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§1. Introduction

Purpose

Physics

Geometry of physical theories with Lie algebroid symmetries

T-duality, U-duality, etc.

Cf. target space descriptions

Bessho, Carow-Watamura, Heller, Kaneko, NI, Watamura, ’17,

Carow-Watamura, Kaneko, NI, Watamura ’18
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Math

The moment map theory is not sufficient to describe a symmetry

and the Noether’s theorem in physics.

Everything are categorified, groupoidified.

Plan of Talk

Nonlinear sigma models with B-field and gauging

Momentum sections

H-flux case
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§2. 2D gauged nonlinear sigma model with B-field
with boundary

Σ: a two dimensional manifold with boundary ∂Σ ̸= ∅.
M : a d-dimensional target manifold.

X : Σ → M is a smooth map from Σ to M .

We start at

S =
1

2

∫
Σ

gij(X)dXi ∧ ∗dXj + bij(X)dXi ∧ dXj,

where g is a metric and b ∈ Ω2(M) is a closed 2-form on M .
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Infinitesimal symmetries

We consider a symmetry on the target space described by a Killing

vector ρ.

ρ has a structure of a Lie algebra g, precisely,

a map from E = M × g, to a tangent bundle, ρ : E → TM ,

i.e. ρ(ea) = ρia(X)∂i by taking a basis ea of E.

A Killing vector ρ defines an infinitesimal transformation of X as

δXi = ρ(ϵ)i = ρia(X)ϵa,

where i = 1, 2, · · · , d are indices of local coordinates on M , ϵ is a
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gauge parameter.

S is in invariant under this transformation iff

Lρ(ea)g = 0,

Lρ(ea)b = dβa,

[ρ(ea), ρ(eb)] = ρ([ea, eb]),

where L is a Lie derivative and βa ∈ Ω1(M,E∗) is an arbitrary

1-form.

Generalization to a vector bundle

The above formula holds for a general vector bundle E.
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Gauging Hull, Spence ’91

Chatzistavrakidis, Deser, Jonke ’16, Chatzistavrakidis, Deser, Jonke, Strobl ’17

We consider gauging of the previous symmetry. The transformation

is gauged by introducing a connection 1-form A ∈ Ω1(Σ, X∗E).

A pullback of a basis of a 1-form on M , dXi, is ’gauged’ as

F i = DXi = dXi − ρia(X)Aa.

We assume Aa has a genuine infinitesimal gauge transformation,

δAa = dϵa + [A, ϵ]a = dϵa + Ca
bcA

bϵc,
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however, Ca
bc = Ca

bc(X) is not necessarily constant but a local

function on M .

Here, we consider a target space covariant gauge transformation

by introducing (a pullback of) a target space connection on M ,

Γa
bi(X):

δAa = dϵa + Ca
bc(X)Abϵc + Γa

bi(X)ϵbDXi.

In summary, we suppose gauge transformations,

δXi = ρia(X)ϵa,

δAa = dϵa + Ca
bc(X)Abϵc + Γa

bi(X)ϵbDXi.
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In order to make the action invariant under gauge symmetries, we

take the following Hull-Spence type ansatz with boundary:

S =
1

2

∫
Σ

gij(X)DXi ∧ ∗DXj + bij(X)dXi ∧ dXj

+

∫
∂Σ

ηi(X)dXi + µa(X)Aa,

where ηi and µa are arbitrary functions of X.
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Target space geometry

Metric

Requirement δS = 0 gives the following conditions for g and ρ,

Lρ(ea)g = Γb
a ∨ ιρ(eb)g,

[ρ(ea), ρ(eb)] = ρ([ea, eb]),

where ∨ is a symmetric product of 1-forms.
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B-field term

Gauge invariance requirement for a B-field term with boundary terms

imposes conditions,

µa = −ηiρ
i
a,

ρjabji + ρja∂jηi + ηj∂iρ
j
a + Γb

aiµb = 0,

ρia∂iµb − Cc
abµc − ρibΓ

c
aiµc = 0,

What is this geometry?
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§3. Lie algebroid and momentum section

Lie algebroid Pradines ’67

Let E be a vector bundle over a smooth manifold M . A Lie

algebroid (E, ρ, [−,−]) is a vector bundle E with a bundle map

ρ : E → TM and a Lie bracket [−,−] : Γ(E) × Γ(E) → Γ(E)

satisfying the Leibniz rule,

[e1, fe2] = f [e1, e2] + ρ(e1)f · e2,

where ei ∈ Γ(E) and f ∈ C∞(M).

A bundle map ρ is called an anchor map.
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Lie algebroid differential

Γ(∧•E∗) is a space of exterior algebra on a Lie algebroid E. We

define a Lie algebroid differential Ed such that (Ed)2 = 0.

A Lie algebroid differential Ed : Γ(∧mE∗) → Γ(∧m+1E∗) for

α ∈ Γ(∧mE∗) and ei ∈ Γ(E) is defined by

Edα(e1, . . . , em+1) =

m+1∑
i=1

(−1)i−1ρ(ei)α(e1, . . . , ěi, . . . , em+1)

+
∑
i,j

(−1)i+jα([ei, ej], e1, . . . , ěi, . . . , ěj, . . . , em+1).
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Connection

Let (E, ρ, [−,−]) be a Lie algebroid over M .

A connection (a linear connection) on E is introduced as a covariant

derivative D : Γ(E) → Γ(E ⊗ T ∗M). A connection is extended to

Γ(M,∧•T ∗M ⊗ E) as a degree 1 operator.

Pre-symplectic manifold

Let M be a smooth manifold. (M,B) is a pre-symplectic manifold

if a 2-form B ∈ Ω2(M) is closed, dB = 0.
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Momentum section Blohmann, Weinstein ’18, Kotov, Strobl ’16

γ ∈ Ω1(M,E∗) is an E∗-valued 1-form defined by

⟨γ(v) , e⟩ = −B(v, ρ(e)),

for any e ∈ Γ(E) and v ∈ X (M). Here ⟨− ,−⟩ is a natural pairing

of TM and T ∗M .

In local coordinates, γia = −Bijρ
j
a.

We introduce the following three conditions for a Lie algebroid E

on a pre-symplectic manifold (M,B).
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(H1) E is a presymplectically anchored with respect to D if

Dγ = 0.

(H2) A section µ ∈ Γ(E∗) is a D-momentum section if

Dµ = γ.

(H3) A D-momentum section µ is bracket-compatible if for all

sections e1, e2 ∈ Γ(E),

Edµ(e1, e2) = −⟨γ(ρ(e1)) , e2⟩.
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A Lie algebroid E with D with (H1), (H2) and (H3) is called a

Hamiltonian.

Lie algebra case: momentum map

Suppose B is nondegenerate, i.e., B is a symplectic form and

E = M × g. In this case, we can take a zero connection, D = d.

Then, (H2) and (H3) reduce to the definition of an infinitesimally

equivariant momentum map,

dµ(e) = ιρ(e)B and ad∗e1µ(e2) = µ([e1, e2]).

(H1) is trivial since d2 = 0 in this case.
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Structure of gauged linear sigma model NI ’19

Three conditions,

µa = −ηiρ
i
a,

ρjabji + ρja∂jηi + ηj∂iρ
j
a + Γb

aiµb = 0,

ρia∂iµb − Cc
abµc − ρibΓ

c
aiµc = 0,

are equivalent to (H2) and (H3), where B = b+ dη.

i.e.In a gauged sigma model with boundary, µ = −ιρη ∈ Γ(E∗) is

a bracket compatible D-momentum section, where B = b + dη ∈
Ω2(M) and D is a connection defined by Γ.
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Closure of gauge algebra

Requirement of closure of a gauge transformation of A, [δ1, δ2] ∼ δ3
gives one more condition. An E-curvature is equal to zero.

(H1) is related to the condition. But they are not equivalent.

We need change the definition?

Cf. Bouwknegt, Bugden, Klimcik, Wright, ’17, Wright ’19
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§4. Nonlinear sigma model with H-fluxes

n-dimensional NLSM
Ξ is an n + 1-dimensional manifold with boundary Σ = ∂Ξ. We

consider the following sigma model with Wess-Zumino term,

S =

∫
Σ

1

2
gij(X)dXi ∧ ∗dXj +

∫
Ξ

X∗h,

X∗h = 1
(n+1)!hi1···in+1(X)dXi1 ∧ · · · ∧ dXin+1 is a pullback of a

closed n+ 1-form h on M .

The n = 2 case is a string theory with NS H-flux.
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Gauging

Let E be a Lie algebroid as before.

We consider gauging with the same gauge transformations,

δXi = ρia(X)ϵa,

δAa = dϵa + Ca
bc(X)Abϵc + Γa

bi(X)ϵbDXi.

We take a Hull-Spence type ansatz for a gauged action,

S = Sg + Sh + Sη,
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where

Sg =

∫
Σ

1

2
gijDXi ∧ ∗DXj

Sh =

∫
Ξ

1

(n+ 1)!
hi1···in+1(X)dXi1 ∧ · · · ∧ dXin+1,

Sη =

∫
Σ

n∑
k=0

1

k!(n− k)!
η
(k)
i1···ikak+1···an(X)dXi1 ∧ · · · ∧ dXik

∧Aak+1 ∧ · · · ∧Aan,

where η(k) is a pullback of a k-form on M taking a value on

∧n−kE∗, i.e., η(k) ∈ X∗Ωk(M,∧n−kE∗).
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Geometric conditions

We impose δS = 0.

gij

The same as before,

Lρ(ea)g = Γb
a ∨ ιρ(eb)g.

h and η(k)

e, ei ∈ Γ(E), (i = k, . . . , n), h̃ = h+dη(n), Γ is a connection 1-form

on E, and ⟨− ,−⟩ is a natural pairing of E∗ and E. Notation ∧,

means both a wedge product on Ωk(M) and a pairing of E and E∗.
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We obtain the following conditions.

Two algebraic conditions,

η(k−1)(ek, . . . , en) = (−1)kιρ(ek)η
(k)(ek+1, . . . , en) + Cycl(ek, . . . , en),

(1)

ιρ(ek)η
(k)(ek+1, . . . , ek+m, . . . , en) + ιρ(ek+m)η

(k)(ek+1, . . . , ek, . . . , en)

= 0, (k = 1, . . . , n− 1,m = 1, . . . , n− k) (2)

and three differential equations,

Dη(n−1)(e) = ιρ(e)h̃, (k = n) (3)
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Lρ(e)η
(k)(ek+1, . . . , en) +

n−k∑
i=1

(−1)iη(k)([e, ek+i], ek+1, . . . , ěk+i, . . . , en)

+

n−k∑
i=1

(−1)i⟨Γ, ρ(e)⟩ ∧ η(k)(ek+1, . . . , en)

−
n−k∑
i=1

(−1)iΓ(e) ∧ ιρ(ek+i)η
(k)(ek+1, . . . , ěk+i, . . . , en)

+

n−k∑
i=1

(−1)i⟨ιρ(ek+i)Γ(e)
∧, η(k)(ek+1, . . . , ěk+i, . . . , en)⟩ = 0, (k = 1, . . . , n− 1)

(4)

Lρ(e)η
(0)(e1, . . . , en) +

n∑
i=1

(−1)iη(0)([e, ek+i], ek+1, . . . , ěk+i, . . . , en)

+

n∑
i=1

(−1)i⟨ιρ(ei)Γ(e) ∧, η(0)(e1, . . . , ěi, . . . , en)⟩ = 0, (k = 0) (5)24



Special cases

• In n = 1, Equations (1)–(5) reduce to conditions of the original

momentum section (H2) and (H3) by setting µ = η(0), γ = η(1)

and B = h̃.

• It is natural to impose the following condition corresponding to

the condition (H1),

Dιρh̃ = 0. (6)

• In n = 2, Equations (1)–(5) give gauging conditions of the target

geometry in Chatzistavrakidis, Deser, Jonke and Strobl ’16.
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• For all n, Equations (1)–(5) are a generalization of a momentum

map (multimomentum map) on a multisymplectic manifold with

a Lie group action,

Carinena, Crampin, Ibort, ’92, Gotay, Isenberg, Marsden, Montgomery, ’97

by setting η(k) = 0 for k = 0, . . . , n − 2. In this case, η(n−1) is a

multimomentum map.
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Momentum section on pre-n-plectic manifold NI ’19

Let (M, h̃) be a pre-n-plectic manifold, where h̃ is a closed n + 1-

form, and (E, ρ, [−,−]) be a Lie algebroid over M . We define the

following three conditions,

(HM1) E is a pre-n-plectically anchored with respect to D if

Equation Dιρh̃ = 0, is satisfied.

(HM2) η(n−1) ∈ Ωn−1(M,E∗) is a D-multimomentum (D-

momentum) section if it satisfies Equation (3),

Dη(n−1) = ιρh̃.

(HM3) We define a descent set of multimomentum sections
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(η(k))n−2
k=0 by Equations (1) and (2), where η(k) ∈ Ωk(M,∧n−kE∗).

A D-multimomentum section and its descents (η(k))n−1
k=0 are bracket-

compatible if (4) and (5) are satisfied,

A Lie algebroid E with a connection D and a section η(k) ∈
Ωk(M,∧n−kE∗), k = 0, . . . , n− 1 is called Hamiltonian if (HM1),

(HM2) and (HM3) are satisfied.
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We summarize a geometric structure of a gauge sigma model with a

n+1-form flux h using the terminology of multimomentum sections.

We consider an n-dimensional gauged sigma model with WZ term,

η(k) ∈ Ωk(M,∧n−kE∗), (k = 0, . . . , n−1) are a bracket compatible

D-multimomentum section and descents, with a pre-n-plectic form

h̃ = h+ dη(n).
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§9. Conclusions

• We have shown that a two dimensional gauged sigma model with

boundary has a momentum section and a Hamiltonian Lie algebroid

structure.

• By generalizing it to a higher dimensional gauged sigma model

with WZ term, target space geometry is described by the theory of

a multimomentum section on a pre-multisymplectic manifold and a

Hamiltonian Lie algebroid.
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Outlook

• Quantization, localization formulas and equivariant cohomology

• Duality of string and M-theory

• Generalization to higher algebroids, such as a Courant algebroid.

• Comparison with multimoment map on mutlisymplectic manifold.

Madsen, Swann, ’12, Callies, Fregier, Rogers and Zambon, ’13, Herman, ’18
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Thank you for your attention!
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