Event selection and differential cross section measurements in H->41 decays

Panagiotis Bellos

On behalf of the ATLAS Collaboration

This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project "Strengthening Human Resources Research Potential via Doctorate Research" (MIS-5000432), implemented by the State Scholarships Foundation (IKY)

Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union

2/9/2019

Contents

- ATLAS experiment
- Higgs boson production, decays and backgrounds
- Event selection and background estimation
- Cross Sections measurements

ATLAS Experiment

 ATLAS Detector collected ~ 140 fb⁻¹ good for physics data during Run II working very successfully in a high pile-up environment

Higgs Boson Production-Decays-Bkgs

4*l* Event Selection

- Leptons are crucial to some of the most important physics analyses
- Very high efficiency for both e and μ
- 3 different working points (loose, medium, tight)
- Use loose identification criteria for the leptons of our analysis e (\sim 90%) and μ (\sim 99%) efficiencies

Event Selection Summary

- 2 pairs of leptons (dileptons) with invariant masses, flavor and charge compatible with the decayed ZZ* assumption
- Isolated (to reject leptons inside Jets)
- Small impact parameter significance
- Coming from the same vertex (to reject leptons from heavy flavor Jets)
- Best quadruplet according to Matrix Element

TLAS-CONF-2019-025

Background Data Driven Estimation

- The bkg is estimated in a Data Driven way in order to avoid the theoretical and simulation uncertainties.
- The properties of the reducible bkg are determined mainly by the subleading dilepton.
- So it is separated to :
 - $\underline{\ell \ell \mu \mu}$, mostly Heavy Flavor jets produced in association with a Z boson or in $t\bar{t}$ decays. Minor Z+LF jets contribution.
 - <u>*ll ee,*</u> mainly coming from light-flavor jets mis-identified as electrons (f) and Photon conversions or FSR (γ). Lower contribution from HF jets.
- Inverting/changing some selection criteria, special Control Regions (CRs) with high bkg purity are constructed, suitable for the bkg estimation.
- CRs are fitted and the yields are extrapolated to the Signal Region (SR).

- The irreducible bkg (ZZ*) is also estimated in a data driven way.
- Consists of mainly of qq->ZZ and minor contributions from gg->ZZ, qq->ZZjj.
- Estimated in the final fit including both the Signal Region and the side bands

2 types of Cross Sections Measurements

The Cross Sections can be used to **test SM predictions** and **constrain beyond SM effects** (Yukawa couplings, Higher Order QCD corrections sensitivity, new physics via EFT, etc)

- Cross Sections are measured in the fiducial phase space which closely follow the kinematic and event selection criteria
- No assumption is made for production mode (model independent)
- Results are extrapolated to the full phase space to be combined with the rest the Higgs boson decay channels
- Differential distributions are also measured

 $\sigma^{fid} = \sigma \cdot A \cdot BR(H \to 4l) = \frac{N_s}{C \cdot I_{iint}}$

 N_s : number of signal events

 $A = \frac{N_{fid}}{N_{truth}} : Detector Acceptance$

 $C = \frac{N_{rec}}{N_{fid}}$: Detector Efficiency

BR : Branching Ratio

L_{int} : Integrated Luminosity

- Cross sections are also measured according to the production modes within the theory defined phase-space
 - Measurements are performed using a simplified template (STXS), targeting sensitivity to the different couplings.

$$\sigma^{pm} = \sigma \cdot BR(H \to ZZ) = \frac{N_s}{A \cdot C \cdot L_{int} \cdot BR(ZZ \to 4l)}$$
⁷

Systematic Uncertainties

The uncertainties affect

- Signal acceptance
- Physics object reconstruction and identification efficiency
- Selection efficiency
- Response matrices
- NN discriminant distributions
- Background estimates

Experimental uncertainties

- Luminosity
- Electron/muon reconstruction and identification efficiencies and pile-up modelling
- Jet energy scale/resolution and b-tagging efficiencies
- Uncertainties on reducible background

Theoretical uncertainties

- Theoretical uncertainties on ZZ and tXX background
- Theoretical uncertainties on signal : Parton Density Function QCD scale
 - Showering algorithm
- Uncertainties on Signal composition

	I	Experimen	tal uncertaintie	es [%]	Theory uncertainties [%]					
Measurement	Lum.	<i>e</i> , μ,	Jets, flavour	Reducible	ZZ*	tXX			Signal	
		pile-up	tagging	backgr.	backgr	backgr.	PDF	QCD scale	Parton Shower	Composition
				Fidu	icial cross	section				
$\sigma_{\rm comb}$	1.7	2.5	-	< 0.5	1	< 0.5	< 0.5	2	1	< 0.5
			Pe	er decay final	state fidu	cial cross	sections			
4μ	1.7	2.5	-	0.5	1	< 0.5	< 0.5	2	1	< 0.5
4e	1.7	7	-	0.5	1.5	< 0.5	< 0.5	2	0.5	< 0.5
$2\mu 2e$	1.7	5.5	-	0.5	1	< 0.5	< 0.5	2	1.5	< 0.5
$2e2\mu$	1.7	2.0	-	0.5	1	< 0.5	< 0.5	2	1	< 0.5
				Stage-0 proc	luction bi	n cross se	ctions			
ggF	1.7	1.5	1	0.5	1.5	< 0.5	0.5	1	2	-
VBF	1.7	1	4.5	0.5	2	0.5	1.5	8	6	-
VH	1.8	1.5	3.5	1	5	0.5	2	12	8	-
ttH	1.7	1	4.5	1	1	0.5	0.5	8	4	-

Fiducial and Total Cross Sections

Cross

- The cross sections are measured using a binned **profile** likelihood- ratio fit on m₄₁
- The likelihood function includes the shape and normalization uncertainties as nuisance parameters
- The cross sections are extrapolated to the total phase space and compared to the predictions of various event generators

 $\sigma_{fid} = 3.35 \ \pm 0.30 \ \pm 0.12$ fb

 $\sigma_{tot} = 54.7 \pm 4.9 \pm 2.3 \text{ pb}$

ATLAS-CONF-2019-025

Differential Cross Section

- Measurement of a quantity by a real detector is effected by 3 ways
 Limited acceptance
 Finite resolution
 Transformation (measure p_{T41} instead p_{TH})
- An unfolding method is needed to extract the information at truth level
- The detector response matrix allows to account for bin-to-bin migrations in the unfolding
- It corresponds to the probability that an event generated with the fiducial volume in the observable bin j is reconstructed in the bin i.
- The response matrix is included in the likelihood fit in order to take into account all the migrations
- Migrations are small compared to the statistical uncertainty

Differential Cross Sections

ATLAS-CONF-2019-025

Production Modes

Higgs events are classified into **12 categories** using N_{iet} and p_{T} of Higgs or jets

- Each of them is **sensitive to a different production** _ mechanism or kinematic region
- The categories are chosen to — Maximize measurement precision and Probe possible Beyond Standard Model (BSM) contributions

Production Modes NN

- Neural Networks are introduced for the reconstructed categories to increase sensitivity
- The NNs are trained on simulated SM Higgs boson signal and non-Higgs background or the other production processes
- The NNs have two or three output nodes depending on the category
- The NN discriminants are fitted to extract the signal contribution of each category

Category	Processes	MLP	Lep rNN	Jet rNN
0 <i>j</i>	ggF,ZZ	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34}, \cos \theta^*, \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T},\ell},\eta_\ell$	n/a
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Low	ggF,VBF,ZZ	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, \ \Delta R_{4\ell j}, D_{ZZ^*}$	$p_{\mathrm{T},\ell},\eta_\ell$	n/a
$1j \cdot p_{\mathrm{T}}^{4\ell}$ -Med	ggF, VBF, ZZ	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, E_{\mathrm{T}}^{\mathrm{miss}}$ $\Delta R_{4\ell j}, D_{ZZ^*}, \eta_{4\ell}$	-	n/a
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T},j}, \eta_j, \ \Delta R_{4\ell j}, \eta_{4\ell}, E_{\mathrm{T}}^{\mathrm{miss}}$	Рт, е	n/a
2 <i>j</i>	ggF, VBF, VH	$m_{ m jj},\Delta\eta_{ m jj},p_{ m T,4\ell jj}$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j}, \eta_j$
2j-BSM-like	ggF, VBF	$\Delta \eta_{jj}, \Delta \eta_{4\ell jj}, p_{T,4\ell jj}$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j}, \eta_j$
VH-Lep-enriched	ttH, VH	$N_{\text{jets}}, N_{b-\text{jets}}, E_{\text{T}}^{\text{miss}}, $ HT, $\ln(\mathcal{M}_{sig} ^2)$	Рт, е	n/a
ttH-Had-enriched	ttH, tXX, ggF	$p_{\mathrm{T}}^{4\ell}, m_{\mathrm{jj}}, \Delta \eta_{\mathrm{jj}}, \\ p_{\mathrm{T}, jj}, \min(\Delta R_{Zj}), \Delta \eta_{4\ell jj}, N_{\mathrm{jets}}, N_{b-\mathrm{jets}}, \\ E_{\mathrm{T}}^{\mathrm{miss}}, \min(\Delta R_{4\ell j}), \mathrm{HT}, \ln(\mathcal{M}_{sig} ^2)$	$p_{\mathrm{T},\ell},\eta_\ell$	$p_{\mathrm{T},j},\eta_j$

 The bin boundaries are chosen to maximize the significance of the targeted signal in each category

Production Modes Cross Sections

The observed and expected SM values of the production cross sections

Summary

- The ATLAS experiment collected \sim 140 fb⁻¹ during Run II
- Inclusive, differential and production XSs were measured close to the theoretically predicted values
- For the inclusive $\sigma_{fid}=3.35~\pm0.30~\pm0.12$ fb , $~SM~expectation:3.41~\pm0.18$ fb
- The differential XSs shapes are in agreement with the event generators expectation
- $\begin{array}{ll} & \mbox{For the significant production modes ggF and VBF} \\ & \mbox{ggF}: \sigma \cdot B(H \rightarrow ZZ^*) = 1.15 \ \pm 0.13 \ \mbox{pb}, & \mbox{SM expectation}: 1.17 \ \pm 0.08 \ \mbox{pb} \\ & \mbox{VBF}: \sigma \cdot B(H \rightarrow ZZ^*) = 0.13 \ \pm 0.04 \ \mbox{pb}, & \mbox{SM expectation}: 0.0920 \ \pm 0.0031 \ \mbox{pb} \end{array}$
- The uncertainties in all measurements are statistically dominated
 So we expect a considerably improved precision in Run III and even more with HL-LHC later on

Back up

Cross sections

		v		•		
\sqrt{s} (TeV)	Pro	oduction cros	s section (in	pb) for m_H :	= 125 GeV	
	ggF	VBF	WH	ZH	$t\bar{t}H$	total
1.96	$0.95^{+17\%}_{-17\%}$	$0.065^{+8\%}_{-7\%}$	$0.13^{+8\%}_{-8\%}$	$0.079^{+8\%}_{-8\%}$	$0.004^{+10\%}_{-10\%}$	1.23
7	$16.9^{+5\%}_{-5\%}$	$1.24^{+2\%}_{-2\%}$	$0.58^{+3\%}_{-3\%}$	$0.34^{+4\%}_{-4\%}$	$0.09^{+8\%}_{-14\%}$	19.1
8	$21.4^{+5\%}_{-5\%}$	$1.60^{+2\%}_{-2\%}$	$0.70^{+3\%}_{-3\%}$	$0.42^{+5\%}_{-5\%}$	$0.13^{+8\%}_{-13\%}$	24.2
13	$48.6^{+5\%}_{-5\%}$	$3.78^{+2\%}_{-2\%}$	$1.37^{+2\%}_{-2\%}$	$0.88^{+5\%}_{-5\%}$	$0.50^{+9\%}_{-13\%}$	55.1
14	$54.7^{+5\%}_{-5\%}$	$4.28^{+2\%}_{-2\%}$	$1.51^{+2\%}_{-2\%}$	$0.99^{+5\%}_{-5\%}$	$0.60^{+9\%}_{-13\%}$	62.1

Cross section [fb]	Data	$(\pm (stat.)$	± (syst.))	Standard Model pr	ediction <i>p</i> -value [%]
$\sigma_{4\mu}$	0.84	±0.12	±0.03	0.901 ± 0.04	48 63
σ_{4e}	0.63	±0.17	±0.04	0.901 ± 0.04	14 14
$\sigma_{2\mu 2e}$	0.74	±0.15	±0.04	0.805 ± 0.04	66
$\sigma_{2e2\mu}$	1.03	±0.15	±0.03	0.805 ± 0.04	13 11
$\sigma_{4\mu+4e}$	1.47	±0.21	±0.06	1.80 ± 0.10) 14
$\sigma_{2\mu 2e+2e2\mu}$	1.77	±0.21	±0.06	1.61 ± 0.09) 46
$\sigma_{ m sum}$	3.24	±0.31	±0.11	3.41 ± 0.18	60
$\sigma_{ m comb}$	3.35	±0.30	±0.12	3.41 ± 0.18	8 85
$\sigma_{ m tot}$ [pb]	54.7	±4.9	±2.3	55.7 ± 2.8	85

Decay channel	Branching ratio	Rel. uncertainty
$H \to \gamma \gamma$	2.27×10^{-3}	$^{+5.0\%}_{-4.9\%}$
$H \to Z Z$	2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \rightarrow W^+ W^-$	2.14×10^{-1}	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$	6.27×10^{-2}	$+5.7\% \\ -5.7\%$
$H ightarrow b ar{b}$	5.84×10^{-1}	$^{+3.2\%}_{-3.3\%}$
$H \to Z \gamma$	1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$
$H \to \mu^+ \mu^-$	2.18×10^{-4}	$^{+6.0\%}_{-5.9\%}$

Event Selection & Fiducial Phase Space

Physics Objects		Event Selection
Electrons	QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour
Loose Likelihood quality electrons with hit in innermost layer, $E_{\rm T} > 7$ GeV and $ \eta < 2.47$	SELECTION	opposite-charge leptons fulfilling the following requirements:
Interaction point constraint: $ z_0 \cdot \sin \theta < 0.5 \text{ mm}$ (if ID track is available)		- $p_{\rm T}$ thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV
Muons	_	- At most 1 calo-tagged, stand-alone or silicon-associated muon per quadruplet
Loose identification with $p_{\rm T} > 5$ GeV and $ \eta < 2.7$		- Leading di-lepton mass requirement: $50 < m_{12} < 106$ GeV
Calo-tagged muons with $p_{\rm T} > 15$ GeV and $ \eta < 0.1$, segment-tagged muons with $ \eta < 0.1$		- Sub-leading di-lepton mass requirement: $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$
Stand-alone and silicon-associated forward restricted to the 2.5 $< \eta < 2.7$ region		- $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs in the quadruplet
Combined, stand-alone (with ID hits if available) and segment-tagged muons with $p_{\rm T} > 5$ GeV		- Remove quadruplet if alternative same-flavour opposite-charge
Interaction point constraint: $ d_0 < 1$ mm and $ z_0 \cdot \sin \theta < 0.5$ mm (if ID track is available)		di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$
Jets	_	- Keep all quadruplets passing the above selection
anti- k_T jets with <i>bad-loose</i> identification, $p_T > 30$ GeV and $ \eta < 4.5$	ISOLATION	- Contribution from the other leptons of the quadruplet is subtracted
Jets with $p_{\rm T}$ < 60 GeV and $ \eta $ < 2.4 are required to pass the pile-up jet rejection		max(ptcone20_TightTTVA_pt500, ptvarcone30_TightTTVA_pt500) + $0.4 \cdot \text{neflowisol} 20/p_T < 0.16$
at the 92% working point (JVT score > 0.59).		(Variables defined in the text below)
Jets with $p_{\rm T}$ < 50 GeV and $ \eta $ > 2.5 are required to pass the forward pile-up jet rejection	IMPACT	- Apply impact parameter significance cut to all leptons of the quadruplet
at the 90% working point.	PARAMETER	- For electrons: $d_0/\sigma_{d_0} < 5$
<i>b</i> -tagging	SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$
Previously selected jets with $ \eta < 2.5$ are assigned a b-tagging weight by the MV2_c10 algorithm	Best	- If more than one quadruplet has been selected, choose the quadruplet
OVERLAP REMOVAL	QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$
Jets within $\Delta R < 0.2$ of an electron or $\Delta R < 0.1$ of a muon are removed	VERTEX	- Require a common vertex for the leptons:
	SELECTION	$-\chi^2/\text{ndof} < 6$ for 4μ and < 9 for others decay channels

Lepton definiton						
Muons: $p_{\rm T}^{\mu} > 5 {\rm GeV}, \eta$	$ \mu < 2.7$ Electrons: $p_{\rm T}^e > 5 {\rm GeV}, \eta^e < 2.7$					
	Pairing					
Leading pair:	SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $					
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $					
Event selection						
Lepton kinematics:	Leading lepton $p_{\rm T} > 20, 15, 10 {\rm GeV}$					
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$					
Lepton separation:	$\Delta R_{\ell_i \ell_i} > 0.1$ for all leptons					
Jet/Lepton separation:	$\Delta R_{\ell_i jet} > 0.1$ between jets and leptons (else jet is vetoed)					
J/ψ veto:	$m_{\ell_i \ell_i} > 5 \text{ GeV}$ for all SFOS lepton pairs					
Mass window:	$115 < m_{4\ell} < 130 \text{GeV} \ (105 < m_{4\ell} < 160 \text{GeV})$					

MC – Data Comparison

Final	Signal	ZZ^*	Other	Total	Observed
state		background	backgrounds	expected	
4μ	78 ± 5	38.1 ± 2.2	2.87 ± 0.18	119 ± 5	118
2e2µ	52.8 ± 3.1	26.1 ± 1.4	3.01 ± 0.19	81.9 ± 3.4	98
2µ2e	40.0 ± 2.9	17.4 ± 1.3	3.5 ± 0.5	60.9 ± 3.2	57
4e	35.3 ± 2.6	15.1 ± 1.5	2.9 ± 0.4	53.3 ± 3.1	43
Total	206 ± 13	97 ± 6	12.3 ± 0.9	315 ± 14	316

Leptons can be produced by the semileptonic decays of heavy flavor hadrons

Muons can be produced by light flavor hadrons (π/K) in-flight decays

LF jets and y can also produce fake electrons

Background Data Driven Estimation

<u>*ll* µµ strategy</u>

- **Com/s** : $ZHF ZLF t\overline{t}$ (& WZ)
- **CRs** : Inverted d0 (HF enriched) Inverted Iso (ZLF enriched) Same Sign (ZLF enriched) $e\mu (t\bar{t} enriched)$ Relax Iso d0 (intermediate region)
- **Fit** : Simultaneous fit (4 CRs) of m_{12}
- \mbox{SR} : Fractions from CRs to RR & Transfer factors. TFs are controlled with Z+ μ sample

 $\mathbf{MC}: \mathsf{WZ}$

<u>*ll* ee strategy</u>

Com/s : $f - \gamma$ (& q)

CRs : 3ℓ + X

- Fit : Fit of $N_{innerPix}$ Template taken from Z+X γ/f enriched samples
- SR : Efficiency Scale Factors (function of njets and pT). ESFs controlled with Z + X sample

MC : q − controlled in a HF enriched 3ℓ + X region

ZZ strategy

Com/s : qqZZ, ggZZ, qqZZjj, (ttV)

CRs : Signal Region Side bands (105-115 & 130-160 GeV)

Fit : Fit of m4l

tVV is also Data driven estimated for production XSs