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Quiver Structure of 5d N=1 Gauge Theories

field contents: vector multiplets and hypermultiplets.

gauge node: a vector multiplet with gauge group G.

line connecting two gauge nodes:

bifundamental hypermultiplets

I.e. hypermultplets transforming in fundamental
rep. of G and anti-fundamental rep. of G’

F flavor symmetry of matter is usually represented by a box.



Quiver diagram — Dynkin diagram

~ quiver Lie algebra

A-type quiver

OE-©

E-type quiver




Web of 5-branes [Aharony, Hanany, Kol, 1997]
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all non-trivial information
contained in this 2d plane

We draw a web diagram on this plane. (balance of tension =
various kind of (p,q) 5-branes stretching along the vector (p,q) )
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The Nekrasov (instanton) partition function can
be computed in a Feynman diagrammatic way
with the topological vertex.

C [Aganagic-Klemm-Marino-Vafa, 2003]
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It can be expressed in terms of (skew) Schur functions.
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It is known that the skew Schur function can be written in the form
of matrix element of certain vertex operator.
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The gluing of vertices in the unpreferred direction is just a correlator
of vertex operators.
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*Note that each brane (line) in the unpreferred direction
corresponds to a Fock space.

(I)*(—l)

*there are two species of

_— vertices, classified by its

—1 :
where vertex operators V. (7) (I)( ) leg in the preferred

correlates. \\ | | direction.
1 \

preferred direction
(specified by a Young diagram A)

*when evaluated in the Schur basis, we
obtain the IKV refined vertex.
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5d N=1 gauge theory on S1x Q-background

A web of vertex operators glued together

/
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VEVs of vertex operators
(sharing labels with its neighbors)



Let us examine some well-known examples:

SU(2) gauge A1 quiver theory SU(2) gauge A: quiver theory
SU(3) gauge A1 quiver theory
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All Lagrangian theories built in this way are with A-type
gauge group and A-type quiver structure.

But certainly we have theories specified by other Lie algebras.

Especially, we can set the gauge group to be ABCDEFG,

and the fiber-base duality exchanges the gauge group

n iver.
and quive [Katz, Mayr, Vafa (1998)]

(In string theory, ADE-type ALE space « ADE quiver.)
We have ADHM construction for ABCD-type gauge groups.

[Nekrasov, Shadchin (2004)]
However, the instanton counting for BCD-type gauge group is a mess.

[Nakamura, Okazawa, Matsuo, 2014]



We want to complete the list of ABCDEFG quivers.



Before we discuss the non-simply-laced quivers, we recall
the relation with W-algebra.

AGT relation:

instanton partition function
(on Q-background) of gauge
theory with gauge group G

conformal block in Wg algebra

[Alday, Gaiotto, Tachikawa (2009)]
[Wyllard (2009)]

*This whole story can be uplifted to 5d.
[Awata, Yamada (2009)]

Quiver W-algebra  Wr

fiber-base dual version of AGT relation

[Kimura, Pestun (2015)]



Wn-symmetry of Kimura-Pestun
(quiver W)

S- duaﬂ;/ J S-duality
Wn-symmetry of AGT

another dual Wn:

symmetry /'
\

S-duality




“Gauge Theory” with Fractional Quiver

[Kimura, Pestun, 2017]
constructed so that realizing W-algebra of fractional quiver

To each node, we need to assign an integer d; = («;, ;)

: : : : d;
roughly speaking, we perform instanton counting with ¢1 — ¢,
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related to the variable in the vertex

e (t—/\q—p+{1/2})v+(q—Att—p—{lﬂ})



Bifundamental contribution:
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Of course it depends on two Young diagrams.
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It behaves differently when varying two Young diagrams.



qa-character

[Nekrasov, 2015]
* operator

e roughly speaking, double-quantized Seiberg-Witten curve

(in the classical limit ¢; 2 — 0 , reduces to the curve.)

e kind of character for quiver Lie algebra
expression encodes representation data

e expectation value = partition function with Wilson lines

[Kim, 2016]



qa-character

A1 quiver, fundamental rep. gq-character
X1(2) =Y (2) +Y(zq g "),

where the expectation value of Y-operator is determined by Zk1/Zx.
Nice properties:

1. qg-characters play the role of generators of quiver W-algebra Wr.

[Kimura, Pestun (2015)]
—1

2. No polesat 2z = x(;, ) = UQi_lqg_ :

\. poles in the expectation value of Y-operator



2. No poles at =z = X(;,5) ‘= vy g

comes from the Virasoro constraint in terms of matrix model,

or equivalently from the Ward identity in terms of correlation
functions in 2d CFT.

We can see it from the web construction

~ g-Virasoro operator
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= z}\: 4N Zyeer (M) (yA(qu_l) + y;I(z)> = (residue at z ~ o0).

Ward identity & Weyl reflection
[Bourgine, Fukuda, Matsuo, Zhang, RZ, 2016]



D-type quiver seems to be the easiest one to attack.

A known brane construction with orientifold. [Kapustin, 1998]

[Hanany, Zaffaroni, 1999]
originally in 4d ON" NS

Um,) X U(n)

no bifundamental sectors in this configuration!



We can even reproduce the affine D-type quiver structure with ON° planes.

U(N)
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It seems to be straightforward to uplift this picture to 5d. But instead,
a microscopic (“refined”) brane web was proposed to be used. This

microscopic picture seems to account the D structure more explicitly.
[Hayashi, Kim, Lee, Taki, Yagi, 2015]

ON~™

ONO=ON-+NS5



In the unrefined case, the topological vertex formalism is extremely simple.

force two vertices connected
by the orientifold to share the
same Young diagram label.

A Il
A reflection state Z v, A) @ |v, A)
A

D

[Bourgine, Fukuda, Matsuo, RZ (2018)]

In the refined case, it is more tricky to realize this decoupling.

*
*in the unrefined limit, &, = <I>>_\1

In the refined case, we instead use

~ *

d* = &, "|vq1q2]



Generalization: adding more branes




Generalization: adding more branes




How to realize the bifundamental contribution in non- |
simply-laced quiver?

ng(di, d]) — dj
for example the vertex operator for empty Young diagram

o0 —nd; Mg, TN
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n=1 Q1

The positive modes give rise to an instanton counting with qdﬂ',

d;
the negative modes give rise to an instanton counting with 4

Vertex operator with mixed natures.

—  half-blood vertex

[Kimura, RZ (2019)]



Examples: BC-type construction

B-type
s dy =2
e O———
O—"" =0
dy = 2
@ﬁ?f O - O
C-type
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correspondence between vertices and simple roots |

A-type: n+1 Fock spaces for An quiver

building block
b o* < > Q; = €; — €41,
(I) — C; (I)* «— — €;11
D-type:

We have a special node

~

d* ~ O «— €nt1

recovers

~




E-type from simple roots

] — €1 — €2, Qg =€ — €3, A3 — €3 — €4,

Oy = €4 — €5, Q5 =€5— €, Q= €T €7,

B 1 1 1 1 1 1 1 1 B
Q7 — 261 262 263 264 265 266 267 2687 g = €6 — €7,

we have to use fractional coefficients to write down the simple roots.

We need to introduce a new type of vertex, “square-root vertex”.

1/2-power of the usual vertices

Es quiver what we had for D-type quiver

“square-root vertices”



quiver structure

I I I T 1 I 1
removing the branes corresponding to unnecessary nodes,
we obtain Es and E7 quivers.

Affine quivers?

affine A-type: well-known
—O—

identify the branes on the two ends

affine D-type: already mentioned
affine BC-type: more or less the same as BC



Affine Dynkin diagrams
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the graph, i.e. the total number of nodes minus 1.)

From Wikipedia
The only non-trivial ones in our approach are again the affine E-type quivers.

for example, E();




Affine Dynkin diagrams
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green (n > 3 for B, andn > 4 for D,))

(The subscript k always counts the number of yellow nodes in
the graph, i.e. the total number of nodes minus 1.)

From Wikipedia
The only non-trivial ones in our approach are again the affine E-type quivers.
for example, E();
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Interestingly, by using the “square-root” vertices and usual vertices, we
could only reproduce all affine E-type quivers, but not to go beyond.



Conclusion

e We built the “brane” web for ABCDEFG-type and affine
quivers by introducing new vertices, half-blood vertex and
“square-root” vertex.

e Our construction not only reproduces the Nekrasov partition
function, but also realizes gq-characters as Ward identities.
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Let us assign the refined topological vertex and ignore this part first.

S

° | :

Left: Right:
NV s, N g s a ) Y (V) st ) s, (a7t

They cancel each other due to the Cauchy identity,

Y su@suy) = 1[0 =)™ D swl@)su(y) = [ (1 + ;).

p i,] v i,]



Let us examine some well-known examples:

(N

SU(2) gauge A1 quiver theory SU(2) gauge A: quiver theory
SU(3) gauge A1 quiver theory

Fock space structure < quiver structure



One can easily confirm that the vertex operator

e (t—Aq—p+{1/2})V+ (q—Att—p—{lﬂ})

matches with the vertex written down by Awata, Feigin and Shiraishi,
on which they found that the so-called Ding-lohara-Mik: clgebra acts

In the adjoint way.
J y [Awata, Feigin, Shiraishi, 2011]

Ding-lohara-Miki algebra
[Ding, lohara, 1997] [Miki, 2007]
doubly affinized quantum group

AN
S

Uq,t (9[1) < > q-deformed W1+oo [,U]
q— 1,1 t = qﬁ l
gl, Yangian/SH. algebra > > (A-type) W11 [,u]
[Shiffmann, Vasserot, 2012] ... [Prochazka, 2015]

[Maulik, Okounkov, 2012]



One thing | would like to mention is

Elliptic Extension of the Whole Story

e elliptic Ding-lohara-Miki algebra
[Saito, (2013)]

e elliptic AGT/Kimura-Pestun
[Nieri, (2015)] [Igbal, Kozcaz, Yau, (2015)] [Kimura, Pestun, (2016)]

e elliptic topological vertex,
with elliptic Ding-lohara-Miki acting on it in the adjoint way

[RZ, (2017)] [Foda, RZ, (2018)]

;

elliptic Schur and Macdonald functions (might be) related

~ two copies q-Whittaker function



Some properties of Ding-lohara-Miki (DIM)

* Ding-lohara-Miki algebra on the coproduct of N Fock spaces
contains a U(1)x (g-deformed) Wy algebra.

[Feigin, Hoshino, Shibahara, Shiraishi, Yanagida, 2010]

e There is an SL(2,Z) automorphism of the algebra, among which
there is an S-duality symmetry permutes three legs of the

refined topological vertex.
[Miki, 2007]
[Awata, Feigin, Shiraishi, 2011]

e Since the algebra is a quantum group, it is equipped with a
universal R-matrix, which reduces to Maulik-Okounkov’s R-

.. . . _ B
matrix in the 4d limit, ¢ — 1, t = ¢ [Feigin, Jimbo, Miwa, Mukhin, 2015]

[Fukuda, Harada, Matsuo, RZ, 2017]



This can certainly be translated into the language of
Awata-Feigin-Shiraishi vertex, and we can easily prove
that this cancellation mechanism occurs in the most
general case.

Now, let us consider the ignored part. —

Expected structure: Dy ~ A1 x Ay
two decoupled U(1) instanton sectors.

= need the orientifold to replace
the behavior in the preferred
direction of C\ g, (t,q) to Cpip,t(q,1)

In the calculation of partition
function, we just need to divide a
Macdonald polynomial and
multiply its transposed one.

@
@




e What is interesting is that this replacement is an automorphism
of the Ding-lohara-Miki algebra.

The action of the orientifold can thus be represented as a
reflection state:

(

position of D5-brane

 One intriguing observation here is that the reflection state above
reduces to the boundary state in the 4d limit ¢ — 1, t =¢",

(L,®1—-1®L_,)|Q) =0.

“2d” picture of this construction?
*recall

H(=1) ) = V_(t g2y, (N e 12

Z 0, A) @ vy, \) — .
A



In fact, we can put the product of refined topological vertices in the
unpremerred direction into normal ordering and redefine it as a new object.

/]\

Q1!
Q21

Factors from the contraction in the unpremerred direction are absorbed into
the preferred direction.

Generalized Vertex
[Bourgine, Fukuda, Harada, Matsuo, RZ, 2017]

This object captures the feature of quiver, enabling us to work on web
with “U(1) gauge group”.



The Ward identity can be converted to operators acting on
Fock spaces by using the adjoint nature of the vertex.

[Bourgine, Fukuda, Harada, Matsuo, RZ, 2017]

“122) 5t (2)

SR

(v~ 12%z) xT(z2)

With this rewriting, we reach to that the qqg-character commutes with
a screening-charge-like object, in analogy to [Kimura, Pestun, 2015].

A (x+(z)) ,T| =0.

Kimura-Pestun: qg-characters are generators of quiver W-algebra.



S-duality

the dual reflection state

(Je®@1+1®J_k)|02), =0.

N

[work in progress]
see also [Kim, Yagi, 2017]

The partition function is invariant only in the unrefined limit.



Trivalent reflection operator?
with this object and its generalization, we can do ABCDEFG

and affine, hyperbolic...
It was used in a recent (different) proposal for D, E instanton.

< [Hayashi, Ohmori, 2017]

The qqg-character can be checked.

Problem: no idea how to formally define it in the algebra.

DIM algebra has charges corresponding to axio-dilaton charge.
This trivalent operator looks charged.

What are they (reflection objects with more than
two legs) physically and mathematically?



Backup1: An quiver




Backup2: simplest D-type strings.
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Backup3: Ding-lohara-Miki

Y7 (2)a (w) = g(F7 22 fw)Fa (w)p™ (2),




Backup4: “horizontal” representation of DIM

r(2) muny" 2T (z), a7 (2) = uTy (), Y =1,
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Backup5: Awata-Feigin-Shiraishi vertex
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