The swampland and \underline{SUSY} 0000000

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

ション ふゆ マ キャット しょう くりく

Weak gravity (and other conjectures) with broken supersymmetry

Quentin Bonnefoy

DESY Hamburg

based on Nucl.Phys.B 947 (2019) 114738 and unpublished work, in collaboration with E. Dudas and S. Lüst

> Corfu Summer Institute September 12th, 2019

The swampland and SUSY $\bullet 0000000$

Setup 0000 D1-D1 interactions and WGC 000000 Outlook 000

The swampland, the weak gravity conjecture and SUSY breaking

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Consistent effective field theories: anomalies, unitarity, etc

The swampland and $\underline{SUSY}_{0000000}$

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

Consistent effective field theories: anomalies, unitarity, etc

When coupled to quantum gravity: a landscape and a swampland Vafa '05 (review: Palti '19)

Consistent effective field theories: anomalies, unitarity, etc

When coupled to quantum gravity: a landscape and a swampland Vafa '05 (review: Palti '19)

Swampland conjectures characterize the landscape

Consistent effective field theories: anomalies, unitarity, etc

When coupled to quantum gravity: a landscape and a swampland Vafa '05 (review: Palti '19)

Swampland conjectures characterize the landscape, ex:

no exact global symmetries see Banks, Seiberg '10
completeness of the charge lattice Polchinski '03
distance conjecture Ooguri, Vafa '06
weak gravity conjecture Arkani-Hamed, Motl, Nicolis, Vafa '06
no stable non-SUSY AdS Ooguri, Vafa '16
de Sitter conjecture Obied, Ooguri, Spodyneiko, Vafa '18

The swampland and SUSY 0000000	Setup 0000	D1-D1 interactions and WGC 000000	Outlook 000
Weak gravity co	onjecture:	Arkani-Hamed, Motl, Nicolis, Val	ä '06
For every gau	ige field, ther	e must exist a charged state	

such that $gQM_P \ge M$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation:

- enable extremal black holes to decay
- account for the absence of global symmetries in quantum gravity

ション ふゆ マ キャット しょう くりく

Motivation:

- enable extremal black holes to decay
- account for the absence of global symmetries in quantum gravity

One of the best motivated conjectures: arguments from BHs, holography, string theory...

ション ふゆ マ キャット しょう くりく

The	swampland	and	SUSY
000	0000		

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

Can be extended (multiple gauge fields, higher dimensions, scalar fields, p-forms...)

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

・ロト ・ 日 ・ モー・ モー・ うへぐ

Can be extended (multiple gauge fields, higher dimensions, scalar fields, *p*-forms...)

For p-forms in dimension d with a dilatonic gravity:

Arkani-Hamed, Motl, Nicolis, Vafa '06, Heidenreich, Reece, Rudelius '15

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

Can be extended (multiple gauge fields, higher dimensions, scalar fields, *p*-forms...)

For p-forms in dimension d with a dilatonic gravity:

Arkani-Hamed, Motl, Nicolis, Vafa '06, Heidenreich, Reece, Rudelius '15

For every *p*-form field, there must exist a charged (extended) object such that $e^2Q^2 \ge 8\pi G\left(\frac{\alpha^2}{2} + \frac{p(d-p-2)}{d-2}\right)T^2$

The swampland and SUSY	Setup	D1-D1 interactions and WGC 000000	Outlook
0000000	0000		000

In the superstring: BPS-states which saturate the WGC

In the superstring: BPS-states which saturate the WGC

With SUSY: brane-brane interactions

In the superstring: BPS-states which saturate the WGC

With SUSY: brane-brane interactions

Status of the (D-brane) WGC with SUSY?

The	swampland	and	SUSY
0000	0000		

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

With SUSY: cancellation of vacuum energy in string theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

With SUSY: cancellation of vacuum energy in string theory

With SUSY: non-vanishing (quintessence-like) exponential runaway potentials:

 $V\sim\Lambda^4 e^{-c\Phi}$

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

ション ふゆ マ キャット しょう くりく

With SUSY: cancellation of vacuum energy in string theory

With SUSY: non-vanishing (quintessence-like) exponential runaway potentials:

$$V \sim \Lambda^4 e^{-c\Phi}$$

Favored by the **de Sitter conjecture**:

Danielsson, Van Riet '18, Obied, Ooguri, Spodyneiko, Vafa '18

Every scalar potential V should verify $|\nabla V| \ge cV$, with c > 0 and $c = \mathcal{O}(1)$

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

ション ふゆ マ キャット しょう くりく

With SUSY: cancellation of vacuum energy in string theory

With SUSY: non-vanishing (quintessence-like) exponential runaway potentials:

$$V \sim \Lambda^4 e^{-c\Phi}$$

Favored by the **de Sitter conjecture**:

Danielsson, Van Riet '18, Obied, Ooguri, Spodyneiko, Vafa '18

Every scalar potential V should verify $|\nabla V| \ge cV$, with c > 0 and $c = \mathcal{O}(1)$

With SUSY: non-trivial compatibility tests of the swampland conjectures The swampland and $\overbrace{\text{SUSY}}^{\text{output}}$

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

In what follows:

a test of the WGC for the R-R 2-form in type I string theory with broken supersymmetry The swampland and $\overbrace{\text{SUSY}}^{\text{output}}$

Setup •000

D1-D1 interactions and WGC 000000

Outlook 000

The string setup

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ■ ● ○QQ

 $_{0 \bullet 00}^{\rm Setup}$

D1-D1 interactions and WGC 000000

Outlook 000

Type I string theory: unoriented type IIB

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Setup 0●00 Outlook 000

Type I string theory: unoriented type IIB

Massless spectrum: 10D $\mathcal{N} = 1$ supergravity with SO(32) gauge group

Setup	
0000	

ション ふゆ マ キャット しょう くりく

Type I string theory: unoriented type IIB

Massless spectrum: 10D $\mathcal{N} = 1$ supergravity with SO(32) gauge group

Unoriented worldsheets, ex: one-loop closed amplitude in 10-dimensional spacetime

$$\frac{1}{2}\mathcal{T} = \frac{1}{2}\# \int_{\mathcal{F}} \frac{d^2\tau}{\tau_2^6} \left| \frac{V_8 - S_8}{\eta^8} \right|^2(\tau) \\ \left[V_8 = \frac{\theta_3^4 - \theta_4^4}{2\eta^4} , \ S_8 = \frac{\theta_2^4 + \theta_1^4}{2\eta^4} \right]$$

Setup	
0000	

Type I string theory: unoriented type IIB

Massless spectrum: 10D $\mathcal{N} = 1$ supergravity with SO(32) gauge group

Unoriented worldsheets, ex: one-loop closed amplitude in 10-dimensional spacetime

$$\begin{split} \frac{1}{2}\mathcal{T} = &\frac{1}{2} \# \int_{\mathcal{F}} \frac{d^2\tau}{\tau_2^6} \left| \frac{V_8 - S_8}{\eta^8} \right|^2(\tau) \\ &+ \\ \mathcal{K} = &\frac{1}{2} \# \int_0^\infty \frac{d\tau_2}{\tau_2^6} \frac{V_8 - S_8}{\eta^8}(2i\tau_2) \end{split} \begin{bmatrix} V_8 = \frac{\theta_3^4 - \theta_4^4}{2\eta^4} , \ S_8 = \frac{\theta_2^4 + \theta_1^4}{2\eta^4} \end{bmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Setup 00●0 D1-D1 interactions and WGC 000000

Outlook 000

Supersymmetry breaking: Scherk-Schwarz mechanism

Scherk, Schwarz '79

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Supersymmetry breaking: Scherk-Schwarz mechanism

Scherk, Schwarz '79

Generally: mass shifts via twisted boundary conditions for a theory defined on a compact manifold $\substack{\text{Setup}\\0000}$

D1-D1 interactions and WGC 000000

Outlook 000

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

Generally: mass shifts via twisted boundary conditions for a theory defined on a compact manifold

On a circle of radius R: field $(x + 2\pi R)$ = symmetry × field(x)

Setup 00●0 D1-D1 interactions and WGC 000000

Outlook 000

ション ふゆ マ キャット しょう くりく

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

Generally: mass shifts via twisted boundary conditions for a theory defined on a compact manifold

On a circle of radius R: field $(x + 2\pi R) =$ symmetry \times field(x)

Ex: a scalar with a global U(1), $\phi(x + 2\pi R) = e^{i\pi Q}\phi(x)$

 $\substack{\text{Setup}\\0000}$

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

Generally: mass shifts via twisted boundary conditions for a theory defined on a compact manifold

On a circle of radius R: field $(x + 2\pi R) = \text{symmetry} \times \text{field}(x)$

Ex: a scalar with a global $U(1), \phi(x + 2\pi R) = e^{i\pi Q}\phi(x)$

$$\implies \phi(x) = e^{\frac{ixQ}{2R}} \sum_m e^{\frac{imx}{R}} \phi_n \implies M_{\text{KK}} = \left| \frac{m}{R} + \frac{Q}{2R} \right|$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ 今 の ・ ・

 $\substack{\text{Setup}\\0000}$

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

Generally: mass shifts via twisted boundary conditions for a theory defined on a compact manifold

On a circle of radius R: field $(x + 2\pi R) = \text{symmetry} \times \text{field}(x)$

Ex: a scalar with a global $U(1), \phi(x + 2\pi R) = e^{i\pi Q}\phi(x)$

$$\implies \phi(x) = e^{\frac{i\pi Q}{2R}} \sum_{m} e^{\frac{imx}{R}} \phi_n \implies M_{\rm KK} = \left| \frac{m}{R} + \frac{Q}{2R} \right|$$

Always understood as a **spontaneous breaking**

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

Supersymmetry breaking: Scherk-Schwarz mechanism

Scherk, Schwarz '79

For our (type I) string, use $(-)^F \delta_{x \to x + \pi R}$.

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

For our (type I) string, use $(-)^F \delta_{x \to x + \pi R}$. Propagating fermions and bosons have **different Kaluza-Klein modes**.

Setup000• D1-D1 interactions and WGC 000000

Outlook 000

ション ふゆ マ キャット しょう くりく

Supersymmetry breaking: Scherk-Schwarz mechanism Scherk, Schwarz '79

For our (type I) string, use $(-)^F \delta_{x \to x+\pi R}$. Propagating fermions and bosons have **different Kaluza-Klein modes**.

$$\mathcal{T}_{\text{SUSY}} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^{11/2}} \left| \frac{V_8 - S_8}{\eta^8} \right|^2 \Lambda_{m,n}$$

Supersymmetry breaking: Scherk-Schwarz mechanism

Scherk, Schwarz '79

For our (type I) string, use $(-)^F \delta_{x \to x+\pi R}$. Propagating fermions and bosons have **different Kaluza-Klein modes**.

$$\begin{aligned} \mathcal{T}_{\rm SUSY} &= \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^{11/2}} \Big| \frac{V_8 - S_8}{\eta^8} \Big|^2 \Lambda_{m,n} \xrightarrow{\text{becomes}} \\ \mathcal{T}_{\rm SUSY} &= \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^{11/2}} \{ (|V_8|^2 + |S_8|^2) \Lambda_{m,2n} - (V_8 \bar{S}_8 + S_8 \bar{V}_8) \Lambda_{m+1/2,2n} \\ &+ (|O_8|^2 + |C_8|^2) \Lambda_{m,2n+1} - (O_8 \bar{C}_8 + C_8 \bar{O}_8) \Lambda_{m+1/2,2n+1} \} \frac{1}{|\eta^8|^2} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $_{\rm 0000}^{\rm Setup}$

Supersymmetry breaking: Scherk-Schwarz mechanism

Scherk, Schwarz '79

うして ふゆう ふほう ふほう ふしつ

For our (type I) string, use $(-)^F \delta_{x \to x+\pi R}$. Propagating fermions and bosons have **different Kaluza-Klein modes**.

$$\begin{aligned} \mathcal{T}_{\text{SUSY}} &= \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^{11/2}} \left| \frac{V_8 - S_8}{\eta^8} \right|^2 \Lambda_{m,n} \xrightarrow{\text{becomes}} \\ \mathcal{T}_{\text{SUSY}} &= \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^{11/2}} \{ (|V_8|^2 + |S_8|^2) \Lambda_{m,2n} - (V_8 \bar{S}_8 + S_8 \bar{V}_8) \Lambda_{m+1/2,2n} \\ &+ (|O_8|^2 + |C_8|^2) \Lambda_{m,2n+1} - (O_8 \bar{C}_8 + C_8 \bar{O}_8) \Lambda_{m+1/2,2n+1} \} \frac{1}{|\eta^8|^2} \end{aligned}$$

Scalar potential: $V = -\left(\frac{\mathcal{T}}{2} + \mathcal{K} + \mathcal{A} + \mathcal{M}\right) \sim \Lambda^9 e^{-c\Phi}$

 $\Lambda>0:$ Coudarchet's talk (Humboldt), + Abel, Dudas, Lewis, Partouche '18

The swampland and $\underset{OOOOOOO}{\text{SUSY}}$

Setup 0000 D1-D1 interactions and WGC •00000

Outlook 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

D1-D1 interactions and WGC

Setup 0000 D1-D1 interactions and WGC $_{0\bullet0000}$

Outlook 000

We compute one-loop interactions between branes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Setup 0000 D1-D1 interactions and WGC $_{0\bullet0000}$

Outlook 000

We compute one-loop interactions between branes

Closed string exchange \iff open-string cylinder calculation (with Dirichlet-Dirichlet boundary conditions)

figure from JHEP 0305 (2003) 055

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We focus on **D1-D1 systems**:

$$\mathcal{A}_{11} = \frac{1}{2\pi\sqrt{\alpha'}} \int_0^\infty \frac{d\tau_2}{\tau_2^{3/2}} e^{-\frac{\tau_2 r^2}{4\pi\alpha'}} \left[P_{m+a_i-a_j} + P_{m+a_i+a_j} - P_{m+1/2+a_i-a_j} - P_{m+1/2+a_i+a_j} \right] \times \frac{\theta_2^4}{2\eta^{12}} \left(\frac{i\tau_2}{2} \right)$$

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

We focus on **D1-D1 systems**:

$$\mathcal{A}_{11} = \frac{1}{2\pi\sqrt{\alpha'}} \int_0^\infty \frac{d\tau_2}{\tau_2^{3/2}} e^{-\frac{\tau_2 r^2}{4\pi\alpha'}} \left[P_{m+a_i-a_j} + P_{m+a_i+a_j} - P_{m+1/2+a_i-a_j} - P_{m+1/2+a_i+a_j} \right] \times \frac{\theta_2^4}{2\eta^{12}} \left(\frac{i\tau_2}{2} \right)$$

Large-distance $(r \gg \sqrt{\alpha'})$ interaction potential:

$$V_{11} = -\frac{R\alpha'^2}{2\pi^2} \sum_{n=-1,0} \int d^8k \ e^{i\mathbf{k}\mathbf{r}} \left[(1-1)\frac{\cos[4\pi na_i]\cos[4\pi na_j]}{k^2 + \frac{4n^2R^2}{\alpha'^2}} + \frac{1}{8} \ \frac{\cos[2\pi(2n+1)a_i]\cos[2\pi(2n+1)a_j]}{k^2 + \frac{(2n+1)^2R^2}{\alpha'^2} - \frac{2}{\alpha'}} \right]$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The swampland	and SUSY
0000000	

Setup 0000 D1-D1 interactions and WGC 000000

Outlook 000

We focus on **D1-D1** systems:

$$\mathcal{A}_{11} = \frac{1}{2\pi\sqrt{\alpha'}} \int_0^\infty \frac{d\tau_2}{\tau_2^{3/2}} e^{-\frac{\tau_2 r^2}{4\pi\alpha'}} \left[P_{m+a_i-a_j} + P_{m+a_i+a_j} - P_{m+1/2+a_i-a_j} - P_{m+1/2+a_i+a_j} \right] \times \frac{\theta_2^4}{2\eta^{12}} \left(\frac{i\tau_2}{2} \right)$$

Large-distance $(r \gg \sqrt{\alpha'})$ interaction potential:

$$V_{11} = -\frac{R\alpha'^2}{2\pi^2} \sum_{n=-1,0} \int d^8k \ e^{i\mathbf{k}\mathbf{r}} \left[(1-1)\frac{\cos[4\pi na_i]\cos[4\pi na_j]}{k^2 + \frac{4n^2R^2}{\alpha'^2}} + \frac{1}{8} \ \frac{\cos[2\pi(2n+1)a_i]\cos[2\pi(2n+1)a_j]}{k^2 + \frac{(2n+1)^2R^2}{\alpha'^2} - \frac{2}{\alpha'}} \right]$$

One-loop attraction at (twisted) massive level

Setup

D1-D1 interactions and WGC $_{000\oplus00}$

Outlook 000

• "charge=tension" at massless level: higher-order amplitudes important at large distance

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Setup 0000 D1-D1 interactions and WGC $_{000\oplus00}$

Outlook 000

- "charge=tension" at massless level: higher-order amplitudes important at large distance
- **Decrease of the tension** of a brane: source for those higher-order effects

The	swam	pland	and	SUSY
	0000			

 $\operatorname{Setup}_{0000}$

D1-D1 interactions and WGC $_{000\oplus00}$

Outlook 000

- "charge=tension" at massless level: higher-order amplitudes important at large distance
- **Decrease of the tension** of a brane: source for those higher-order effects

$$T_{1,\text{eff}} = T_1 - \frac{2}{\pi^3 R^2} \text{ (from } \mathcal{A}_{11}(r=0, a_i = a_j = 0)\text{)}$$

The	swam	pland	and	SUSY
	0000			

 $\operatorname{Setup}_{0000}$

D1-D1 interactions and WGC $_{000000}$

Outlook 000

ション ふゆ マ キャット しょう くりく

- "charge=tension" at massless level: higher-order amplitudes important at large distance
- **Decrease of the tension** of a brane: source for those higher-order effects

$$T_{1,\text{eff}} = T_1 - \frac{2}{\pi^3 R^2} \text{ (from } \mathcal{A}_{11}(r=0, a_i = a_j = 0)\text{)}$$

• Gauge invariance + perturbative control: no comparable charge renormalization

The	swam	pland	and	SUSY
000	0000			

D1-D1 interactions and WGC $_{000000}$

Outlook 000

- "charge=tension" at massless level: higher-order amplitudes important at large distance
- **Decrease of the tension** of a brane: source for those higher-order effects

$$T_{1,\text{eff}} = T_1 - \frac{2}{\pi^3 R^2} \text{ (from } \mathcal{A}_{11}(r=0, a_i=a_j=0)\text{)}$$

• Gauge invariance + perturbative control: no comparable charge renormalization

 \Rightarrow gauge repulsion at large distances (massless modes in higher-orders amplitudes) \Rightarrow WGC

D1-D1 interactions and WGC 000000

letup 0000 D1-D1 interactions and WGC 00000

Outlook 000

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 필 · 의익C

Bound states?

A breaks down at
$$r_S \sim \frac{N g_s \alpha'^3}{V_5}$$

The swampland and \underline{SUSY} 0000000

Bound states? For a stack of N D1-branes, SUGRA breaks down at $r_S \sim \frac{Ng_s \alpha'^3}{V_5}$

Number of bound states $N_{\rm crit} \approx \frac{V_5}{g_s \alpha'^2 R} \log\left(\frac{R^2}{g_s \alpha'}\right)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二重

With constant $M_P^2 \sim \frac{V_5 R}{a^2 \alpha'^4}$ and $g_s \to 0$, bound state masses:

$$\frac{M}{M_P} \sim \left(\frac{\alpha'^2 R}{V_5}\right)^{1/2} \to 0$$

イロト 不得 トイヨト イヨト 三日

 $\frac{M}{M_P} \sim \left(\frac{\alpha'^2 R}{V_5}\right)^{1/2} \to 0$

Agreement with the swampland distance conjecture (connected to SUSY breaking)

イロト 不得 トイヨト イヨト 三日

Setup 0000 D1-D1 interactions and WGC 000000

 $\substack{ \text{Outlook} \\ \bullet 00 }$

Outlook

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 臣 のQQ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○ ○

SUSY breaking in string theory generates the necessary ingredients for non-trivial and compatibility tests of the swampland conjectures: brane interactions, runaway potentials...

SUSY breaking in string theory generates the necessary ingredients for non-trivial and compatibility tests of the swampland conjectures: brane interactions, runaway potentials...

Our calculation supports the weak gravity conjecture for the R-R 2-form of type I string theory with broken SUSY (and connects it to the SDC)

SUSY breaking in string theory generates the necessary ingredients for non-trivial and compatibility tests of the swampland conjectures: brane interactions, runaway potentials...

Our calculation supports the weak gravity conjecture for the R-R 2-form of type I string theory with broken SUSY (and connects it to the SDC)

Need additional effort (higher-loop calculations/corrections to the effective action, application to actual black holes, more realistic quintessence models) SUSY breaking in string theory generates the necessary ingredients for non-trivial and compatibility tests of the swampland conjectures: brane interactions, runaway potentials...

Our calculation supports the weak gravity conjecture for the R-R 2-form of type I string theory with broken SUSY (and connects it to the SDC)

Need additional effort (higher-loop calculations/corrections to the effective action, application to actual black holes, more realistic quintessence models)

Future directions: other non-SUSY tests (ex: more gauge fields, magnetic fields on non-BPS branes - tachyons disappear when the branes repel, ...)

The swampland and $\overbrace{\text{SUSY}}^{\text{output}}$

Setup 0000 D1-D1 interactions and WGC 000000

 $\substack{ \text{Outlook} \\ \text{OO} \bullet }$

Thank you!

▲□▶ ▲圖▶ ▲ 三▶ ▲ 三▶ ● 三● ● ○ Q @