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T-Duality

T-duality provides a powerful tool for investigating the structure
of the spacetime from the string point of view by relating, in the
usual σ-model approach, backgrounds which otherwise would be
considered different.

On a d-torus T d , with constant backgrounds Gab and Bab,
(Abelian) T-duality is described by O(d , d ;Z) transformations.

By exchanging momentum and winding modes, it implies that
the short distance behavior is governed by long distance behavior
in the dual torus T̃ d .

The indefinite orthogonal group O(d , d) naturally appears in the
Hamiltonian description of the bosonic string in the target space
M with two peculiar structures, the generalized metric H and
the O(d , d) invariant metric η.
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Generalized Metric and O(d , d)
Invariant Metric

Generalized vector AP in TM
⊕

T ∗M

AP(X ) = ∂σX
a ∂

∂xa
+ 2πα′Padx

a Pa =
∂L

∂(∂τX a)

Hamiltonian density H = 1
4πα′Gab(Ẋ aẊ b + X ′aX ′b) rewritten as:

H =
1

4πα′

(
∂σX

2πα′P

)t

H(G ,B)

(
∂σX

2πα′P

)
where the generalized metric is introduced:

H(G ,B) =

(
G − BG−1B BG−1

−G−1B G−1

)
H results to be proportional to the squared length of the
generalized vector AP as measured by the generalized metric H.
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Constraints and O(d , d) invariant
Metric

In terms of AP the constraints

Gab(Ẋ aẊ b + X ′aX ′b) = 0 ; GabẊ
aX ′b = 0

become At
PHAP = 0 At

PηAP = 0 .

The first sets H to zero ; the second completely determines the
dynamics, rewritten in terms of the O(d , d) invariant metric:

η =

(
0 1
1 0

)
.

The generalized metric is an element of O(d , d): HtηH = η

All the admissible generalized vectors satisfying At
PηAP = 0 are

related by an O(d , d) transformation via A′P = T AP .

For A′P to solve the first constraint, a compensating
transformation T −1 has to be applied to H. , i.e.
H′ = (T −1)tH(T −1).
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aX ′b = 0

become At
PHAP = 0 At

PηAP = 0 .

The first sets H to zero ; the second completely determines the
dynamics, rewritten in terms of the O(d , d) invariant metric:

η =

(
0 1
1 0

)
.

The generalized metric is an element of O(d , d): HtηH = η

All the admissible generalized vectors satisfying At
PηAP = 0 are

related by an O(d , d) transformation via A′P = T AP .

For A′P to solve the first constraint, a compensating
transformation T −1 has to be applied to H. , i.e.
H′ = (T −1)tH(T −1).

5 / 39



Principal
Chiral Model:
T-dualities

and Doubling

Franco
Pezzella

Introduction
and Motivation

Principal
Chiral Model

A Drinfel’d
Double

Born
Geometry

Dual Principal
Chiral Models

The Doubled
Principal
Chiral Model

Conclusion
and Outlook

H and its inverse H−1 can be rewritten in products:

H(G ,B) =

(
1 B
0 1

)(
G 0
0 G−1

)(
1 0
−B 1

)

H−1(G ,B) =

(
1 0
B 1

)(
G−1 0

0 G

)(
1 −B
0 1

)

This indeed shows that the background B can be created from
the G -background through a B-transformation.
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O(D,D) and constant backgrounds

On T d (Gab and Bab constant) with its isometries U(1)d , the
e.o.m.’s for the string coordinates are a set of conservation laws
on the world-sheet:

∂αJ
α
a = 0 Jαa = hαβGab∂βX

b + εαβBab∂βX
bh ≡ εαβ∂βX̃a

Through the use of auxiliary fields, one gets the dual Polyakov
action S̃ [X̃ ; G̃ , B̃] on T̃ d with string coordinates X̃a and
connected to S [X ;G ,B] by X a → X̃a and suitable
transformations of (G ,B) through the Büscher rules.

Abelian T-duality: based on the presence of global Abelian
isometries in the target spaces of both the paired sigma models.
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T-dual invariant bosonic string
formulation

Doubling the coordinates, i.e. putting both the coordinates X a

and the dual ones X̃a in a generalized vector XA = (X a, X̃a)
(A = 1, . . . 2d), (a = 1, . . . d) it is natural to replace the standard
notation in string theory based on G and B by η and H.

Tseytlin action for constant backgrounds (A. A. Tseytlin, 1990
and 1991) highlights the role of the generalized vector X and of the
two metrics:

S = −T

2

∫
dτdσ

[
∂τXA∂σXBηAB − ∂σXA∂σXBHAB

]

The manifestly T-duality O(d , d) symmetric formulation may be
considered as a natural generalization of the standard one at the
string scale.

At compactification radius R >> α′ it reproduces the usual Polyakov
action, at R << α′ its dual.

First example of Born geometry.
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What about more general settings?

Are there similar aspects in more general settings, for instance,
when target space is curved or non-compact and/or, in
particular, for other kinds of T-dualities?

Non-Abelian T-duality refers to the existence of a global Abelian
isometry on the target space of one of the two σ-models and of
a global non-Abelian isometry on the other [de la Ossa and
Quevedo, 1992, Alvarez, Alvarez-Gaumé and Lozano, 1993 - M.
Rocek and E. Verlinde, 1993]

The notion of non-abelian T-duality is still lacking some of the key
features of its Abelian counterpart. A canonical procedure is missing
that would yield the original theory if one is given its non-Abelian
dual.

The Poisson-Lie T-duality [Klimčik and Severa, 1996] generalizes the
previous definitions to all the other cases.

9 / 39
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particular, for other kinds of T-dualities?

Non-Abelian T-duality refers to the existence of a global Abelian
isometry on the target space of one of the two σ-models and of
a global non-Abelian isometry on the other [de la Ossa and
Quevedo, 1992, Alvarez, Alvarez-Gaumé and Lozano, 1993 - M.
Rocek and E. Verlinde, 1993]

The notion of non-abelian T-duality is still lacking some of the key
features of its Abelian counterpart. A canonical procedure is missing
that would yield the original theory if one is given its non-Abelian
dual.

The Poisson-Lie T-duality [Klimčik and Severa, 1996] generalizes the
previous definitions to all the other cases.
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Why a Principal Chiral Model?

Principal Chiral Models: σ-models whose target space is a Lie
group G are very helpful in understanding Abelian, Non-Abelian
and Poisson-Lie T-dualities.

The relevant structure for the existence of dual counterparts:
the Drinfel’d double of G together with the notion of
Poisson-Lie symmetries.

Also it allows to establish more connections with Generalized
Geometry since tangent and cotangent vector fields of G may be
respectively related to the span of the Lie algebra ganditsdual g̃.

The Doubled Geometry may play a role in describing the
generalized dynamics on the tangent bundle TD ' D × d used
to describe within a single action both dually related models.
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Drinfel’d double

The Drinfel’d double of G : Lie group D, with dimension twice
the one of G . Its Lie algebra d can be decomposed into a pair of
maximally isotropic sub-algebras, g, g̃ with respect to a
non-degenerate invariant bilinear form on d.

For every decomposition of the Drinfel’d double D into dually
related subgroups G , G̃ , it is possible to define a couple of
PCM’s having as target configuration space either of the two
subgroups.

Every PCM has its dual counterpart for which the role of G and
its dual G̃ is interchanged : G ↔ G̃ .

The set of all decompositions (d, g, g̃), plays the role of the
modular space of sigma models mutually connected by an
O(d , d) transformation.

In particular, for the manifest Abelian T-duality of the string
model on the d-torus, the Drinfel’d double is D = U(1)2d and its
modular space, is in one-to-one correspondence with O(d , d ;Z).
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SU(2) Principal Chiral Model

SU(2) Principal Chiral Model: target space SU(2) and source
space R1,1 endowed with the metric hαβ = diag(−1, 1).

Action written in terms of g−1dg , the Lie algebra valued
left-invariant one-forms with g ∈ SU(2):

S =
1

4

∫
R2

dtdσ Tr
[
(g−1∂tg)2 − (g−1∂σg)2

]
trace → scalar product on the Lie algebra su(2),

non-degenerate and invariant.

S =
1

2

∫
R2

dtdσ (AiδijA
j − J iδijJ

j)

currents Ai and J i : g−1∂tg = 2Aiei , g
−1∂σg = 2J iei , ei = σi/2.

Ai = Tr
[
(g−1∂tg)ei

]
J i = Tr

[
(g−1∂σg)ei

]
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Equations of motion:

∂tA =∂σJ,

∂tJ =∂σA− [A, J]

→ integrability condition for the the existence of a g ∈ SU(2)
that allows the expression of the two currents Ai and J i .

At fixed t, all g ’s constant at infinity form an infinite
dimensional Lie group SU(2)(R) ≡ Map(R,SU(2)), given by
smooth maps g : σ ∈ R→ g(σ) ∈ SU(2).

At fixed time, the currents J and A take values in the Lie
algebra su(2)(R) of the group SU(2)(R).
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Lagrangian formalism

The tangent bundle description of the dynamics is given in terms
of (J,A): A left generalized velocities and J left configuration
space coordinates.

Infinitesimal generators of the Lie algebra su(2)(R):

Xi (σ) = X a
i (σ)

δ

δg a(σ)
,

with Lie brackets:

[Xi (σ),Xj(σ
′)] = c k

ij Xk(σ)δ(σ − σ′)

defining the current algebra su(2)(R) ' su(2)⊗ C∞(R).
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Hamiltonian Formalism

The target phase space is naturally given by T ∗SU(2) (Drinfel’d

double).

Topologically is the manifold S3 × R3.

As a group, T ∗SU(2) ' SU(2) nR3.

As a Poisson manifold it is symplectomorphic to the group
SL(2,C ) (same topology).

T ∗SU(2) and SL(2,C) are both Drinfel’d doubles of the group
SU(2). The former is said classical double.

(J i , Ii ) conjugate variables with J configuration space
coordinates and I left generalized momenta:

Ii =
δL

δ (g−1∂tg)i
= δij(g

−1∂tg)j = δijA
j .
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Hamiltonian:

H =
1

2

∫
R
dσ(Ii Ijδ

ij + J iJ jδij) =
1

2

∫
R
dσ II (H−10 )IJ IJ

II = (Ii , J
i ) components of the current 1-form on T ∗SU(2) and

(H−10 )
IJ

=

(
δij 0
0 δij

)
is a Riemannian metric on T ∗SU(2).

The Hamiltonian description of the Principal Chiral Model on
SU(2) naturally involves the Riemannian generalized metric H−10

on the cotangent bundle.
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The first-order Lagrangian, together with the canonical one-form
and the symplectic form, allows to determine the equal-time
Poisson brackets :

{Ii (σ), Ij(σ
′)} =εij

k Ik(σ)δ(σ − σ′)

{Ii (σ), J j(σ′)} =εki
jJk(σ)δ(σ − σ′)− δji δ

′(σ − σ′)
{J i (σ), J j(σ′)} =0

The I ’s generators of the Lie algebra su(2)(R).

The J’s span an Abelian algebra a.

I and J span the infinite-dimensional current algebra
c1 = su(2)(R) n a.

17 / 39
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Equations of motion:

∂t Ij(σ) = {H, Ij(σ)} = ∂σJ
kδkj(σ),

and

∂tJ
j(σ) = {H, J j(σ)} = ∂σIkδ

kj(σ)− ε jl
k IlJ

k(σ).

It is possible to give an equivalent description of the dynamics in
terms of a new one-parameter family of Poisson algebras [Rajeev,
1989] and modified Hamiltonians, with the currents playing a
symmetric role.

Deformed brackets by parameter τ (imaginary):

{Ii (σ), Ij(σ
′)} =(1− τ 2)εij

k Ik(σ)δ(σ − σ′)

{Ii (σ), J j(σ′)} =(1− τ 2)
(
Jk(σ)εki

jδ(σ − σ′)− (1− τ 2)2δji δ
′(σ − σ′))

{J i (σ), J j(σ′)} =(1− τ 2)τ 2εij k Ik(σ)δ(σ − σ′).

The new brackets correspond to the infinite-dimensional Lie algebra
c2 ' sl(2,C)(R) isomorphic to the current algebra modelled on the
Lorentz algebra sl(2,C).

18 / 39



Principal
Chiral Model:
T-dualities

and Doubling

Franco
Pezzella

Introduction
and Motivation

Principal
Chiral Model

A Drinfel’d
Double

Born
Geometry

Dual Principal
Chiral Models

The Doubled
Principal
Chiral Model

Conclusion
and Outlook

Equations of motion:

∂t Ij(σ) = {H, Ij(σ)} = ∂σJ
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k IlJ

k(σ).
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Deformed brackets by parameter τ (imaginary):
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′)} =(1− τ 2)εij
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(
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′(σ − σ′))
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Modified Hamiltonian:

Hτ =
1

2(1− τ 2)2

∫
R
dσ (Ii Ijδ

ij + J iJ jδij).

The previous equations of motion remain unmodified.
Alternative description of one and the same dynamics even
considering deformed algebras of SL(2,C).
Rescale the fields according to:

Ii
1− τ 2

→ Ii
J i

1− τ 2
→ J i .

The rescaled Hamiltonian Hτ becomes identical to the
undeformed one H, while the Poisson algebra acquires the form:

{Ii (σ), Ij(σ
′)} = εij

k Ik(σ)δ(σ − σ′),
{Ii (σ), J j(σ′)} = Jk(σ)εki

jδ(σ − σ′)− δji δ
′(σ − σ′),

{J i (σ), J j(σ′)} = τ 2εij k Ik(σ)δ(σ − σ′).
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Introduce new generators showing the bi-algebra structure of
sl(2,C)(R).
Keeping the generators of su(2)(R) unmodified, consider the
linear combination:

K i (σ) = J i (σ)− iτεli3Il(σ).

From the deformed Poisson brackets it is possible to derive the
Poisson brackets of the new generators:

{K i (σ),K j(σ′)} = iτ f ij kK
k(σ′) δ(σ − σ′)

together with

{Ii (σ), Ij(σ
′)} = εij

k Ik(σ)δ(σ − σ′)

{Ii (σ),K j(σ′)} =
(
K k(σ′)εki

j + iτ f jk i Ik(σ′)
)
δ(σ − σ′)− δji δ

′(σ − σ′)

The K ’s span the sb(2,C)(R) Lie algebra with structure constants
f ij k = εijlεl3k .
The Lie algebra c2 ≡ sl(2,C)(R) has been expressed as
c2 = su(2)(R) on sb(2,C)(R).
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SL(2,C) as a Drinfel’d Double

The Lie algebra sl(2,C) is defined by the Lie brackets:

[ei , ej ] = iεij
kek [ei , bj ] = iεij

kbk [bi , bj ] = −iεij kek .
with

e1 =
σ1
2
, e2 =

σ2
2
, e3 =

σ3
2

generators of su(2)

bi = iei , i = 1, 2, 3

It is equipped with two non-degenerate invariant scalar products:

〈u, v〉 = 2Im(Tr(uv)) ∀u, v ∈ sl(2,C)

(u, v) = 2Re(Tr(uv)) ∀u, v ∈ sl(2,C).

〈u, v〉 defines two maximally isotropic subalgebras

[ei , ej ] = iεij
kek , [ẽ i , ej ] = iεjk

i ẽk + iek f
ki
j , [ẽ i , ẽ j ] = i f ij k ẽ

k

spanned by {ei} and the linear combination ẽ i = bi − εij3ej .
su(2) and sb(2,C) maximally isotropic with respect to <,>:

〈ei , ej〉 = 0, 〈ẽ i , ẽ j〉 = 0, 〈ei , ẽ j〉 = δji
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Manin Triple

Each subalgebra acts on the other one non-trivially, by
co-adjoint action:

[ẽ i , ej ] = iεi jk ẽ
k + i f ki jek

SL(2,C) is Drinfel’d double of SU(2) and SB(2,C) with
polarization sl(2,C) = su(2) ./ sb(2,C) and
(sl(2,C), su(2), sb(2,C)) is a Manin triple.

SU(2) and SB(2,C) are then dual groups.
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Doubled notation:

eI =

(
ei
ẽ i

)
, ei ∈ su(2), ẽ i ∈ sb(2,C) .

The first scalar product then becomes:

(eI , eJ) = ηIJ =

(
0 δji
δij 0

)
which is O(3, 3) invariant by construction. The second scalar
product yields:

(eI , eJ) =

(
δij εip3δ

pj

δipεjp3 δij − εik3δklεjl3
)

.
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The splitting d = C+ ⊕ C− with C+,C− spanned by {ei}, {bi}
respectively, defines a positive definite metric H on d via:

H = ( , )C+ − ( , )C−

satisfying
HTηH = η

namely H is a pseudo-orthogonal O(3, 3) metric.
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A whole family of models exists, described by the Hamiltonians
labelled by the parameter τ in terms of IJ = (Ij ,K

j):

Hτ =
1

2

∫
R
dσ IL(H−1τ )LM IM

with H−1τ being the Riemannian generalized metric

H−1τ =

(
hij(τ) iτεip3δpj

iτδipε
jp3 δij

)
where:

hij(τ) = δij − τ 2εia3δabεjb3 .

They are related (and indeed equivalent) to the standard SU(2)
chiral model by the O(3, 3) transformation
K i (σ) = J i (σ)− iτεli3Il(σ), symmetry of the dynamics because
it maps solutions into solutions .
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Born Geometry

What is the geometrical meaning of H−1τ emerging in the
definition of the alternative Hamiltonian Hτ?

The Hamiltonian description naturally involves the Riemannian
metric:

(H−10 )
IJ

=

(
δij 0
0 δij

)
one of the structures defining a Born geometry on T ∗SU(2)
T ∗SU(2) is a Born manifold: a phase space equipped with a
structure (η, κ,H0) with κ ∈ End(su(2) nR3) such that κ2 = 1

with su(2) eigenspace of κ associated with the eigenvalue +1
and R3 eigenspace with the eigenvalue −1. The structures
< · , · > and κ satisfy a compatibility condition

< κ(ξ), ψ >= − < κ(ψ), ξ >, ∀ξ, ψ ∈ su(2) nR3,

which defines a two-form ω on su(2) nR3.
Defining relations:

η−1H0 = H−10 η ω−1H0 = −H−10 ω.
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B-transformations

The deformed Hamiltonian Hτ also gives a Riemannian metric
on T ∗SU(2) and is a B-transformation of the metric H0.

τ -dependent B-transformation

eB(τ) =

(
1 iτB
0 1

)
∈ O(3, 3)

with components of the tensor B given by B ij = εij3

Hτ is obtained by the B-transformation acting on H0 :

Hτ =
(
e−B(τ)

)tH0e
B(τ).

The family of equivalent Hamiltonian descriptions of the SU(2)
PCM can be understood in terms of a one-parameter family of
Born geometries for T ∗SU(2), corresponding, for each choice of
the parameter τ , to a specific splitting of the phase space, with
the value τ = 0 the canonical splitting.

27 / 39



Principal
Chiral Model:
T-dualities

and Doubling

Franco
Pezzella

Introduction
and Motivation

Principal
Chiral Model

A Drinfel’d
Double

Born
Geometry

Dual Principal
Chiral Models

The Doubled
Principal
Chiral Model

Conclusion
and Outlook

B-transformations

The deformed Hamiltonian Hτ also gives a Riemannian metric
on T ∗SU(2) and is a B-transformation of the metric H0.

τ -dependent B-transformation

eB(τ) =

(
1 iτB
0 1

)
∈ O(3, 3)

with components of the tensor B given by B ij = εij3

Hτ is obtained by the B-transformation acting on H0 :

Hτ =
(
e−B(τ)

)tH0e
B(τ).

The family of equivalent Hamiltonian descriptions of the SU(2)
PCM can be understood in terms of a one-parameter family of
Born geometries for T ∗SU(2), corresponding, for each choice of
the parameter τ , to a specific splitting of the phase space, with
the value τ = 0 the canonical splitting.
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Poisson-Lie structure

The PCM, in the Hamiltonian formulation given by any Hτ is a
Poisson-Lie sigma-model.

Hamiltonian vector fields XK i · := {·,K i} associated to the
coordinates functions K i for T ∗SU(2), close a non-Abelian
algebra according to the following:

[XK i ,XK j ] = X{K i ,K j} = iτ f ijk XK k

because of the non-trivial Poisson bracket
{K i (σ),K j(σ′)} = iτ f ij kK

k(σ′)δ(σ − σ′) → the constant
structures of the dual Lie algebra sb(2,C) appear.

A dual formulation of this property can be given in terms of the
Hamiltonian vector fields associated with the currents Ii that
close the Lie algebra su(2).
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Poisson-Lie dual models

Two-parameter generalization in the Poisson algebra generated
by Ii and K i by adding another imaginary parameter α making
the role of the subalgebras su(2)(R) and sb(2,C)(R) symmetric:

{Ii (σ), Ij(σ
′)} = iα εij

k Ik(σ)δ(σ − σ′)

{K i (σ),K j(σ′)} = iτ f ij kK
k(σ′)δ(σ − σ′)

{Ii (σ),K j(σ′)} =
(
iαK k(σ′)εki

j + iτ f jk i Ik(σ′)
)
δ(σ−σ′)−δji δ

′(σ−σ′)

In the limit iτ → 0, it reproduces the semi-direct sum su(2)(R) n a,
while the limit iα→ 0 yields sb(2,C)(R) n a.

For all non zero values of the two parameters, the algebra is
isomorphic to sl(2,C), and, by suitably rescaling the fields, one gets a
two-parameter family of models, all equivalent to the PCM.
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The dynamics derived from this algebra is equivalent to the
dynamics following from the original underfomed algebra on
T ∗SU(2) and the undeformed Hamiltonian, if the new
Hamiltonian is considered:

Hτα =
1

2

∫
R
dσ IL(H−1τ,α)LM IM .

with

Hτ,α−1 =

(
hij (τ)
(iα)2 iτεip3δpj

iτδipε
jp3 (iα)2δij

)

Since the role of I and K is now symmetric, one can perform an
O(3, 3) transformation which exchanges the momenta Ii with
the fields K i , thus obtaining a new two-parameter family of
models, dual to the PCM.
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The O(3, 3) transformation

K̃ (σ) = I (σ), Ĩ (σ) = K (σ)

when applied to Hτα and to the corresponding Poisson algebra
leads to a new family of models having target space
configuration the group manifold of SB(2,C ) spanned by the
fields K̃i and momenta Ĩ i . These are the Dual Principal Chiral
Models.

The Dual Principal Chiral Models are Poisson-Lie sigma models.
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Principal Chiral Model SB(2,C ) -
Lagrangian approach

Lagrangian for the PCM SB(2,C ) involving
g̃ : (t, σ)→ SB(2,C ), one-forms valued in the Lie algebra
sb(2,C) and T r non-degenerate product only invariant under
SB(2,C ) action:

S̃ =
1

2

∫
R1,1

T r
[
φ∗(g̃−1dg̃) ∧ φ∗(g̃−1dg̃)

]
with φ̃∗(g̃−1dg̃) = (g̃−1∂t g̃)i ẽ

i dt + (g̃−1∂σ g̃)i ẽ
i dσ

Ãi = (g̃−1∂t g̃)i , J̃i = (g̃−1∂σ g̃)i

The Lagrangian becomes then:

L̃ =
1

2

∫
R
dσ(Ãih

ij Ãj − J̃ih
ij J̃k)

At fixed t, all elements g̃ constant at the infinity form the
infinite-dimensional Lie group
SB(2,C)(R) ≡ Map(R,SB(2,C)), given by smooth maps
g̃ : σ ∈ R→ g̃(σ) ∈ SB(2,C) which are constant at infinity.
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Principal Chiral Model SB(2,C ) -
Hamiltonian approach

By introducing left momenta Ĩ i = Ãjh
ij and inverting for the

generalized velocities, one obtains the Hamiltonian:

H̃ =
1

2

∫
R
dσĨI (K̃−10 )IJ ĨJ

with

K̃0 =

(
h ij 0
0 hij

)
and ĨJ = (Ĩ j , J̃j).

Equal-time Poisson brackets

{Ĩ i (σ), Ĩ j(σ′)} =f ij k Ĩ
k(σ)δ(σ − σ′),

{Ĩ i (σ), J̃j(σ
′)} =J̃k(σ)f ki jδ(σ − σ′)− δij δ′(σ − σ′),

{J̃i (σ), J̃j(σ
′)} =0

Dual Born geometry.
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The Doubled Principal Chiral Model

Group valued field Φ : R1,1 → γ ∈ SL(2,C) and the
left-invariant Maurer-Cartan one-form γ−1dγ ∈ sl(2,C ):

Φ∗(γ−1dγ) = γ−1∂tγdt + γ−1∂σγdσ

By using the Lie algebra basis eI = (ei , ẽ
i ) one has:

γ−1∂tγ = Q̇I eI , ; γ−1∂σγ = Q′I eI .

Q̇I ,Q′I , left generalized coordinates, respectively given by:

Q̇I = Tr
(
γ−1∂tγeI

)
, Q′I = Tr

(
γ−1∂σγeI

)
with Tr the Cartan-Killing metric of sl(2,C).
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Lagrangian

The Lagrangian density can be rewritten in terms of the left
generalized coordinates Q̇I as follows:

L =
1

2
(k η +H)IJ

(
Q̇I Q̇J −Q′IQ′J

)
with

(kη +H)IJ =

(
δij kδji + ε j3i

kδij − εij3 (δij + εik3ε
j
l3δ

kl)

)

η (Lorentzian) and H (Riemannian) are the left-invariant metrics
on SL(2,C) induced, respectively, by the pairings 2ImTr() and
2ReTr() on sl(2,C). They are two of the structures defining a
Born geometry on SL(2,C).

The degrees of freedom are doubled. Performing a gauging of its
global symmetries both the Lagrangian models, with SU(2) and
SB(2,C ) target configuration spaces, can be retrieved.
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Hamiltonian Formalism

Canonical momentum:

II = (Ii , Ĩ
i ) =

δL

δQ̇I
= (k η +H)IJQ̇

J .

The Legendre transform gives:

H =
1

2

∫
R
dσ
(
[(k η +H)−1]IJ II IJ + (k η +H)IJJ

IJJ
)
.

Poisson brackets:

{II (σ′), IJ(σ′′)} = CIJ
K IKδ(σ′ − σ′′)

{II (σ′), JJ(σ′′)} = CKI
JJKδ(σ′ − σ′′)− δJI δ′(σ′ − σ′′)

{JI (σ′), JJ(σ′′)} = 0

with Q′I → JI
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Conclusion

Recovering many aspects of the Abelian T-duality.

Derivation of a whole family of equivalent PCM models
described in terms of current algebra of the group SL(2,C).

They can be interpreted in terms of Born geometries related by
B-transformations.

O(3, 3) transformations allow to find a parametric family of
T-dual PCM models, with target configuration space the group
SB(2,C, the Poisson-Lie dual of SU(2) in the Iwasawa
decomposition of the Drinfel’d double SL(2,C). They exhibit
Poisson-Lie symmetries.

A further double PCM with the group manifold of SL(2,C) has
been constructed.
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T-dual PCM models, with target configuration space the group
SB(2,C, the Poisson-Lie dual of SU(2) in the Iwasawa
decomposition of the Drinfel’d double SL(2,C). They exhibit
Poisson-Lie symmetries.

A further double PCM with the group manifold of SL(2,C) has
been constructed.
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Outlook

Extension with a Wess-Zumino term: this could provide a deeper
insight on the geometric structures of String Theory on AdS3.

Extension to String Theory on Group Manifolds.

To apply this scheme of construction to the world-sheet action.
In this case, a manifestly O(d , d)-invariant action may be
written, considering that the configuration space is a
differentiable manifold. It would be interesting to A doubled
world-sheet string action, as discussed for Principal Chiral
Models, could be written and then perform the low energy limit.
This limit result should reproduce all the results so far obtained
in Double Field Theory.
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Thank you for your attention.
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