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onteo usual o-model approach, backgrounds which otherwise would be
AND MOTIVATION considered different.

e On a d-torus T9, with constant backgrounds G., and B.p,
(Abelian) T-duality is described by O(d, d; Z) transformations.

@ By exchanging momentum and winding modes, it implies that
the short distance behavior is governed by long distance behavior
in the dual torus T¢.

@ The indefinite orthogonal group O(d, d) naturally appears in the
Hamiltonian description of the bosonic string in the target space
M with two peculiar structures, the generalized metric A and
the O(d, d) invariant metric 7.
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In terms of Ap the constraints

AND DOUBLING

Gap(X2XP + X2X'P) =0 ;  GpXXP =0

INTRODUCTION

AND MOTIVATION become AEHAP — 0 A;L;)”]AP — 0 .

o The first sets H to zero ; the second completely determines the
dynamics, rewritten in terms of the O(d, d) invariant metric:

01
n=11 0 )
@ The generalized metric is an element of O(d,d): H'nH =1

o All the admissible generalized vectors satisfying ALnAp = 0 are
related by an O(d, d) transformation via A, = T Ap.

@ For A} to solve the first constraint, a compensating
transformation 7! has to be applied to H. , i.e.
7‘[/ — (Tfl)tH(Tfl)_
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e H and its inverse ! can be rewritten in products:

INTRODUCTION

AND MOTIVATION 1 B G 0 1 0
_ 10 Gl o 1 -B
Hl(QB)‘(B 1)(0 G)(O 1)

@ This indeed shows that the background B can be created from
the G-background through a B-transformation.
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Bad =0 J2 = h°P GpdpX® + €*PBopdsXPh = P95 X,

e Through the use of auxiliary fields, one gets the dual Polyakov
action S[X; G, B] on T9 with string coordinates X, and
connected to S[X G, B] by X? — X, and suitable
transformations of (G7 B) through the Blischer rules.

o Abelian T-duality: based on the presence of global Abelian
isometries in the target spaces of both the paired sigma models.
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257D DISTVEET @ Tseytlin action for constant backgrounds (A. A. Tseytlin, 1990
and 1991) highlights the role of the generalized vector X and of the
two metrics:

5— _g / drdo [0, X0, X nas — 0,0, X H e

@ The manifestly T-duality O(d, d) symmetric formulation may be
considered as a natural generalization of the standard one at the
string scale.

@ At compactification radius R >> o' it reproduces the usual Polyakov
action, at R << o its dual.

@ First example of Born geometry.
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Rocek and E. Verlinde, 1993]

@ The notion of non-abelian T-duality is still lacking some of the key
features of its Abelian counterpart. A canonical procedure is missing
that would yield the original theory if one is given its non-Abelian
dual.

@ The Poisson-Lie T-duality [Klim&ik and Severa, 1996] generalizes the
previous definitions to all the other cases.
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group G are very helpful in understanding Abelian, Non-Abelian
RCLoCHo and Poisson-Lie T-dualities.

AND MOTIVATION

@ The relevant structure for the existence of dual counterparts:
the Drinfel'd double of G together with the notion of
Poisson-Lie symmetries.

@ Also it allows to establish more connections with Generalized
Geometry since tangent and cotangent vector fields of G may be
respectively related to the span of the Lie algebra ganditsdualg.

@ The Doubled Geometry may play a role in describing the
generalized dynamics on the tangent bundle TD ~ D x 0 used
to describe within a single action both dually related models.
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related subgroups G, G, it is possible to define a couple of
PCM'’s having as target configuration space either of the two
subgroups.

o Every PCM has its dual counterpart for which the role of G and
its dual G is interchanged : G <+ G.

@ The set of all decompositions (0, g, §), plays the role of the
modular space of sigma models mutually connected by an
O(d, d) transformation.

@ In particular, for the manifest Abelian T-duality of the string
model on the d-torus, the Drinfel'd double is D = U(1)?“ and its
modular space, is in one-to-one correspondence with O(d, d;Z).
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SU(2) PrINCIPAL CHIRAL MODEL

. o @ SU(2) Principal Chiral Model: target space SU(2) and source
space RM! endowed with the metric h,s = diag(—1,1).

@ Action written in terms of g~ 'dg, the Lie algebra valued
left-invariant one-forms with g € SU(2):

PRINCIPAL

1
CHIRAL MODEL 5 — Z /R2 dth Tr [(g—latg)Z _ (g—lagg)Z:I

trace — scalar product on the Lie algebra su(2),
non-degenerate and invariant.

1 S S
S=— [ dtdo (AG;A — Jis; V)
2 Jre

currents A" and J': g 10,g = 2Ale;, g 0,8 = 2J'e;, e = 0;/2.
A =Tr [(gilatg)e;] J=Tr [(gilagg)e,-]
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0tJ :ao—A - [A, J]

PRINCIPAL
CHIRAL MODEL

— integrability condition for the the existence of a g € SU(2)
that allows the expression of the two currents A" and J'.

o At fixed t, all g's constant at infinity form an infinite
dimensional Lie group SU(2)(R) = Map(R, SU(2)), given by
smooth maps g : 0 € R — g(o) € SU(2).

o At fixed time, the currents J and A take values in the Lie
algebra su(2)(R) of the group SU(2)(R).
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LAGRANGIAN FORMALISM

PRINCIPAL

T-DUALITIES
AND DOUBLING

Fraxco @ The tangent bundle description of the dynamics is given in terms
of (J,A): A left generalized velocities and J left configuration
space coordinates.

prmum o Infinitesimal generators of the Lie algebra su(2)(R):
Xi(7) = X?(0) £~
1 - I 6ga(0') ?

with Lie brackets:
[Xi(0), Xj(0")] = ¢; “Xi(0)b(c — o)

defining the current algebra su(2)(R) ~ su(2) @ C*(R).
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The target phase space is naturally given by T*SU(2) (Drinfel'd

double).

e Topologically is the manifold $3 x R3.

e As a group, T*SU(2) ~ SU(2) x R3.

@ As a Poisson manifold it is symplectomorphic to the group
SL(2, C) (same topology).

e T*SU(2) and SL(2,C) are both Drinfel'd doubles of the group
SU(2). The former is said classical double.

o (J',I;) conjugate variables with J configuration space
coordinates and / left generalized momenta:

PRINCIPAL
CHIRAL MODEL

oL

= — "
d (g710:8)

=065(g 0y = oA .

15/39



PRINCIPAL
CHIRAL MODEL:
T-D S
AND DOUBLING

e Hamiltonian:
I

1 N . 1
H=3 [ dothhs? + s 55 =5 [ doh (151" 1
2 R 2 R

PRINCIPAL

Cnar MopeL I = (I;, J') components of the current 1-form on T*SU(2) and

1\ (670
(#) _<0 5ij>

is a Riemannian metric on T*SU(2).

@ The Hamiltonian description of the Principal Chiral Model on
SU(2) naturally involves the Riemannian generalized metric H, "
on the cotangent bundle.
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PRINCIPAL

@ The first-order Lagrangian, together with the canonical one-form
and the symplectic form, allows to determine the equal-time
Poisson brackets :

P {li(o), IJ(U/)} =€jj k/k(g)(s(o— - OJ)
{l(0), F(0")} =exi i J*(0)d(0 — o) — 86" (0 — o)
{J/(0), #(")} =0
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PRINCIPAL
CHIRAL MODEL:
T-D! S . . . .
AND DOUBLING @ The first-order Lagrangian, together with the canonical one-form
TATE and the symplectic form, allows to determine the equal-time

Poisson brackets :
PRINCIPAL {II(O—)* IJ(U/)} :Eij k/k(O')(S(O' - OJ)
CHIRAL MODEL . . .
{li(0), # (o)} =exi 1 J5(0)d(0 — o) — 818 (0 — o”)
{J(0), #(0")} =0

@ The I's generators of the Lie algebra su(2)(R).
@ The J's span an Abelian algebra a.

@ / and J span the infinite-dimensional current algebra
a1 = su(2)(R) x a.

17/39



' e Equations of motion:
,—\l\'f1 DOUBLING atlj(o.) _ {H7 /_,(U)} — 80Jk5kj((7);

‘ and

O, S (o) = {H, F(0)} = 0,169 (0) — € /1 ¥ (o).

Coat Mone @ It is possible to give an equivalent description of the dynamics in

terms of a new one-parameter family of Poisson algebras [Rajeev,
1989] and modified Hamiltonians, with the currents playing a
symmetric role.

18/39



Equations of motion:
Oeli(0) = {H, [j(0)} = 95 J"35(0),

and

O (o) = {H, J (o)} = 0, 1k6%(0) — € /[ ¥ ().

o It is possible to give an equivalent description of the dynamics in
terms of a new one-parameter family of Poisson algebras [Rajeev,
1989] and modified Hamiltonians, with the currents playing a
symmetric role.

@ Deformed brackets by parameter 7 (imaginary):

{l(0), 1i(0")} =(1 = 7*)es " I(0)é(0 — o)
{li(o), (o))} =(1 = 7*) (J*(0)ew’8(0 — o) = (1 = 7°)*6]6' (o — o))
{J(0), Y (o)} =(1 = 7)7*¢"h(0)(0 — ).
@ The new brackets correspond to the infinite-dimensional Lie algebra
e ~ 5[(2, C)(IR) isomorphic to the current algebra modelled on the
Lorentz algebra s1(2, C).
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@ Modified Hamiltonian:

H; = / do (1169 4 J7H ;).
R

PRINCIPAL
CHIRAL MODEL
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g e Modified Hamiltonian:
T-DU: 1

AND DOUBLING HT [ d I,I6U J’JJ(S, .
. 2(1*72)2/]1{ o (li;6" + i)

@ The previous equations of motion remain unmodified.
o Alternative description of one and the same dynamics even
considering deformed algebras of SL(2,C).

PRINCIPAL
CHIRAL MODEL
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PRINCIPAL e Modified Hamiltonian:

CHIRAL MODEL:

T-D! S 1
AND DOUBLING H .
=

Praxco 2(1—72)2

/ do (1169 4 J7H ;).
R

@ The previous equations of motion remain unmodified.
PrixcipaL o Alternative description of one and the same dynamics even
s Hone considering deformed algebras of SL(2,C).

@ Rescale the fields according to:

I; Ji ;
=i —— = J.
1— 72 112
The rescaled Hamiltonian H,. becomes identical to the
undeformed one H, while the Poisson algebra acquires the form:

{li(2), [i(o)} e “I(0)d(0 — o), .
{i(0), J{(a')} = Jk(g)ek,ié(a —0') =868 (0 - o),
{Ji(0), P (o)} = 7% d(0)0(0 — o).
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o @ Introduce new generators showing the bi-algebra structure of
51(2, C)(R).

o Keeping the generators of su(2)(R) unmodified, consider the
linear combination:

Ki(o) = J'(o) — i) (0).

PRINCIPAL
CHIRAL MODEL

20 /39



PRINCIPAL

@ Introduce new generators showing the bi-algebra structure of
s[(2, C)(R).

o Keeping the generators of su(2)(R) unmodified, consider the

linear combination:

Ki(o) = J'(o) — i) (0).
PRINCIPAL
CHIRAL MODEL

@ From the deformed Poisson brackets it is possible to derive the
Poisson brackets of the new generators:

{K'(0), Ki(c")} = iTfi, KX(6") 6(0 — o)
together with
{li(0), (")} ¢i* l(0)5(0 — o)
{li(0),Ki(c)} = (Kk(al)ek,-j + injk,-lk(a/)) 5o —0o') — 5{-‘6/(0 —a)
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Bt @ Introduce new generators showing the bi-algebra structure of
s[(2, C)(R).
o Keeping the generators of su(2)(R) unmodified, consider the
linear combination:
Ki(o) = J'(o) — i) (0).

PRINCIPAL
CHIRAL MODEL

@ From the deformed Poisson brackets it is possible to derive the
Poisson brackets of the new generators:

{K'(0), Ki(c")} = iTfi, KX(6") 6(0 — o)
together with
{li(0), (")} ¢i* l(0)5(0 — o)
{li(0),Ki(c)} = (Kk(al)ek,-j + injk,-lk(a/)) 5o —0o') — 5{-‘6/(0 —a)

@ The K's span the sb(2, C)(R) Lie algebra with structure constants
i = eVepy.
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Bt @ Introduce new generators showing the bi-algebra structure of
s[(2, C)(R).
o Keeping the generators of su(2)(R) unmodified, consider the
linear combination:
Ki(o) = J'(o) — i) (0).

PRINCIPAL
CHIRAL MODEL

@ From the deformed Poisson brackets it is possible to derive the
Poisson brackets of the new generators:

{K'(0), Ki(c")} = iTfi, KX(6") 6(0 — o)
together with
{li(0), (")} ¢i* l(0)5(0 — o)
{li(0),Ki(c)} = (Kk(al)ek,-j + injk,-lk(a/)) 5o —0o') — 5{-‘6/(0 —a)

@ The K's span the sb(2, C)(R) Lie algebra with structure constants
i = ey
@ The Lie algebra ¢z = s1(2, C)(R) has been ‘expressed as

20 /39
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SL(2,C) As A DRINFEL’'D DOUBLE

pNeAL @ The Lie algebra s[(2, C) is defined by the Lie brackets:

T-DUALITIES

\D DOUBLING _ ..k _ .k -k
AND DOUBLIN [e,-, EJ'] = I€jj" ek [E‘,‘7 bJ] = I€jj by [b,’, bJ] = —I€jj €.
FRANGO
‘ with
o1 02 03
a=-, e=o, &= generators of su(2)

b;:le;, I:1,2,3
A DRINFEL'D
DouBLE
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SL(2,C) As A DRINFEL’'D DOUBLE

pNeAL @ The Lie algebra s[(2, C) is defined by the Lie brackets:

T-DUALITIES

AND DOUBLING [eh ej] — I'Gijkek [el_7 b_j] _ iGUkbk [bia bJ] _ *iﬁijkek-
Pranco
‘ with
o1 02 03
a=-, e=o, &= generators of su(2)

b;:le;, I:1,2,3
A DRINFEL'D
DouBLE

o It is equipped with two non-degenerate invariant scalar products:
(u,v) = 2Im(Tr(uv)) Vu,v € sl(2,C)
(u,v) = 2Re(Tr(uv)) VYu,v € sl(2,C).
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SL(2,C) As A DRINFEL’'D DOUBLE

oL @ The Lie algebra s[(2, C) is defined by the Lie brackets:

T-D S

D DOUBLING _ ..k _ .k -k
AND DOUBLIN [e,-, EJ'] = I€jj" ek [E‘,‘7 bJ] = I€jj by [b,’, bJ] = —I€jj €.
I 0
- with
o1 02 03
a=-, e=o, &= generators of su(2)

b;:le;, I:1,2,3
A DRINFEL'D
DouBLE

o It is equipped with two non-degenerate invariant scalar products:
(u,v) = 2Im(Tr(uv)) Vu,v € sl(2,C)
(u,v) = 2Re(Tr(uv)) VYu,v € sl(2,C).

o (u,v) defines two maximally isotropic subalgebras
[e,-, ej] = ie;jkek, [éi, ej] = iEjkiék—l—iekfkij, [éi, é]] = ikaék
spanned by {e;} and the linear combination & = b; — €;3¢;.
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SL(2,C) As A DRINFEL’'D DOUBLE

O @ The Lie algebra s[(2, C) is defined by the Lie brackets:

CHIRAL MODEL:
T-D S

D DOUBLING _ ..k _ .k -k
AND DOUBLIN [e,-, EJ'] = I€jj" ek [E‘,‘7 bJ] = I€jj by [b,’, bJ] = —I€jj €.
I 0
- with
o1 02 03
a=-, e=o, &= generators of su(2)

b;:le;, I:1,2,3
A DRINFEL'D
DouBLE

o It is equipped with two non-degenerate invariant scalar products:
(u,v) = 2Im(Tr(uv)) Vu,v € sl(2,C)
(u,v) = 2Re(Tr(uv)) VYu,v € sl(2,C).

o (u,v) defines two maximally isotropic subalgebras
[e,-, ej] = ie;jkek, [éi, ej] = iEjkiék—l—iekfkij, [éi, é]] = ikaék
spanned by {e;} and the linear combination & = b; — €;3¢;.

e su(2) and sb(2,C) maximally isotropic with respect to <, >:
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MANIN TRIPLE

@ Each subalgebra acts on the other one non-trivially, by
co-adjoint action:

[é’, ej] = ie'jkék + ifk’jek
A DRINFEL'D
DouBLE

22/39



MANIN TRIPLE

PRINCIPAL

T-DUALITIES
AND DOUBLING

I
‘ @ Each subalgebra acts on the other one non-trivially, by
co-adjoint action:

[é’, ej] = ie'jkék + ifk’jek
A DRINFEL'D
DouBLE

o SL(2,C) is Drinfel'd double of SU(2) and SB(2,C) with
polarization sl(2, C) = su(2) < sb(2,C) and
(s1(2,C),su(2),sb(2,C)) is a Manin triple.

e SU(2) and SB(2,C) are then dual groups.
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CHIRAL L
T-DU! .
AND DOUBLING @ Doubled notation:

e = (Zj) , e €su(2), & €sb(2,C).

The first scalar product then becomes:

0 &
(el,eJ):nIJ:((SJ,: 0’)

which is O(3, 3) invariant by construction. The second scalar
product yields:

o 5U 6,'p3(5pj
(er,e)) = <5ip€jp3 5 _ 6ik35kleil3

A DRINFEL'D
DouBLE
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PRINCIPAL

e The splitting 0 = C; & C_ with C;, C_ spanned by {e;}, {b;}
respectively, defines a positive definite metric H on 0 via:

A DRINFEL'D H = ( 9 )CJr - ( ) )C,

DouBLE
satisfying
HIH =1

namely H is a pseudo-orthogonal O(3,3) metric.
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@ A whole family of models exists, described by the Hamiltonians

CHIRAL

j;jg;,),_mm; labelled by the parameter 7 in terms of I, = (I;, K):
‘ 1
H. = f/da I(H )My
2 Jr

with H! being the Riemannian generalized metric

A DRINFEL'D I’ . .
DOUBLE H_l _ hY (7') lTE’p?’(Spj
T I'T(s,'pép?’ (5,1

where:
hY (1) = 6" — 236,73 .
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PRINCIPAL

@ A whole family of models exists, described by the Hamiltonians
labelled by the parameter 7 in terms of /; = (/;, K/):

1
H. = f/da I(H )My
2 Jr
with H! being the Riemannian generalized metric
s (W) irePs,
T I'T(s,'pép?’ (5,1

where:
hY (1) = 6" — 236,73 .

@ They are related (and indeed equivalent) to the standard SU(2)
chiral model by the O(3,3) transformation
Ki(o) = Ji(o) — iTe"31)(a), symmetry of the dynamics because
it maps solutions into solutions .
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BORN GEOMETRY

; o What is the geometrical meaning of 1! emerging in the
AND DOUBLING definition of the alternative Hamiltonian H,?

BORN
GEOMETRY
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BORN GEOMETRY

; o What is the geometrical meaning of 1! emerging in the
AND DOUBLING definition of the alternative Hamiltonian H,?
FRANCO @ The Hamiltonian description naturally involves the Riemannian

metric: 5i
—1\ [0V 0
(™) = (0 5U>
one of the structures defining a Born geometry on T*SU(2)

BORN
GEOMETRY
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BORN GEOMETRY

PRINCIPAL

o What is the geometrical meaning of 1! emerging in the
definition of the alternative Hamiltonian H,?
@ The Hamiltonian description naturally involves the Riemannian

metric: 5i
_1\0 (Y 0
(™) = (0 5U>

one of the structures defining a Born geometry on T*SU(2)
e T*SU(2) is a Born manifold: a phase space equipped with a
Bory structure (1, k, Ho) with £ € End(su(2) x R3) such that x2 = 1
o with su(2) eigenspace of k associated with the eigenvalue +1
and R? eigenspace with the eigenvalue —1. The structures
< -, - > and k satisfy a compatibility condition

< K(€), ¥ >= — < K(¥), & >, V€, 1) € su(2) x R?,

which defines a two-form w on su(2) x R3.
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BORN GEOMETRY

e o What is the geometrical meaning of 1! emerging in the
o B definition of the alternative Hamiltonian H.7

FRANCO @ The Hamiltonian description naturally involves the Riemannian

. metric: 5i
_1\0 (Y 0
(™) = (0 5U>

one of the structures defining a Born geometry on T*SU(2)
e T*SU(2) is a Born manifold: a phase space equipped with a
Bory structure (1, k, Ho) with £ € End(su(2) x R3) such that x2 = 1
o with su(2) eigenspace of k associated with the eigenvalue +1
and R? eigenspace with the eigenvalue —1. The structures
< -, - > and k satisfy a compatibility condition

< K(€), ¥ >= — < K(¥), & >, V€, 1) € su(2) x R?,

which defines a two-form w on su(2) x R3.
@ Defining relations:

0 YHo = Hy'n w M Hy = —Hy 'w.
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B-TRANSFORMATIONS

@ The deformed Hamiltonian H, also gives a Riemannian metric

AND DousLING on T*SU(2) and is a B-transformation of the metric H,.
Frasco

BORN
GEOMETRY
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B-TRANSFORMATIONS

PRINCIPAL

LT @ The deformed Hamiltonian H; also gives a Riemannian metric

AND DousLING on T*SU(2) and is a B-transformation of the metric H,.
oy o 7-dependent B-transformation

B(T) _ 1 iTB
e _(O 1)60(3,3)

with components of the tensor B given by BY = /i3

BORN
GEOMETRY
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B-TRANSFORMATIONS

PRINCIPAL

LT @ The deformed Hamiltonian H, also gives a Riemannian metric
-D S

AND DousLING on T*SU(2) and is a B-transformation of the metric H,.

ez, o 7-dependent B-transformation

1 i™B
B(t) _
e\ = (O 1 ) € 0(3,3)

with components of the tensor B given by BY = /i3

BORN

GroMETRY @ H, is obtained by the B-transformation acting on Hy :

H, = (e*B(T)) “HoeB).
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B-TRANSFORMATIONS

PRINCIPAL

The deformed Hamiltonian H, also gives a Riemannian metric
on T*SU(2) and is a B-transformation of the metric Ho.

o 7-dependent B-transformation

B _ (]1 ITB) c 0(3.3)

0 1

with components of the tensor B given by BY = /i3

BORN

GroMETRY @ H, is obtained by the B-transformation acting on Hy :
H, = (e*B(T))t’HoeB(T).

@ The family of equivalent Hamiltonian descriptions of the SU(2)
PCM can be understood in terms of a one-parameter family of
Born geometries for T*SU(2), corresponding, for each choice of
the parameter 7, to a specific splitting of the phase space, with
the value 7 = 0 the canonical splitting.
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POI1SSON-LIE STRUCTURE

PRINCIPAL

o The PCM, in the Hamiltonian formulation given by any H; is a
Poisson-Lie sigma-model.

BORN
GEOMETRY
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POI1SSON-LIE STRUCTURE

PRINCIPAL
CHIRAL MODEL:

T 5 . . . . - .
o Doz @ The PCM, in the Hamiltonian formulation given by any H; is a

o Poisson-Lie sigma-model.

o Hamiltonian vector fields Xy - := {, K} associated to the
coordinates functions K' for T*SU(2), close a non-Abelian
algebra according to the following:

[)(}(i,)(Kj] = )({’(i7kj} = i7'fxi)<}(k

BORN
GEOMETRY

because of the non-trivial Poisson bracket
{Ki(0),Ki(0")} = iTfi K¥(6")d(0 — 0’) — the constant
structures of the dual Lie algebra sb6(2, C) appear.

@ A dual formulation of this property can be given in terms of the
Hamiltonian vector fields associated with the currents /; that
close the Lie algebra su(2).
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PoO1SSON-LIE DUAL MODELS

PRINCIPAL
CHIRAL MODEL:

AND DOUBLING @ Two-parameter generalization in the Poisson algebra generated
Fraxco by l; and K' by adding another imaginary parameter o making
the role of the subalgebras su(2)(R) and sb(2, C)(R) symmetric:

[Ho), ho)) = et (@)oo — )
{K'(0),K'(c")} = irfl K (a")o(o — ')
{li(o /aKk "Yeki I+ irfk il(o )> 5(070')75{5’(0—0’)

DUAL PRINCIPAL

CHIRAL MODELS
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PoO1SSON-LIE DUAL MODELS

PRINCIPAL

@ Two-parameter generalization in the Poisson algebra generated
by l; and K' by adding another imaginary parameter o making
the role of the subalgebras su(2)(R) and sb(2, C)(R) symmetric:

{I;(U),Q(a')} = i« E'fjklk(U)(;(O'fo'/)
{K'(0),KI (")} = irfiyK"(0")é(0 — o)

(Ii(o), K (o))} = <ioch(J/)ek,-j n injk,-lk(a/)> 8(0—0")—8i8' (—0")

DUAL PRINCIPAL

CHIRAL MODELS

@ In the limit i7 — 0, it reproduces the semi-direct sum su(2)(R) x a,
while the limit jac — 0 yields sb(2, C)(R) x a.
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PoO1SSON-LIE DUAL MODELS

PRINCIPAL

@ Two-parameter generalization in the Poisson algebra generated
by l; and K' by adding another imaginary parameter o making
the role of the subalgebras su(2)(R) and sb(2, C)(R) symmetric:

{I;(U),Q(a')} = i e'fjklk(a)é(afal)
{K'(0),KI (")} = irfiyK"(0")é(0 — o)

(Ii(o), K (o))} = </'0¢Kk(o/)ek,-j n infk,-/k(a’)> 8(0—0")—8i8' (—0")

DUAL PRINCIPAIL

CHIRAL MODELS

@ In the limit i7 — 0, it reproduces the semi-direct sum su(2)(R) x a,
while the limit jac — 0 yields sb(2, C)(R) x a.

@ For all non zero values of the two parameters, the algebra is
isomorphic to sl(2,C), and, by suitably rescaling the fields, one gets a
two-parameter family of models, all equivalent to the PCM.
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PoO1SSON-LIE DUAL MODELS

PRINCIPAL

@ Two-parameter generalization in the Poisson algebra generated
by l; and K' by adding another imaginary parameter o making
the role of the subalgebras su(2)(R) and sb(2, C)(R) symmetric:

{I;(U),Q(a')} = i e'fjklk(a)é(afal)
{K'(0),KI (")} = irfiyK"(0")é(0 — o)

(Ii(o), K (o))} = </'0¢Kk(o/)ek,-j n infk,-/k(a’)> 8(0—0")—8i8' (—0")

DUAL PRINCIPAIL

CHIRAL MODELS

@ In the limit i7 — 0, it reproduces the semi-direct sum su(2)(R) x a,
while the limit jac — 0 yields sb(2, C)(R) x a.

@ For all non zero values of the two parameters, the algebra is
isomorphic to sl(2,C), and, by suitably rescaling the fields, one gets a
two-parameter family of models, all equivalent to the PCM.
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@ The dynamics derived from this algebra is equivalent to the
dynamics following from the original underfomed algebra on
T*SU(2) and the undeformed Hamiltonian, if the new
Hamiltonian is considered:

1
Hro = 7/da I(HZL) M iy,
2 Jr ’

with )
i(r .
H, ot = I(7i¢§)2) iTeP30y
e I'T(s,'pejp:)’ (Ia)25U
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@ The dynamics derived from this algebra is equivalent to the
dynamics following from the original underfomed algebra on
T*SU(2) and the undeformed Hamiltonian, if the new
Hamiltonian is considered:

1
Hro = 7/da I(HZL) M iy,
2 Jr ’

with )
Hi(+ L
DUAL PRINCIPAL HT a71 o (”i)z) lTElP36pj

' B I'T(s,'pejp:)’ (Ia)25U

CHIRAL MODELS

@ Since the role of | and K is now symmetric, one can perform an
0(3, 3) transformation which exchanges the momenta /; with

the fields K', thus obtaining a new two-parameter family of
models, dual to the PCM.
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PRINCIPAL

DUAL PRINCIPAIL
CHIRAL MODELS

e The O(3,3) transformation

when applied to H;, and to the corresponding Poisson algebra
leads to a new family of models having target space
configuration the group manifold of SB(2, C) spanned by the
fields K; and momenta I’. These are the Dual Principal Chiral
Models.
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PRINCIPAL

e The O(3,3) transformation

when applied to H;, and to the corresponding Poisson algebra

leads to a new family of models having target space

configuration the group manifold of SB(2, C) spanned by the

Duat. PriNciraL fields K; and momenta I’. These are the Dual Principal Chiral
Models.

@ The Dual Principal Chiral Models are Poisson-Lie sigma models.
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PRrRINCIPAL CHIRAL MODEL SB(2, C) -

LAGRANGIAN APPROACH

pNeAL e Lagrangian for the PCM SB(2, C) involving
" g:(t,0) = SB(2, C), one-forms valued in the Lie algebra
5b(2,C) and Tr non-degenerate product only invariant under
S5B(2, C) action:

1

=3 [ Trie@ da) e @ d)

with  ¢*(g71dg) = (§710:&)i€' dt + (7 10,£);¢ do
A = (8710:.8); Ji= (87'0,8)i

DUAL PRINCIPAIL

e The Lagrangian becomes then:

[ % /R do(AhiA; — JhiJ)

o At fixed t, all elements g constant at the infinity form the
infinite-dimensional Lie group
SB(2,C)(R) = Map(R, SB(2, C)), given by smooth maps
g:0€R— g(o) € SB(2,C) which are constant at infinity.
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PRrRINCIPAL CHIRAL MODEL SB(2, C) -

HAMILTONIAN APPROACH

PRINCIPAL

@ By introducing left momenta = Ajhij and inverting for the
generalized velocities, one obtains the Hamiltonian:

with

and T, = (P, J).

DUAL PRINCIPAIL

CimaL. MopeLs e Equal-time Poisson brackets
{I'(0), P(")} =i (0)8(0 — o),
{T'(0), (o)} =Ji(0)*j6(0 — o) = 8}5' (0 — o),
{Ji(o), Ji(o")} =0

@ Dual Born geometry.
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THE DOUBLED PRINCIPAL CHIRAL MODEL

PRINCIPAL

T-DUALITIES

AND DOUBLING o Group valued field ® : RM — v € SL(2,C) and the
e left-invariant Maurer-Cartan one-form y~1dy € s/(2, C):

®*(y1dy) =7 '0ydt + 7 ' 0pydo

THE DOUBLED

PRINCIPAL
CHIRAL MODEL
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THE DOUBLED PRINCIPAL CHIRAL MODEL

PRINCIPAL

o Group valued field ® : RM — v € SL(2,C) and the
left-invariant Maurer-Cartan one-form v~ 1dy € s/(2, C):

®*(y7dy) = 7 0ydt + 47 9pndo

o By using the Lie algebra basis e, = (e;, &) one has:
7oy =Qler, ; 70,7 =Q"e.
Tie DovsLED ° Q’,Q", left generalized coordinates, respectively given by:

PRINCIPAL
Q =Tr (v 'orve), Q'=Tr(v '0,7e)

CHIRAL MODEL
with Tr the Cartan-Killing metric of sl(2, C).
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LAGRANGIAN

PRINCIPAL

e The Lagrangian density can be rewritten in terms of the left
generalized coordinates Q' as follows:

_1 N A 1 J
L_E(kn—I-’H)/J(QQ -Q"Q )
with

0 k&) + €l
kn+H)u = P i
( ) <k5j — iz (07 + €jgeiz0")

THE DOUBLED
PRINCIPAL
CHIRAL MODEL
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LAGRANGIAN

PRINCIPAL

G Clon @ The Lagrangian density can be rewritten in terms of the left

AND DousLING generalized coordinates Q' as follows:

_1 N A iFaY2)
L=S(kn+H)u (Q'Q-Q"Q”)

with ) )
Ojf k& + &3
kn+H)y = P T
( ) <k5j — iz (07 + €jgeiz0")

@ 7 (Lorentzian) and A (Riemannian) are the left-invariant metrics
T Doy on SL(2,C) induced, respectively, by the pairings 2ImTr() and

CuraL Mobr 2ReTr() on sl(2,C). They are two of the structures defining a
Born geometry on SL(2,C).

@ The degrees of freedom are doubled. Performing a gauging of its
global symmetries both the Lagrangian models, with SU(2) and
SB(2, C) target configuration spaces, can be retrieved.
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@ The Legendre transform gives:
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HAMILTONIAN FORMALISM

PRINCIPAL

@ Canonical momentum:

ALITIES
AND DOUBLING

e = (1,1 oL

@ The Legendre transform gives:

= (k n+H)u,Q".

H= %/da (ICkn + 1) Y00, + (kn + H)d' 7).
R

@ Poisson brackets:

THE DOUBLED

Chmat. Move, (e, (")} = C,f 80" — o)

{ll(a_/)’JJ(O_//)} _ CK/JJK(S(O'/ _ O_// _ 5IJ5/(OJ _ 0’”)
{J/(0"),Y(")} = 0

with Q' — J!
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FRANCO Recovering many aspects of the Abelian T-duality.

@ Derivation of a whole family of equivalent PCM models
described in terms of current algebra of the group SL(2, C).

@ They can be interpreted in terms of Born geometries related by
B-transformations.

e 0O(3,3) transformations allow to find a parametric family of
T-dual PCM models, with target configuration space the group
SB(2,C, the Poisson-Lie dual of SU(2) in the lwasawa
decomposition of the Drinfel'd double SL(2,C). They exhibit
Poisson-Lie symmetries.

oy o A further double PCM with the group manifold of SL(2,C) has
been constructed.
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OUTLOOK

@ Extension with a Wess-Zumino term: this could provide a deeper
insight on the geometric structures of String Theory on AdSs.

o Extension to String Theory on Group Manifolds.

@ To apply this scheme of construction to the world-sheet action.
In this case, a manifestly O(d, d)-invariant action may be
written, considering that the configuration space is a
differentiable manifold. It would be interesting to A doubled
world-sheet string action, as discussed for Principal Chiral
Models, could be written and then perform the low energy limit.
This limit result should reproduce all the results so far obtained

G in Double Field Theory.
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Thank you for your attention.
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