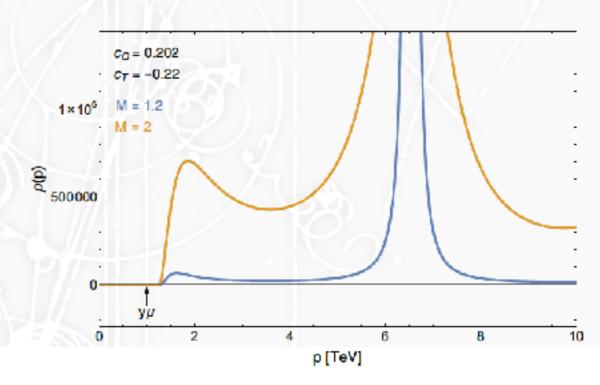
Fermionic Spectrum

♦ Fermion spectral densities. 3rd generation all very broad



Exotic top partners- model dependent, could be probed as resonance at 100TeV collider

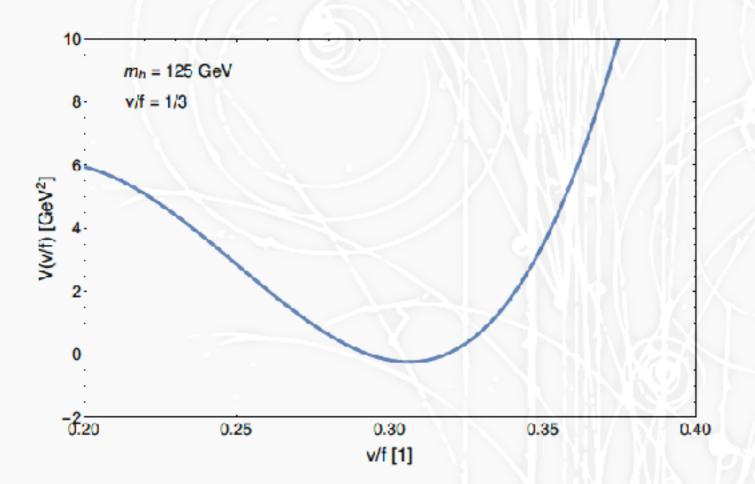




Csaki, Lombardo, Lee, SL, Telem; to appear soon

$$ightharpoonup Higgs Potential: V(h) = \frac{3}{16\pi^2} \int dp \, p^3 \left[-4 \sum_{j=1}^{20} \log G_{f_j}(ip) + \sum_{k=1}^{4} \log G_{g_k}(ip) \right]$$

tuning =
$$\left[\max_{i} \frac{d \log v}{d \log p_{i}} \right]^{-1}$$
 $p_{i} \in \{R, R', \mu, r, \theta, y, c_{Q}, c_{T}, c_{B}, M_{1}, m_{4}, M_{d}\}$



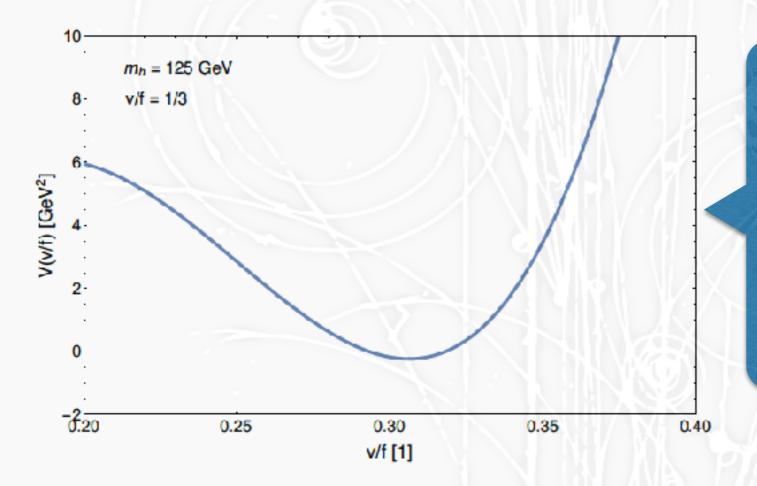
$$R/R' = 10^{-16}$$
, $1/R' = 2.81$ TeV, $\mu = 1$ TeV, $y = 1.75$, $r = 0.975$, $\sin \theta = 0.39$, $c_Q = 0.2$, $c_T = -0.22$, $c_B = -0.03$, $M_1 = 1.2$, $M_4 = 0$, $M_b = 0.017$.

fermion continuum starts at $y\mu=1.75\,\mathrm{TeV}$

Csaki, Lombardo, Lee, SL, Telem; to appear soon

$$ightharpoonup Higgs Potential: V(h) = \frac{3}{16\pi^2} \int dp \, p^3 \left[-4 \sum_{j=1}^{20} \log G_{f_j}(ip) + \sum_{k=1}^{4} \log G_{g_k}(ip) \right]$$

tuning =
$$\left[\max_{i} \frac{d \log v}{d \log p_{i}} \right]^{-1}$$
 $p_{i} \in \{R, R', \mu, r, \theta, y, c_{Q}, c_{T}, c_{B}, M_{1}, m_{4}, M_{d}\}$



→ usual 1% tuning

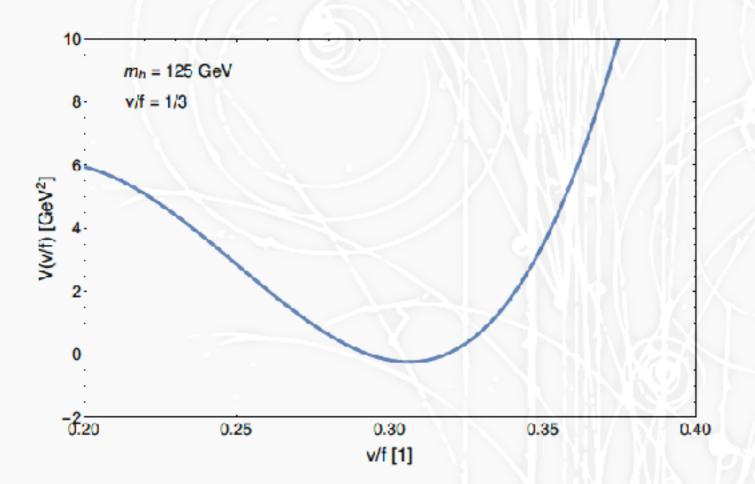
with our conservative choice of parameters

fermion continuum starts at $y\mu=1.75\,\mathrm{TeV}$

Csaki, Lombardo, Lee, SL, Telem; to appear soon

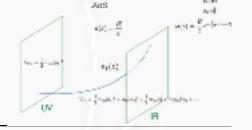
$$ightharpoonup Higgs Potential: V(h) = \frac{3}{16\pi^2} \int dp \, p^3 \left[-4 \sum_{j=1}^{20} \log G_{f_j}(ip) + \sum_{k=1}^{4} \log G_{g_k}(ip) \right]$$

tuning =
$$\left[\max_{i} \frac{d \log v}{d \log p_{i}} \right]^{-1}$$
 $p_{i} \in \{R, R', \mu, r, \theta, y, c_{Q}, c_{T}, c_{B}, M_{1}, m_{4}, M_{d}\}$

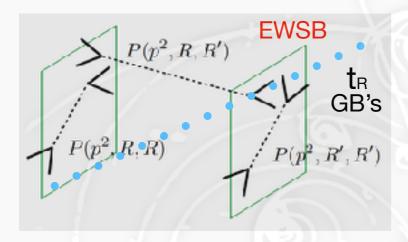


$$R/R' = 10^{-16}$$
, $1/R' = 2.81$ TeV, $\mu = 1$ TeV, $y = 1.75$, $r = 0.975$, $\sin \theta = 0.39$, $c_Q = 0.2$, $c_T = -0.22$, $c_B = -0.03$, $M_1 = 1.2$, $M_4 = 0$, $M_b = 0.017$.

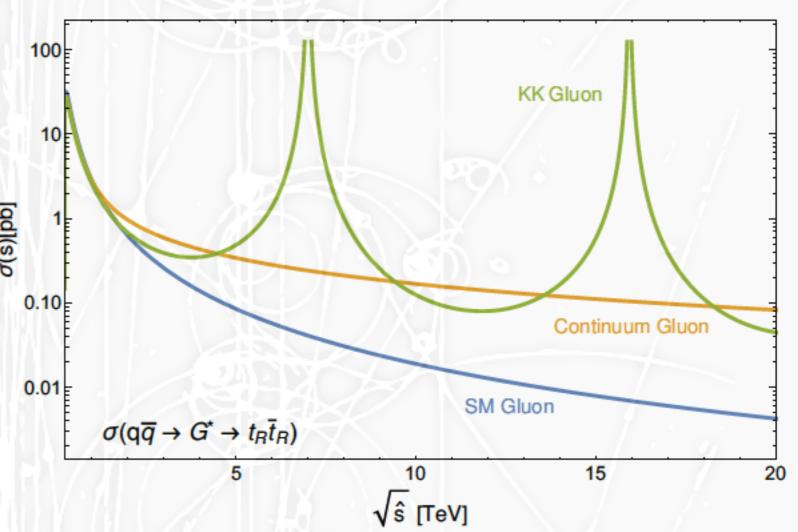
fermion continuum starts at $y\mu=1.75\,\mathrm{TeV}$

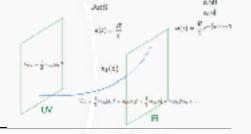


- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored ρ_c

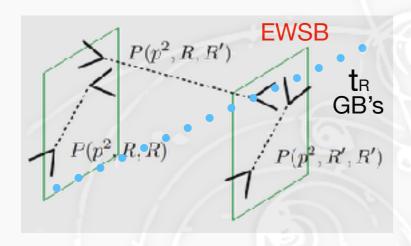


$$\mathcal{L}_{\mathrm{E}} = a(z) e^{-\frac{4}{3}\mu(z-R)} \left[\frac{1}{4} F^{MN} F_{MN} \right]$$





- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored ρ_c



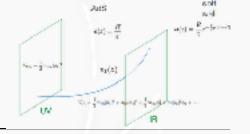
$$\mathcal{L}_{\mathrm{E}} = a(z) e^{-\frac{4}{3}\mu(z-R)} \left[\frac{1}{4} F^{MN} F_{MN} \right]$$

$$-\hat{A}''(z) + V_{\text{eff}}(z)\hat{A}(z) = p^2\hat{A}(z)$$

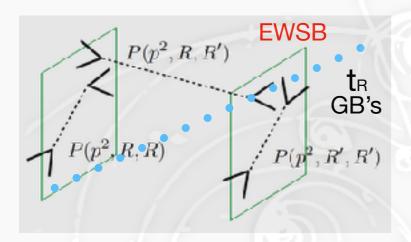
$$\hat{A}(z) = \sqrt{\frac{R}{z}} e^{-\mu(z-R)} A(z)$$

$$V_{\text{eff}}(z) = \mu^2 + \frac{\mu}{z} + \frac{3}{4z^2}$$





- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored ρ_c



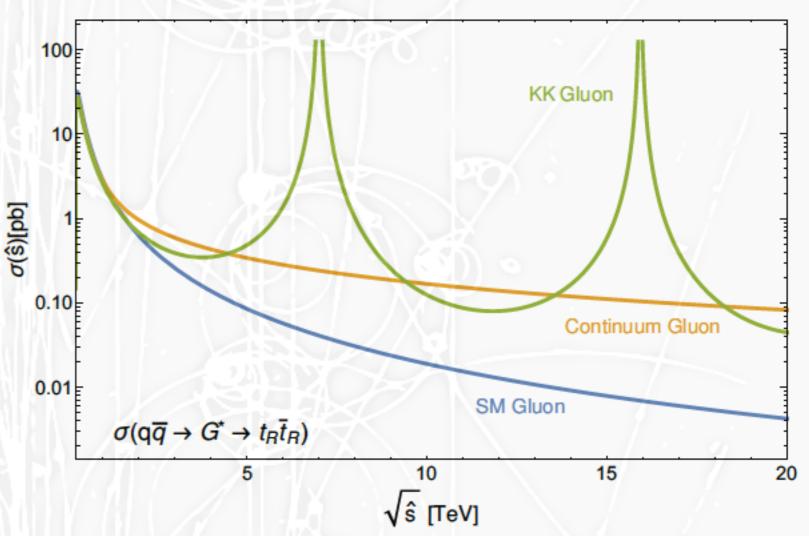
$$\mathcal{L}_{\mathrm{E}} = a(z) e^{-\frac{4}{3}\mu(z-R)} \left[\frac{1}{4} F^{MN} F_{MN} \right]$$

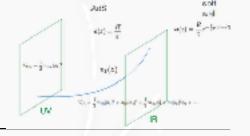
$$-\hat{A}''(z) + V_{\text{eff}}(z)\hat{A}(z) = p^2\hat{A}(z)$$

$$\hat{A}(z) = \sqrt{\frac{R}{z}} e^{-\mu(z-R)} A(z)$$

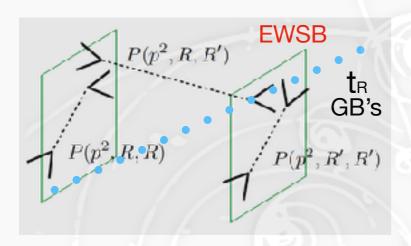
$$V_{\text{eff}}(z) = \mu^2 + \frac{\mu}{z} + \frac{3}{4z^2}$$

$$V_{\rm eff}(z \to \infty) = \mu^2$$





- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored ρ_c



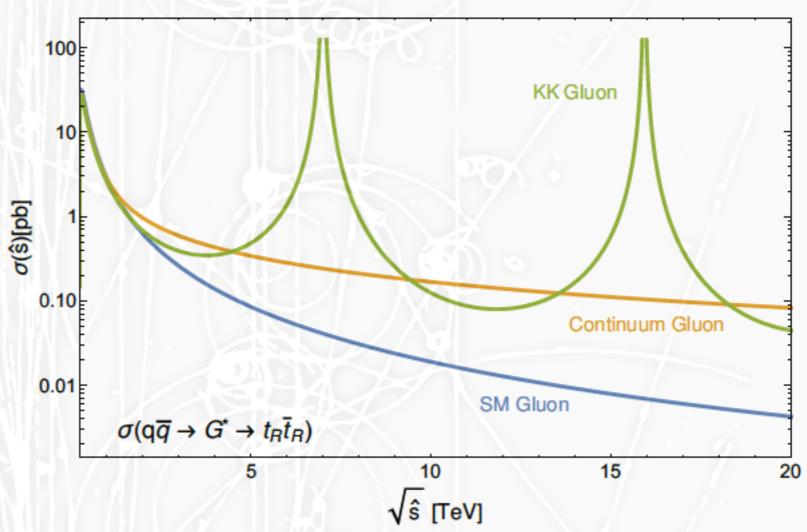
$$\mathcal{L}_{\mathrm{E}} = a(z) e^{-\frac{4}{3}\mu(z-R)} \left[\frac{1}{4} F^{MN} F_{MN} \right]$$

$$-\hat{A}''(z) + V_{\text{eff}}(z)\hat{A}(z) = p^2\hat{A}(z)$$

$$\hat{A}(z) = \sqrt{\frac{R}{z}} e^{-\mu(z-R)} A(z)$$

$$V_{\text{eff}}(z) = \mu^2 + \frac{\mu}{z} + \frac{3}{4z^2}$$

$$V_{\rm eff}(z \to \infty) = \mu^2$$



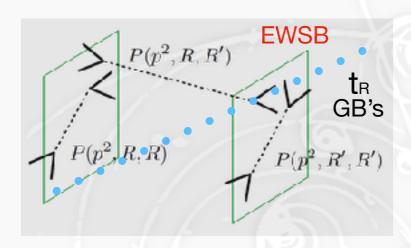
$$A(z) = A\sqrt{\frac{z}{R}} e^{\mu(z-R)} W\left(-\frac{\mu}{2\Delta}, 1; 2\Delta z\right) \qquad \Delta = \sqrt{\mu^2 - p^2}$$

$$\rho(s) \ = \ \frac{1}{\pi}\overline{\lim}_{z\to 0}\operatorname{Im}\frac{A(z)}{A'(z)} = \frac{1}{2\pi s}\left[1+i\psi\left(\frac{1}{2}+\frac{\mu}{2\Delta}\right)-i\psi\left(\frac{1}{2}-\frac{\mu}{2\Delta}\right)\right]$$



Csaki, Lombardo, Lee, SL, Telem

- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored ρ_c



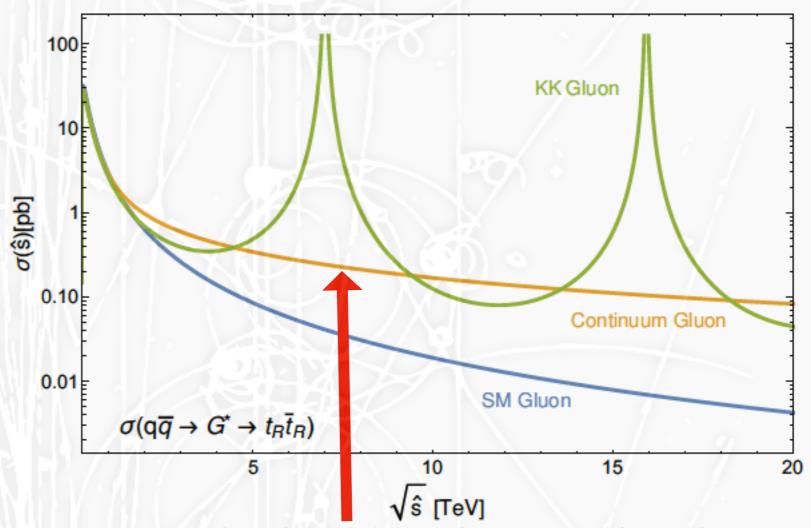
$$\mathcal{L}_{\mathrm{E}} = a(z) e^{-\frac{4}{3}\mu(z-R)} \left[\frac{1}{4} F^{MN} F_{MN} \right]$$

$$-\hat{A}''(z) + V_{\text{eff}}(z)\hat{A}(z) = p^2\hat{A}(z)$$

$$\hat{A}(z) = \sqrt{\frac{R}{z}} e^{-\mu(z-R)} A(z)$$

$$V_{\text{eff}}(z) = \mu^2 + \frac{\mu}{z} + \frac{3}{4z^2}$$

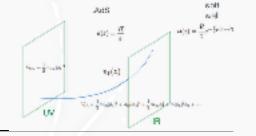
$$V_{\rm eff}(z \to \infty) = \mu^2$$



New Physics is hidden in the tail region!!

$$A(z) = A\sqrt{\frac{z}{R}} e^{\mu(z-R)} W\left(-\frac{\mu}{2\Delta}, 1; 2\Delta z\right) \qquad \Delta = \sqrt{\mu^2 - p^2}$$

$$\rho(s) \; = \; \frac{1}{\pi}\overline{\lim}_{z\to 0} \operatorname{Im} \frac{A(z)}{A'(z)} = \frac{1}{2\pi s} \left[1 + i\psi \left(\frac{1}{2} + \frac{\mu}{2\Delta} \right) - i\psi \left(\frac{1}{2} - \frac{\mu}{2\Delta} \right) \right]$$

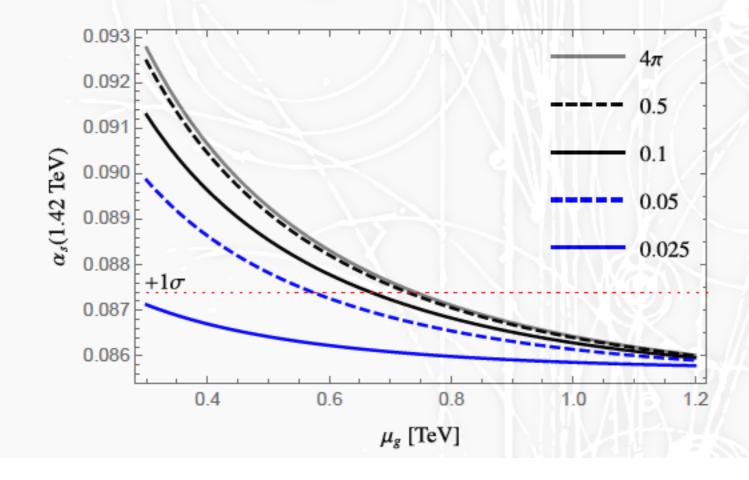


Csaki, Lombardo, Lee, SL, Telem

- New Physics (e.g. Top partner) appear solely as a continuum
 - KK gluon / colored octet example: running of strong coupling

e.g. CMS bound: α_s up to $Q \sim 1.42$ TeV

$$\frac{1}{g^2(Q)} = \frac{1}{g_5^2} \int_R^{1/Q} dz \, a(z) + \frac{1}{g_{\rm UV}^2} - \frac{b_{\rm UV}}{8\pi^2} \log\left(\frac{1}{RQ}\right)$$



$$\mu_g > 600 - 700 \text{ GeV}$$

Continuum Top Partners

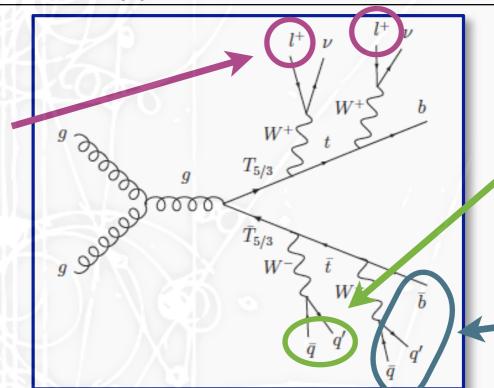
Csaki, Lombardo, Lee, SL, Telem; to appear soon

♦ Can we hide top partners at the LHC?

same-sign dileptons

$$\sigma(q\bar{q} \to \chi^{\dagger}\chi) = \frac{32\pi\alpha_s}{9s} \text{Im}\Pi(s)$$

$$i\Pi^{\mu\nu,ab}(q) = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)\delta^{ab}i\Pi(q^2)$$

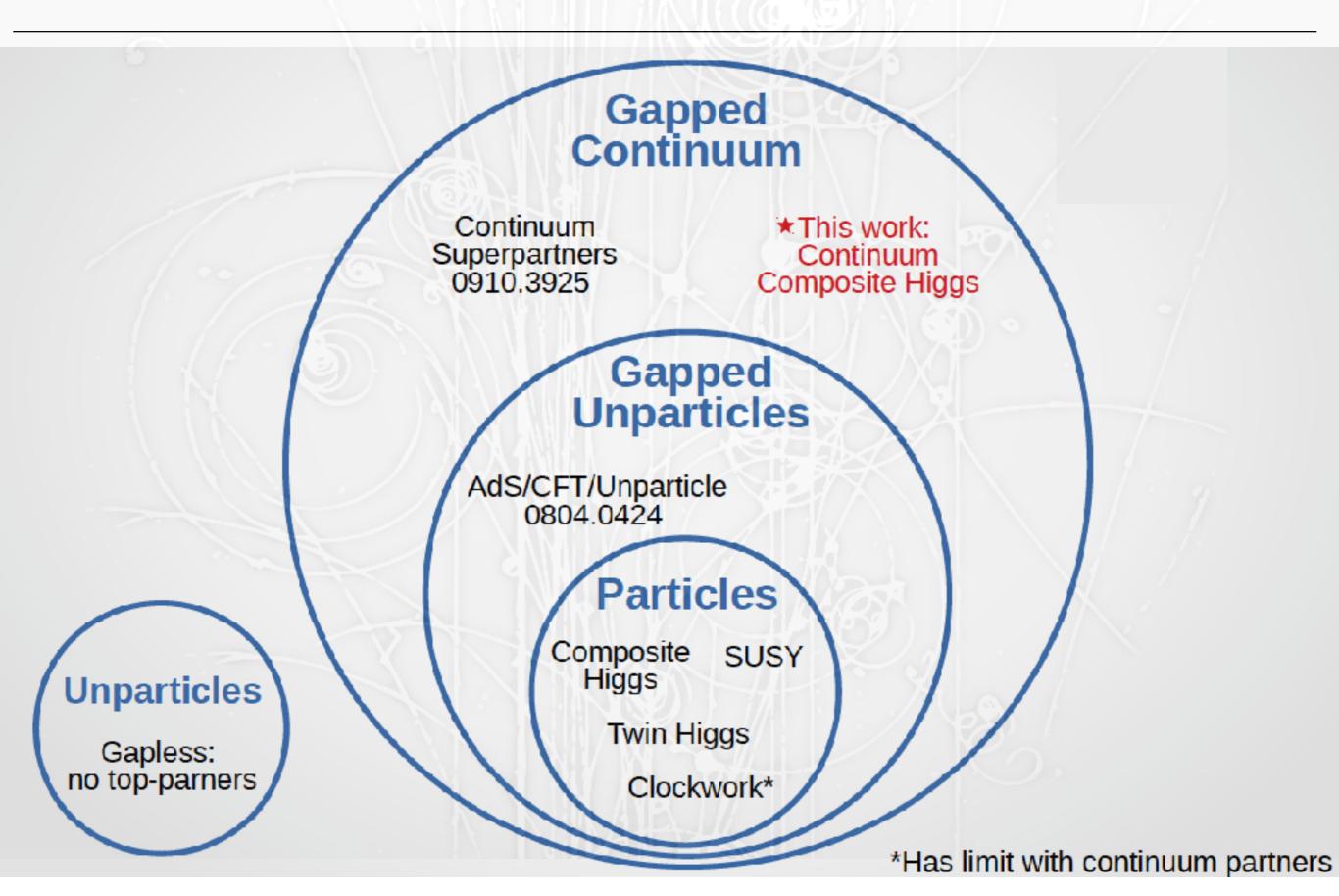


- depending on profile of the spectral density
- calculate top partner production for a given

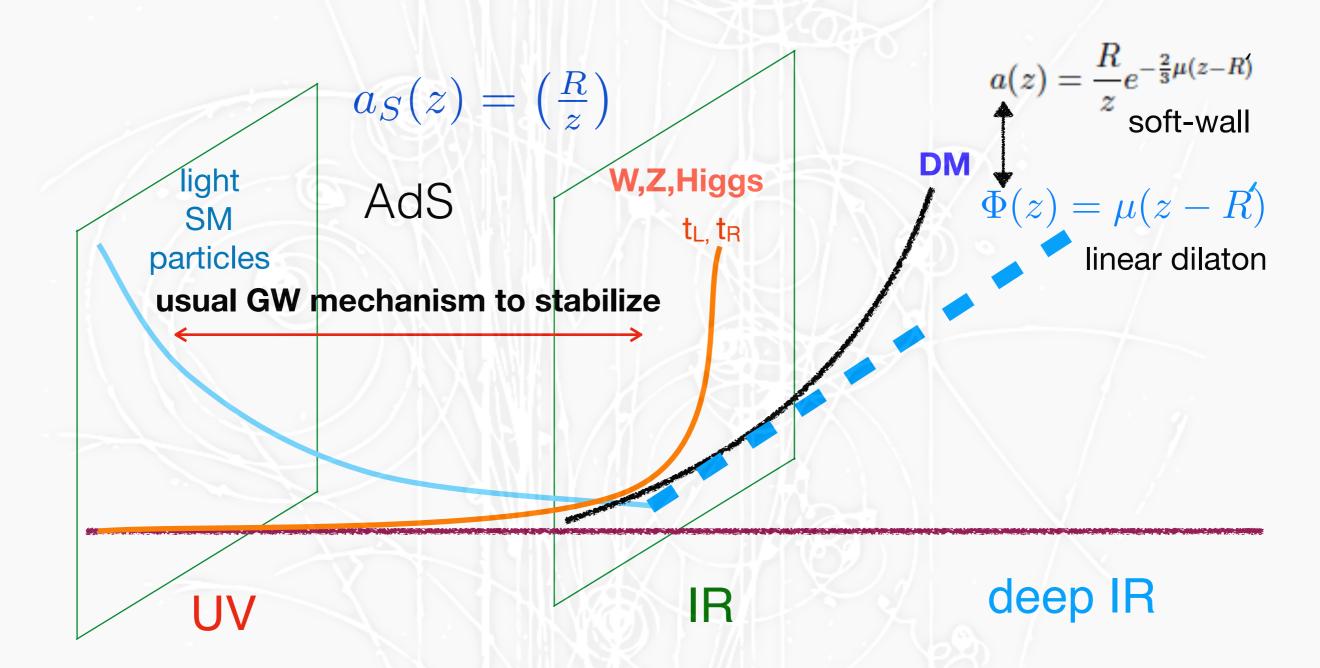
$$\sigma_{q\bar{q}\to T\bar{T}}=2\mathrm{Im}\left(\begin{array}{c} q\to \sqrt{2} \\ 000 \\ 000 \\ 000 \end{array}\right)$$

- need to calculate loop with continuum states (work in progress)

Short Summary



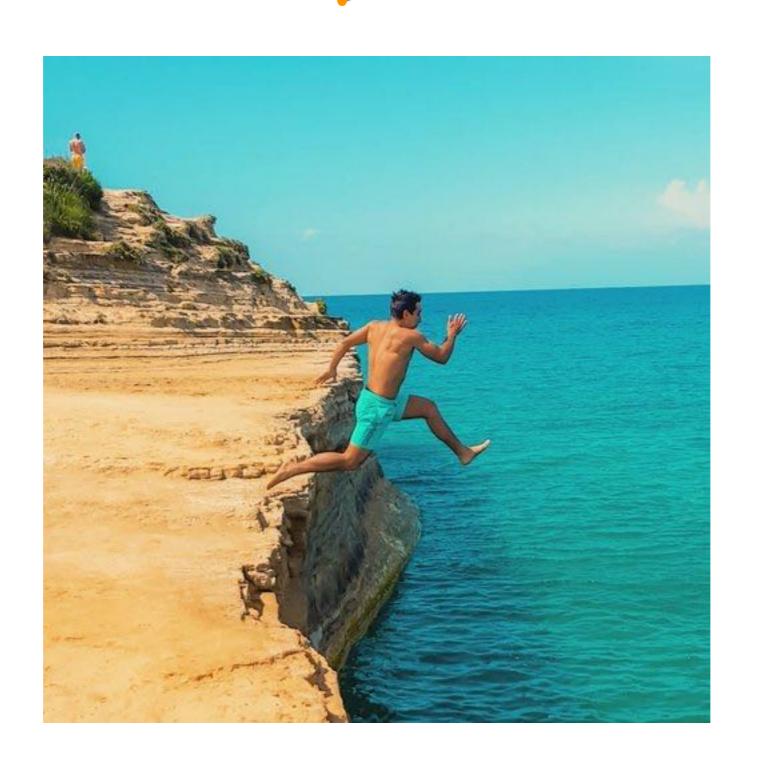
Continuum Dark Matter Csaki, SL, Xue, work in progress Charter



Summary

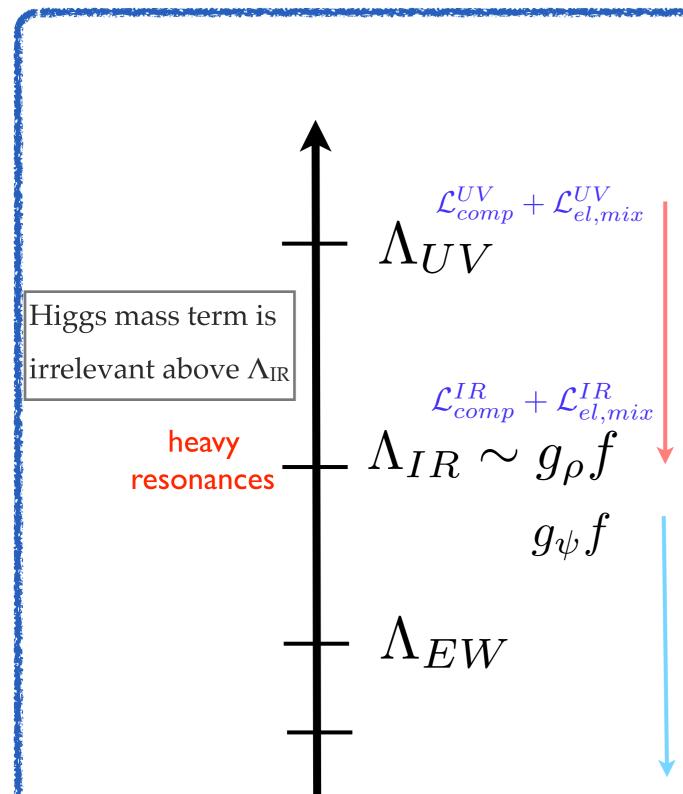
- ♦ Searches at the LHC have placed the naturalness paradigm under pressure
- ♦ We provided a natural model (continuum composite Higgs model), where top and gauge partners could be continuum states from the strong dynamics of confinement
- ♦ The new continuum states in this scenario cannot be described as Breit-Wigner resonances, drastically changing their LHC pheno
- No bounds from bump huntings, but still bounds from running of alpha, and pair production (work in progress).

EUXAPIGOTW



Composite Higgs

Georgi, Kaplan '84; Kaplan '91; Agashe, Contino, Pomarol '05; Agashe et al '06; Giudice et al '07; Contino et al '07; Csaki, Falkowski, Weiler '08; Contno, Servant '08; Mrazek, Wulzer '10; Panico, Wulzer '11; De Curtis, Redi, Tesi '11, Marzocca, Serone, Shu '12; Pomarol, Riva '12; Bellazini et al '12; De Simone et al '12, Grojean, Matsedonskyi, Panico "13,...



composite sector originated at some UV scale: e.g. assuming a conformal fixed point below UV, ...

strong dynamics

IR scale is dynamically generated f ⇔ a symmetry breaking scale

PNGB model often requires $g_{\psi}f \neq g_{\rho}f$ for less fine-tuning to get ~125 GeV higgs

weak dynamics

$$m_h^2 \sim \frac{N_c}{2\pi^2} \frac{v^2}{f^2} M_T$$