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MOTIVATION AND INTRODUCTION

ARE QUARKS AND LEPTONS ELEMENTA

@ proliferation of "fundamental” particles

@ wide range of masses, heavier copies are unstable and decay into (e, u, d)

“Who ordered that (muon)?” Isidor Rabi )
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MOTIVATION AND INTRODUCTION

ARE QUARKS AND LEPTONS ELEMENTA

@ proliferation of "fundamental” particles

@ wide range of masses, heavier copies are unstable and decay into (e, u, d)
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@ quark and leptons substructure
= excited leptons and quarks, e. g. e*, u*, d”

@ Original phenomenological refs
H. Terezawa (PRD 22, 1980); E. Eichten, K. D. Lane, M. E. Peskin (PRL 50, 1983);
H. Harari (Phys. Rep., 1984); N. Cabibbo, L. Maiani, Y. Srivastava (PLB 139, 1984);

U. Baur, M. Spira and P. M. Zerwas (PRD 42, 1990), ...

o Collider:
small spatial dimensions and large-mass states

LEP — HERA — Tevatron — LHC
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MOTIVATION AND INTRODUCTION

VE INTERACTIONS AND COMPOSITE FERMIONS

@ quark and leptons substructure = excited leptons and quarks, e. g. e*, u*, d*

@ interactions among lowest-lying and excited states (same constituents) with
effective operators

Al
C/ONTAAC‘T INTERAAC‘TIONS J. KUHN AND P. M. ZERWAS (1984); U. BAUR, M. SPIRA AND P. M. ZERWAS (1990)

@ underlying strong dynamics (preon interactions) at small energies
2
8« - 2
Lo = _2/:2JMJF" g, =A4m

3=y A+ ] A+ hee + (L — R)
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MOTIVATION AND INTRODUCTION

EFFECTIVE INTERACTIONS AND COMPOSITE FERMIONS

@ quark and leptons substructure = excited leptons and quarks, e. g. e*, u™, d*

@ interactions among lowest-lying and excited states (same constituents) with
effective operators

Al Q - ;G o o o
(GAUGE INTERACTIONS N. CABIBEO, L. MAIANL, Y. SRIVASTAVA (1984); U. BAUR, M. SPIRA AND P. M. ZERWAS (1990)

@ interaction mediated by SM gauge bosons, W}, B, A7,

@ magnetic-coupling to preserve electromagnetic current

1 - A, Y
Lo = ﬂfR a* gsf—S7GHV+gf%WHV+g/f/EBNV fL+ h.c.
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MOTIVATION AND INTRODUCTION

EFFECTIVE INTERACTIONS AND COMPOSITE FERMIONS

@ quark and leptons substructure = excited leptons and quarks, e. g. e*, u*, d*

@ interactions among lowest-lying and excited states (same constituents) with
effective operators

C‘}AUGE INTERACTIONS N. CaBiBBO, L. MAIANI, Y. SRIVASTAVA (1984); U. BAUR, M. SPIRA AND P. M. ZERWAS (1990)

0 q,l € lw= O,% and W*, 7% v € lw = 0,1 = excited fermions € lyy < g

@ exotic charges for excited fermions, Q = ¥ + Y /2

Qe = —2,Qqr = —4/3,+5/3




MOTIVATION AND INTRODUCTION

STATUS OF CURRENT SEARCHES (E

@ single production qg’ — ee* from ATLAS and CMS collaborations (Run 2)
1906.03204, JHEP 1904 (2019), EXO-18-013 PAS

@ exclusion regions in the (M, A) plane
— area below the experimental lines is excluded
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(*] Many other searches: cws collaboration [PRL 105 (2010), PRL 105 (2016), ...] ATLAS collaboration [PRL 105 (2010), PRD 85
(2012), PLB 754 (2016), ...], see Li Yuan talk for g
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STATUS OF CURRENT SEARCHES ITED NEUTRINOS)
@ single production qg" — ¢N* from CMS Coll. (PLB 775, 2017) J
<20 2 BT
ﬁ 18;* cMS lExnecled t10 7;
<16f [ epoceas2e N* CAN BE A MAJORANA PARTICLE
14 = . 2. g
i — Observed E @ possible source of baryogenesis via
10F 4 leptogenesis s. B. and 0. Panella (2017)
81 - —
o E F(N* = £+ X) £T(N" — £+ X)
aF E
2; A< MNe é
of i it | it
0 1 2 3 5
My, (Tev)

@ the excluded region is M > A

@ the limits on largest mass are quoted from exp-limits |95%CL with M* = A

@ Can we consider other bounds?
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STATUS OF CURRENT SEARCHES ITED NEUTRINOS)
@ single production qg’" — ¢N* from CMS Coll. (PLB 775, 2017) J
P —— ] N A L)
1o OV Poowoor -
<16 ez N* CAN BE A MAJORANA PARTICLE
14 E . 2
2E Tomenes 3 @ possible source of baryogenesis via
10F E leptogenesis s. B. and 0. Panelia (2017)
8 E _
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WHAT ABOUT PERTURBATIVE UNITARITY ON THE EFT OPERATORS?

@ the dimension-5 and dimension-6 operators ~ §/A

=> one may want to use the EFT in its region of validity

@ HOW? Imposing perturbative unitarity of the associated S-matrix = condition on (M, A, s)

STANDARD MODEL AND BEYOND



UNITARITY BOUND FOR

TOOLS FOR THE UNITARITY BOUND DERIVATION

@ expansion of the scattering amplitude in partial waves

Mie(0) =8y (2j+1)TL, (. (0)

J

@ optical theorem on the production process brings to (for inelastic scatterings)

VI8 = (m — mo)][8 — (m1 + mo)?]

> BTL <1, B= :
f#i
E. Endo and Y. Yamamoto, JHEP 1406 (2014); T. Corbett, O.J.P. E boli, M.C. Gonzalez-Garcia, PRD 96 (2017)
v
e focus on one process: qg’ — (N J
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UNITARITY BOUND FOR ¢ ACT AND GAUGE INTERACTION

DERIVATION OF THE BOUND

q 14 q 14 q ¢
w
= +
q N§ q N q N
g27l M 2
La = ;2 Gy PLgNy.PLl+he, n=1, g =4n
gf = v + gf
La =2l Not (0, WP+ he., F=1, EL~1
o= oA (0, W, )PL 7

® oc(qg — N*0) > oci(qq — N*£)

@ assume one production process (Cl o Gl) at a

a(pp — N e”) (fb)

time when computing the unitarity bound

m* (TeV)

S. BIONI ARD MO > BEYOND



Unr OUND FO

UNITARITY BOUND FOR CONTACT INTERACTIONS

@ M;_, ¢ is decomposed in terms of definite helicity states

@ helicity of each particle in the initial or final state is A\ = £1/2

(+)+)7 (+7_)7 (_a+)a (—7_)

1
i1 . sg M2 @ only j = 1 contributes from initial
(=H)=(=+) —  127A2 s state
i \/§Mgf M2 3 @ the massive N* gives heleicity flip
T )= () m =— = (+,4) in the final state

S

4

4 fon 2 2\ 2
8. 5(25 + M) M

> BiBA TP <1 = =\~ %) =1
f#i

CORFU
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UNITARITY BOUND FOR CONTACT AND GAUGE INTERACTION

UNITARITY BOUND FOR CONTACT INTERACTIONS

@ M;_, ¢ is decomposed in terms of definite helicity states

@ helicity of each particle in the initial or final state is A = +1/2

(+’+)’ (+7_)7 (_a"f_)a (_’_)

~

1
Ti=1 _ sg2 ( _ M2> 2 @ only j =1 contributes from initial
s

(=H==H T 127A2 5 state

T/ ==
(=H=4) " 10/27A2

S

VEM g2 M2\ 2 @ the massive N* gives heleicity flip
== = (+,4) in the final state

S. BionpINI (VSI) STANDARD MODEL AND BEYOND CORFU 9 /16
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UNITARITY BOUND FOR CONTACT INTERACTIONS

@ M;_, ¢ is decomposed in terms of definite helicity states

@ helicity of each particle in the initial or final state is A = +1/2

(+’+)’ (+7_)7 (_a"f_)a (_’_)

(=H==H T 127A2 5 state

1
Ti=1 _ sg2 ( _ K) 2 @ only j =1 contributes from initial
s

i

(=)= () 12v27A2 = (+,4+) in the final state

VEMg? ( B M2)§ @ the massive N* gives heleicity flip
5

2\ 3 2\ /4 2\ 1/2
/\2(5) (1+%) (1—%) , A>75TeV for V3=13TeV

CORFU 9 /16
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IMPLEMENTATION OF THE BOUND

@ 5§ = x1x25, v/s = machine c.o.m. energy

@ /5 is distributed in the interval [M, y/s] for the event signal

FIRST IMPLEMENTATION

@ N = 10° MC events with CalcHEP at Leading Order: /s = 13, 14, 27 TeV
@ LHE files passed to MadAnalyses to retrieve /3 for each event;
@ interface the event;(y/s, M*, A\) with
g5 (25 + M?) M\ 2
= 7 - <1
288m2N\* s -
CalcHEP LHE MadAnalysis YV event;
]Vumm = 105 \/g distribution F(l";"m(l"[a A, §) <1

S. BionpInI (VSI) STANDARD MODEL AND BEYOND
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IMPLEMENTATION OF THE BOUND

SECOND IMPLEMENTATION: SEMI-ANALYTIC CHECK

1 s ) 3 N )
U:;;/Nﬂds/gsfi<X,Q>6‘<;7Q>a(M,A,s)

_ 1 do = t f " \/gmax d\/:
FE = event fraction = = s
ova o dV3 Y 2

@ the unitarity bound provides the integration boundary v/smax(M,A,s) < s

M=2 TeV, A=6 TeV

5"2=13 TeV ' '
12 / 0.5
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Al
8 "
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REsuLTS

REsuLTs FOR N* AT LHC RuN 2

A (TeV)

Excited Majorana neutrino (Run 2)
T T

————— ceqq 2.3 '

Unitarity

M (TeV)

@ Currently in PLB and arXiv
Erratum ready for submission

Excited Majorana neutrino (Run 2)

ceqq 2.3 "

Unitarity

A (TeV)

@ Dashed line are observed limits on data from CMS Coll. (PLB 775, 2017),

@ purple lines (100%, 95%, 50%) stable against implementation 1 and 2




REsuLTS

REsuLTs FOR N* AT LHC RuN 2

Excited Majorana neutrino (Run 2)
T T T T

12 ]
™ @ saturation of the bound for large A
101 \\\ ——=== ceqq 2.3 b
o @ rather high sensitivity to event fraction
Unitarity
1 @ special thanks to Andrey Kamenshchikov and
N T Oleg Zenin (ATLAS collaboration)

@ M < 4.6 TeV with M < A

@ M < 3.6 TeV with 100% unitarity

@ M <777 TeV with 95% unitarity

v
M (TeV)
@ Dashed line are observed limits on data from CMS Coll. (PLB 775, 2017),
@ purple lines (100%, 95%, 50%) stable against implementation 1 and 2 J
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REsuLTS

REsuLTs FOR N* AT HLL- AND HE-LHC

A (TeV)

@ Dashed lines expected limits from CMS Coll. (PLB 775, 2017)

Excited Majorana neutrino (HE-LHC)

Excited Majorana neutrino (HL-LHC) 50
a0f T, T T T T 5| U T T T T T
~ \
\
N \
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~
S 40| Y d
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@ Visible dependence on the machine nominal energy /s = 14, 27 TeV




REsuLTS

RESuLTS FOR e* AT LHC RUN 2

Excited charged lepton (Run 2)

30 — T T
@ M <4 TeVand M <55 TeV )
2sf 1
' ] @ unitarity bound 100%
200 1 1
PN rso et ] M < 3.4 TeV and M < 5.0 TeV
. cy 35. 1 )
E < eeqq 7.4 7]
< Unitarity @ unitarity bound 95%
M <4 TeVand M < 6.0 TeV
v
@ unitarity bound 50%
M <5 TeVand M < 7.0 TeV
o
M (TeV)
@ Dashed line from CMS Coll. JHEP 1904 (2019) and CMS-PAS-EXO-18-013
@ the bound is applicable because of the same vertex for the Cl process J

S. BIONDINI S. STANDARD MODEL AND ] CORFU



CONCLUSIONS AND OUTLO

SUMMARY AND FUTURE WORK

@ Effective composite models: unitarity bound for dimension-5 and dimension-6 (Gl and CI)

@ Focus on excited neutrinos (and charged leptons)
@ Two implementations and agreement with experimental colleagues

= additional way to look at the constraints on (M, A) parameter space

Excited charged lepton (Run 2)

Excited Majorana neutrino (Run 2) .

12
T 251 1
10 R ceqq 2.3 b
\
N, ——— Unitarity ]
. 8 e . : N e cey35.9 b7
E M E P A N ceqf 714 7]
2 100% S |
6 .
- ~o = ——— Unitarity




@ the unitarity bound and M > A can be used simultaneously

— adopt the stronger of the two?

@ agnostic on the UV completion, allow M > A and keep only the unitarity bound

— largest M according to the required events fraction (e.g. 100%, 95%, 50%)

@ estimate the theoretical error on the bound, look at the 5/A expansion

|97rc'(6TeV)1

=f

@ apply the unitarity bounds to other
searches = excited quarks

Couplings [f

CMS: PLB 738 (2014); JHEP 1601 (2016); PLB 781 (2018)

— - Expected excluded q" region
[ Observed excluded q” region
Il 1 1 Il 1
1 15 2 25 3 35
q* Mass [TeV]
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