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Quiver Structure of 5d N=1 Gauge Theories

field contents: vector multiplets and hypermultiplets.

G gauge node: a vector multiplet with gauge group G.

G G’
line connecting two gauge nodes: 

bifundamental hypermultiplets
i.e. hypermultplets transforming in fundamental 
rep. of G and anti-fundamental rep. of G’

F flavor symmetry of matter is usually represented by a box.



Quiver diagram → Dynkin diagram

~ quiver Lie algebra

A-type quiver

G1 G2 G3 … Gn

E-type quiver
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The web construction can be found as

where the long line (connecting 8 vertices)

is a short representation of the following computation,
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and we introduced two types of new vertices as the “square-root” of �̄ and �⇤:
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Web of 5-branes
We can build a large family of 5d N = 1 gauge theories in the type
IIB string theory. [Aharony-Hanany, 1997]
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D5 � � � � � � • • • •
NS5 � � � � � • � • • •

7-brane � � � � � • • � � �

The balance of tension requires various types of (p, q) 5-branes to
appear in the construction, and they form a web of 5-branes.
Example: pure SU(2) gauge theory.
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Web of 5-branes [Aharony, Hanany, Kol, 1997]

all non-trivial information 
contained in this 2d plane

We draw a web diagram on this plane. (balance of tension ⇒ 
various kind of (p,q) 5-branes stretching along the vector (p,q)  )

Web of 5-branes
We can build a large family of 5d N = 1 gauge theories in the type
IIB string theory. [Aharony-Hanany, 1997]
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D5 � � � � � � • • • •
NS5 � � � � � • � • • •

7-brane � � � � � • • � � �

The balance of tension requires various types of (p, q) 5-branes to
appear in the construction, and they form a web of 5-branes.
Example: pure SU(2) gauge theory.
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The Nekrasov (instanton) partition function can 
be computed in a Feynman diagrammatic way 
with the topological vertex.

[Aganagic-Klemm-Marino-Vafa, 2003]

Elliptic Brane Web

1 Introduction

C
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2 Partition Function of M-string

The partition function of M-strings [1] can be computed from the refined topological string on a

Calabi-Yau geometry specified by a toric diagram with its top and bottom external legs identified

together. It can also be interpreted as the instanton partition function of the corresponding 6d

N = (1, 0) theory on R4⇥T

2 with omega background twisting. This partition function is an elliptic

version of the Nekrasov partition function, which is a natural consequence from the fact that the

refined topological vertex on toric Calabi-Yau is dual to 5d N = 1 theory constructed from (p, q)-

brane web, and the compactification (i.e. identification of external legs) of this brane web along the

NS5 direction lifts the theory to 6d. We give a brief review on it in this section, rederiving it by

identifying external legs of toric Calabi-Yau, with the Awata-Feigin-Shiraishi (AFS) version of the

refined topological vertex [2] (see also [3] for a review and generalization). The building block for a

compactified brane web is

�⇤[v1]

�[v2]

We note that by replacing �⇤ and � with the generalized AFS vertices introduced in [3], it is possible

to build the compactified brane web with arbitrary rank of gauge group. What we need to do is to

take the trace over the Fock space of the horizontal representation of the DIM algebra. There are

1

It can be expressed in terms of (skew) Schur functions.

[Awata, Kanno, 2005] [Iqbal, Kozcaz, Vafa, 2007]
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This is exactly the Cauchy identity of the Schur function, and a natural candidate for refinement is

to realize the same factor with Macdonald function. That is to say, we would like to further impose

the constraint that the partition function does not depend on the choice of the preferred direction

in the toric diagram.
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There is some ambiguity in the particular choice of Z̃
�

(q, t), but it is only conventional. Finally we

obtained the full expression for the refined topological vertex as
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λ: preferred direction



It is known that the skew Schur function can be written in the form 
of matrix element of certain vertex operator.

It is straightforward to derive
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for some Young diagram � = {�
j

}. It is a symmetric polynomial and the set of all Schur functions

forms a complete basis of symmetric polynomials. Therefore, the product of two Schur functions

can again be expressed in Schur functions,
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The most important fact about the skew Schur function we use in this article is that it can be

expressed as a fermion correlation.
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where s is the number of diagonal boxes in �.

There are two Cauchy identities known for the skew Schur functions.
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The gluing of vertices in the unpreferred direction is just a correlator 
of vertex operators.

Equivalence between Two Types of Refined Topological
Vertex

1 Melting Crystal Picture
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[â

n

, â
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*Note that each brane (line) in the unpreferred direction 
corresponds to a Fock space.
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*when evaluated in the Schur basis, we 
obtain the IKV refined vertex.
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5d N=1 gauge theory on S1 x Ω-background 

=

A web of vertex operators glued together

Elliptic Brane Web

1 Introduction
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Vertex operators in the unpreferred direction

6

preferred direction

With all preferred lines 
specified, the partial 
amplitude is expressed 
as correlator of vertex 
operators in the 
unpreferred direction.
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Φ*1

Φ2

Φ*3

Φ4

Φ5

Φ*6

=

VEVs of vertex operators  
(sharing labels with its neighbors)
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We see that the horizontal lines in the central area corresponds to the branes that generates the

vectormultiplets. We can further guess that parallel horizontal lines stretching to the infinity give

rise to hypermultiplets. Indeed, the case U(3) with Nf = 4 was checked in the literature explicitly

and its toric diagram reads

More precise gluing rules

Let us formulate the vertex calculation in a more proper language. The vertex we assign Cµ⌫�(t, q)

is as the following diagram.

�

µ, q

⌫, t

There is a preferred direction in the vertex diagram, which is assigned with a Young diagram �, and

we also need to label the remaining two legs with q and t. There are two ways to glue the vertices.

One is to glue two preferred ones together, and the other one is to glue a q vertex with a t vertex.

In both cases, we need a framing factor, as stated before. In principle, it is determined by the local

geometry of the contracted line. There is an alternative way to compute it. Let us assign the lines

separated by the contracted line with vector v and v0 (the one on the right-hand side with v0), then

the framing factor power n = v0 ^ v. Another implicit rule is that when we glue in the preferred
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We see that the horizontal lines in the central area corresponds to the branes that generates the

vectormultiplets. We can further guess that parallel horizontal lines stretching to the infinity give

rise to hypermultiplets. Indeed, the case U(3) with Nf = 4 was checked in the literature explicitly

and its toric diagram reads

More precise gluing rules

Let us formulate the vertex calculation in a more proper language. The vertex we assign Cµ⌫�(t, q)

is as the following diagram.

�

µ, q

⌫, t

There is a preferred direction in the vertex diagram, which is assigned with a Young diagram �, and

we also need to label the remaining two legs with q and t. There are two ways to glue the vertices.

One is to glue two preferred ones together, and the other one is to glue a q vertex with a t vertex.

In both cases, we need a framing factor, as stated before. In principle, it is determined by the local

geometry of the contracted line. There is an alternative way to compute it. Let us assign the lines

separated by the contracted line with vector v and v0 (the one on the right-hand side with v0), then

the framing factor power n = v0 ^ v. Another implicit rule is that when we glue in the preferred
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All Lagrangian theories built in this way are with A-type 
gauge group and A-type quiver structure.

But certainly we have theories specified by other Lie algebras.

Especially, we can set the gauge group to be ABCDEFG, 
and the fiber-base duality exchanges the gauge group 
and quiver.

(In string theory, ADE-type ALE space ↔  ADE quiver.)

However, the instanton counting for BCD-type gauge group is a mess.

[Nakamura, Okazawa, Matsuo, 2014]

[Katz, Mayr, Vafa (1998)]

We have ADHM construction for ABCD-type gauge groups.

[Nekrasov, Shadchin (2004)]



We want to complete the list of ABCDEFG quivers.



Before we discuss the non-simply-laced quivers, we recall 
the relation with W-algebra.

AGT relation:

instanton partition function 
(on Ω-background) of gauge 
theory with gauge group G

conformal block in WG algebra=

[Alday, Gaiotto, Tachikawa (2009)]
[Wyllard (2009)]

*This whole story can be uplifted to 5d.
[Awata, Yamada (2009)]

Quiver W-algebra

fiber-base dual version of AGT relation

[Kimura, Pestun (2015)]

WΓ



WN-symmetry of AGT

WN-symmetry of Kimura-Pestun 
(quiver W)

another dual WN-
symmetry

S-dualityS-duality

S-duality
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Figure14:ToricdiagramofT3theory.

ThenZ̃T2/(Z
=
U(1)Z

||
U(1)Z

//
U(1))coincideswiththepartitionfunctionoftheT2-theory.According

totheargumentinsection3,thefactorsZ
=
U(1),Z

||
U(1)andZ

//
U(1)areidentifiedwiththecon-

tributionfromdecoupledM2-branesontwo-cyclesassociatedwithQ2Q3,Q3Q1andQ1Q2,

respectively.Allthetwo-cyclescanbecontinuouslymovedtoinfinity,andthereforeitis

reasonabletoeliminatethem.NowletusconsiderZ̃T2/Z
=
U(1).From(4.25),itfollowsthat

Z̃T2/Z
=
U(1)coincideswiththeNekrasovpartitionfunctionoftheU(1)gaugetheorywithtwo

fundamentalmatters.ThisstronglysuggeststhattheTN-theorypartitionfunctionisrelated

tothepartitionfunctionofsomesimplergaugetheorywithLagrangiandescription.

4.1.2.2T3theory

WenowconsidertheT3theoryengineeredbyC
3
/(Z3⇥Z3).Therelevanttoricwebdiagram

isshowninFigure14.ThetheoryhasaglobalsymmetrySU(3)
3
,whichisvisiblefromthe

diagram,andinfactthesymmetryisenhancedtoE6[7].TheCoulombbranchofthistheory

isonedimensionalcorrespondingtothesizeofthehexagoninthecenterofthediagram.The

theoryalsohasaHiggsbranchofcomplexdimension22,whichisthesamedimensionasthe

dimensionoftheoneinstantonmodulispaceofE6gaugetheory.ThesepropertiesoftheT3

theoryallowustorelateitwithSU(2)gaugetheorywithNf=5fundamentalhypermultiplets

in5d.
16

Wewillcomparethepartitionfunctionsoftwotheoriesinthenextsection,which

providesastrongevidencefortherelation.

ThediagramleadstotheT3partitionfunction

Z̃T3=(M(t,q)M(q,t))
1/2

Z(t,q,Q),

Z(t,q,Q)=
X

~⌫,~µ

(�Q1)|µ1|(�Q2)|µ2|(�Q3)|µ3|(�Q4)|µ4|(�Q5)|µ5|(�Qb)|⌫1|(�QbQ1Q�1
2Q�1

4)|⌫2|

16Asmentionedalready,fora5dSp(1)gaugetheorywithNf�5,therelevantCalabi-Yauthreefoldisnot

toricwithagenericcomplexstructure.However,inthecaseofNf=5,thereisaspecialchoiceofcomplex
structurewithwhichtheCalabi-Yauthreefoldbecomestoric.
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“Gauge Theory” with Fractional Quiver

[Kimura, Pestun, 2017]

constructed so that realizing W-algebra of fractional quiver

To each node, we need to assign an integer 

x

+

Y�1

,

Y�1

x

+

.

and the resulting qq-chracters are

�(1,0),v1,1(z) = Y1(zq
�1
3 v1,1) +

q1⌫
�1
1

zv1,1Y1(zv1,1)
, (52)

and

�(0,1),v2,1(z) = Y2(zq
�1
3 v2,1) +

q2⌫
�1
2

zv1,2Y2(zv2,1)
. (53)

D

3

quiver

D

4

quiver

8 Weighted representation and weighted vertex

In [arXiv:1705.04410], gauge theories associated to quivers of all Lie algebras of type ABCDEFG

are constructed. An integer d
i

= (↵
i

,↵

i

) (compared to the Cartan matrix c

ij

= (↵_
i

,↵

j

)) is assigned

to each node. A key quantity in this context is the weighted Y-function, Y(d
i

),

Y(d
i

)
�
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i

/z)
Y
x2�
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)
x

/z), (54)
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1 q
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2 . We note that the weighted Y-function can also be expressed as
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)
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)
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matrix

bij = dicij (2.22)

is symmetric. We can choose a bilinear form on g such that

di = (αi,αi) . (2.23)

We remark that by Dynkin–Cartan ABCDEFG classification, for finite-dimensional Lie al-
gebra g, if cij ̸= 0, then bij = max(di, dj).

2.3. Fractional quiver gauge theory partition function. The vector and hypermulti-
plet contributions to the gauge theory partition function is obtained as the index functor of
the corresponding Chern character, which is the equivariant Witten index along a circle S1

for 5d gauge theory on R4 × S1. In this paper we use the Dolbeault index

I

[

∑

k

xk

]

=
∏

k

(

1− x−1
k

)

(2.24)

which obeys the reflection formula

I [X∨] = (−1)rkX (detX) I [X] . (2.25)

When the quiver gauge theory satisfies the conformal condition, the Dolbeault convention
is equivalent to the Dirac index. Otherwise we need a proper shift of Chern–Simons level.
The (full) partition functions are given by

Zvec
i = I [Vi] =

∏

(x,x′)∈X 2
i

(

qdi1 q2
x

x′
; q2
)

∞

(

q2
x

x′
; q2
)−1

∞
, (2.26)

and

Zbf
e:i→j = I [He:i→j] =

∏

(x,x′)∈Xi×Xj

dj/dij−1
∏

r=0

(

µ−1
e q

−rdij
1 qdi1 q2

x

x′
; q2
)−1

∞

(

µ−1
e q

−rdij
1 q2

x

x′
; q2
)

∞
.

(2.27)

In particular, the bifundamental factor exhibits a peculiar behavior depending on (di)i∈Γ0 :

There appear the additional contributions with the duplicated mass parameters (µe:i→jq
rdij
1 )

for r ∈ [0 . . . dj/dij − 1], which is similar to that found in 3d non-simply-laced quiver gauge
theory [32]. Replacing the index (2.24) with the equivariant elliptic genus with respect to
two-torus T 2 with modulus τ

Ip

[

∑

k

xk

]

=
∏

k

θ(x−1
k ; p) (2.28)

where p = exp (2πιτ) is multiplicative modulus and

θ(x; p) = (x; p)∞(px−1; p)∞ , (2.29)

we obtain the 6d gauge theory partition function on R4 × T 2, which yields the elliptic
deformation of W-algebra [2]. We remark that the elliptic index obeys the same reflection
formula (2.25) as well, and the conformal condition is mandatory for 6d theory to avoid the
modular/gauge anomaly.

roughly speaking, we perform instanton counting with 

✏1,2 ! 0 (38)
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Y
�
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◆
= (residue at x ⇠ 1). (40)
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q
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(J

k

⌦ 1 + 1⌦ J�k

) |⌦i
s

= 0. (41)

q1 ! q

d

i

1 (42)
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[X̃]i := [YS2 ]i, which gives

[Yo]i = [ΛQ2]i[X̃]i (2.6)

with [ΛQ2]i = (1 − q2). These two expressions are related through transposition of the
partition (λi,α)i∈Γ0,α∈[1...ni], labeling the T-fixed point. Since S1 and S2 are not equivalent
for a non-simply-laced quiver, this compatibility implies a nontrivial duality known as the
quantum q-geometric Langlands duality [29, 33].

To describe the Chern character X = chT X at a T-fixed point, we introduce a set

Xi = {xi,α,k}α∈[1...ni], k∈[1...∞] , xi,α,k = νi,αq
di(k−1)
1 q

λi,α,k

2 , X =
⊔

i∈Γ0

Xi . (2.7)

We define

Xi =
∑

x∈Xi

x . (2.8)

Thus a contribution to the Chern character of the observable sheaf from the node i ∈ Γ0 is

Yi = (1− qdi1 )Xi , (2.9)

corresponding to (2.5). We denote the p-th Adams operation applied to Yi by Y
[p]
i . The

sheaves (Y[p]
i )i∈Γ0,p∈Z≥1

generate the ring of gauge theory observables. The expression (2.9)
implies the fractionalization

Yi = (1 + q1 + · · ·+ qdi−1
1 )yi (2.10)

where the fractional observable sheaf is defined

yi = (1− q1)Xi . (2.11)

This fractional sheaf plays a fundamental role in the geometric construction of fractionaliza-
tion of Nakajima’s quiver variety, which would be discussed in our forthcoming paper [34].

The Chern characters of the vector and hypermultiplet contribution are now explicitly
written as follows,

Vi =
1− q−di

1

1− q2

∑

(x,x′)∈X 2
i

x′

x
, He:i→j = −µe

(1− q−di
1 )(1− q

dj
1 )

(1− q
dij
1 )(1− q2)

∑

(x,x′)∈Xi×Xj

x′

x
. (2.12)

The total character is given in a compact form

∑

i∈Γ0

Vi +
∑

e:i→j

He:i→j =
∑

(x,x′)∈X 2

(

c+
i(x)i(x′)

)∨ 1− q
−di(x)
1

1− q2

x′

x
=

∑

(x,x′)∈X 2

(

b+
i(x)i(x′)

)∨ 1− q−1
1

1− q2

x′

x

(2.13)

where i : X → Γ0 is the node label such that i(x) = i for x ∈ Xi, and a half of the
mass-deformed Cartan matrix is defined

c+ij = δij −
∑

e:i→j

µ−1
e

1− q
−dj
1

1− q
−dij
1

= δij −
∑

e:i→j

dj/dij−1
∑

r=0

µ−1
e q

−rdij
1

(c+[0]
ij )
−→ δij −#(e : i → j) , (2.14)

where

Equivalence between Two Types of Refined Topological
Vertex

1 Melting Crystal Picture
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We change the normalization to (for n > 0)

a
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[â

n

, â
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1

related to the variable in the vertex



In [33], gauge theories associated to quivers of all Lie algebras of type ABCDEFG (together with

their a�ne and hyperbolic versions) are constructed. To write down the partition function of theory

of this class, we assign an integer d
i

= (↵
i

,↵

i

) (c.f. Cartan matrix c

ij

= (↵_
i

,↵

j

) = (↵
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)/(↵
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i
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to each node of the quiver.

The vector multiplet contribution from the i-th node with Coulomb modulus v
i

is given by
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and the index
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The bifundamental contribution associated to the link e : i ! j with bifundamental mass µ
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given by
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When all d
i

= d

j

= d

ij

= 1,7 the quiver is simply-laced and the partition function reduces to that

of an ADE quiver well-known from the localization calculation [48].

In this article, we focus on the case with d

j

= d

ij

, which includes two important classes of

theories: i) d
j

= 1 and ii) d
i

= d

j

. In this specific case, the bifundamental contribution is simplified

to
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7To be more precise, as long as we have d

i

= d0 for some integer d0 and all 8
i, we recover the partition function

for simply-laced quivers with q1 replaced by q

d0
1 .
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Bifundamental contribution:

Of course it depends on two Young diagrams.

For each box s = (j, k) in the (j-th row and k-th column of the) Young diagram �

(i) which
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The equality for Y-functions in (4.11), (4.12), (4.14), can be derived from the recursive relations,
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It behaves differently when varying two Young diagrams. 
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qq-character

• operator 
 
 

• roughly speaking, double-quantized Seiberg-Witten curve 
 
 
 
 

• kind of character for quiver Lie algebra

(in  the classical limit                    ,  reduces to the curve.)        ✏1,2 ! 0 (38)

3

expression encodes representation data

[Nekrasov, 2015]

• expectation value = partition function with Wilson lines

[Kim, 2016]



qq-character

A1 quiver, fundamental rep. qq-character

• Repeat from the second step to pick up all poles of all possible terms until we get a closed

form of the qq-character in a contour integral form.

Let us describe the computation of the fundamental qq-character in pure U(1) gauge theory (A
1

quiver) with Chern-Simons level  as an example, and then use the above prescription to derive

the spin-1 (3-dim) qq-character of the same theory in a brief manner. Let us consider the following

insertion in the preferred direction of the web diagram,

x

�
>

�(n)[u, v] �(n

⇤
)[u⇤

, v] (A.6)

where x�
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�k (see Appendix B for the meaning and how to evaluate this operator). The
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>
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, v] is translated to
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,

where the gauge coupling q = �u�

n�n

⇤�1

u

⇤ and the Chern-Simons level  = n

⇤ � n. We can rewrite

the above equation in the form of contour integral,
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◆
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where the contour C
�

is around all finite poles in Y
�

(xq�1

3

) and 1/Y
�

(x), i.e. {�
x

| x 2 A(�)[R(�)}.
One can then convert the contour integral to be a simple formula that allows us to evaluate the

expectation value of the qq-character as
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where the expectation value with respect to the instanton partition function Z

U(1)

=
P

�

q|�|
Q

y2�
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y
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and one can extract out the operator-valued expression of the qq-character in terms of the Y-

operator as

�

1

(z) = Y(zq�1

3

) + qvq
3

z

�1Y(z)�1

. (A.10)

One can redefine the Y operator, which will be denoted as Y instead (and change the normalization

of the qq-character), to schematically write the above qq-character as

�̄

1

(z) = Y (z) + Y (zq�1

1

q

�1

2

)�1

, (A.11)

42where the expectation value of Y-operator is determined by Zk+1/Zk.

Nice properties:

1. qq-characters play the role of generators of quiver W-algebra WΓ.

[Kimura, Pestun (2015)]

2. No poles at 

˜

�

⇤
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This is a nice box!
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10

poles in the expectation value of Y-operator



2. No poles at 
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comes from the Virasoro constraint in terms of matrix model,
or equivalently from the Ward identity in terms of correlation 
functions in 2d CFT.

We can see it from the web construction

Equality of action

Let us consider a trivial identity:

�(�1)

�⇤(�1)

x+(z) �(�1)

�⇤(�1)

x+(z)

Then we can convert the ”vertical” action to the ”horizontal” ones.
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c.f. [Kimura-Mori-Sugimoto, 2017]

✏1,2 ! 0 (38)
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✏1,2 ! 0 (38)
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◆
= (residue at x ⇠ 1). (40)

3

[Bourgine, Fukuda, Matsuo, Zhang, RZ, 2016]

Ward identity ↔ Weyl reflection

~ q-Virasoro operator

⇒



D-type quiver seems to be the easiest one to attack.

[Kapustin, 1998]A known brane construction with orientifold. 

originally in 4d
[Hanany, Zaffaroni, 1999]

U(n ) U(n ) 1 2

n1

n2

ON0 ON0

n1

n2

U(n ) U(n ) 1

( n  , n  )1 2

2

2

A) B)

NS

Figure 3: Two sets of D-branes (n1 with positive charge and n2 with negative charge) ending
on ON0 plane. The resulting gauge theory and matter fields are indicated below the figure. In
figure A there are two hypermultiplets in the bi-fundamental representation of the two gauge
groups. These hypermultiplets parametrize fluctuations transverse to the orbifold plane. In
figure B, the two hypermultiplet is projected out by the presence of the NS brane.

general p follows from T duality. Consider figure 2. In the S-dual picture, the orbifold plane
is represented by an orientifold O5− plane and a physical D5-brane which can be moved away
from the orientifold point. The twisted sector of the orbifold point are mapped to the fields
on the D5-brane. D3-branes ending on the orbifold plane are now ending on the D5-brane.
Their charge under the D5-fields has a different sign according to whether they end to the
left or to the right of the D5-brane. We can identify the positively charged branes ending
on the orbifold plane with the D3-branes ending on the D5-brane from the right, while the
negatively charged branes with D3-branes coming from the right infinity, going straight to
the orientifold, coming back and ending on the D5-brane from the left. This configuration is
manifestly supersymmetric.

n Dp-branes ending on the fixed plane, all of them with the same charge, have a world-
volume theory with eight supersymmetries consisting of a U(n) gauge theory. There are no
matter fields, since the hyper-multiplets corresponding to the fluctuations transverse to the
orbifold plane are projected out by the action of R. The rules for projecting the open string
spectrum in the case with both positive and negative charges were found in [6, 7] by using
a boundary-state method. The rule is that, if there are n1 Dp-branes with positive charge
and n2 Dp-branes with negative charge ending on the fixed plane, (−1)FLR acts on the open
string Chan-Paton factor as the conjugation by a diagonal matrix with n1 entries equal to +1
and n2 equal to −1. This means that the gauge fields (and their superpartners) coming from
open strings connecting D-branes with different charge are projected out and the gauge group is
U(n1)×U(n2). The hyper-multiplets corresponding to open strings with both ends on D-branes
with the same charge are projected out being odd under R, but the ones associated with mixed

8

no bifundamental sectors in this configuration!
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N
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n-3 n-2

0

Figure 9: In figure A, the extended Dynkin diagram for Dn is depicted. The small numbers near
each node are the Dynkin indices. Each node is associated with a gauge group factor and each
link to a hypermultiplet in the bi-fundamental representation of the corresponding groups. The
resulting theory is U(N)2 × U(2N)n−3 × U(N)2 with bi-fundamentals for neighboring factors.
The same theory can be obtained by considering figure B, which describes D-branes wrapped
around a circle with two fixed points, here depicted as a segment.

ALE orbifold singularities [16]. N Dp-branes sitting at a singularity of the form R4/ΓG, where
G is a simply-laced group, have a world-volume theory that is associated with the extended
Dynkin diagram for G, with a gauge factor for each node of the diagram and a bi-fundamental
matter field for each link [16]. The gauge group is

∏
U(nµN), where nµ are the Dynkin indices

for the group G. The Higgs branch of these theories, which is the same for all p and is not
corrected by quantum effects, is the symmetric product of N copies of the ALE space; this is
the brane realization [16] of the well known mathematical construction of the ALE spaces as
hyperKähler quotients.

We should be able to see that the world-volume theory of D-branes probe is preserved by
the previously discussed T-duality. The analysis of the Ak case is straightforward. N Dp-branes
(p ≤ 6) sitting at a Zk+1 singularity have a world-volume theory U(N)k+1 with bi-fundamentals
for neighboring U(N) factors. Deforming the ALE space to a Taub-NUT and performing a T-
duality along the S1, we obtain a configuration of N D(p + 1)-branes in the presence of k + 1
NS-branes, configuration that was discussed in [8] and reproduces the same world-volume theory
(figure 8).

That the T-duality process gives a consistent result also in the Dn case can be now easily
shown using the results in the previous sections. The world-volume theory for 2N Dp-branes
sitting at a Dn singularity is U(N)2×U(2N)n−3×U(N)2 with bi-fundamentals associated with
the links of the Dn extended Dynkin diagram (figure 9). After T-duality, we have a set of 2N
D(p+1)-branes wrapped around a circle with two fixed points under (−1)FLR. We can picture
the projected circle as a segment. We also have n − 2 NS-branes. Combining the methods in
[8] with those described above, it is straightforward to check that the theory associated to this
configuration of branes is the same as that associated to the Dn extended Dynkin diagram.

Configurations in which M Dq-branes are also present are interesting. We are considering
a situation in which the Dp-probe is sitting at a point in the ALE space, q = p + 4 and the
Dq-brane is wrapped on the ALE space. This configuration naturally describes N small U(M)
instanton on an ALE space; the Higgs branch of Dp-branes world-volume theories, which is
the same for all values of p and is not corrected by quantum effects, is isomorphic to the N
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We can even reproduce the affine D-type quiver structure with ON0 planes.

It seems to be straightforward to uplift this picture to 5d. But instead, 
a microscopic (“refined”) brane web was proposed to be used. This 
microscopic picture seems to account the D structure more explicitly.

Remark: We mainly set the gauge group in each node of the quiver diagram to be U(1), but

we can easily generate it to any A-type gauge group by replacing �(n) and �⇤(n0) with generalized

intertwiners �(n,m) and �⇤(n0
,m

0) introduced in [4]. For more details, refer to [4].

3 A Twisted Construction

In this section, we make our main claim of this paper, which will be checked in the remaining

sections. We propose one way to assign topological vertices, or equivalently DIM operators, to the

orbifold-construction diagram for D-type quiver gauge theories.

The brane construction with ON0 for D-type quiver gauge theories was originally reported in

[5, 6], but instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold

construction proposed in [7].

ON0 ON�

The above diagram is a D2-quiver construction for the ”SU(1)”⌦”SU(1)” gauge theory1, but we

can generalize it to arbitrary D-type gauge theories by adding more branes on the left. We only

give a description in this specific case of D2, as the generalization is straightforward (see Figure3).

Figure 3: Example of generalization to D3 quiver ”SU(1)” gauge theory.

We first describe our proposal in the language of intertwiners of the DIM algebra, as it looks

much clearer in this framework.
1
The tensor product here means that the two gauge groups are completely decoupled.

5

[Hayashi, Kim, Lee, Taki, Yagi, 2015]

ON0=ON-+NS5



In the unrefined case, the topological vertex formalism is extremely simple.
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In the refined case, it is more tricky to realize this decoupling.
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Generalization: adding more branes

U(1)

U(1)

U(1)

U(1)

In this case, from the contraction between �2 and �⇤
3, �

⇤
4, the bifundamental contributions between

2nd and 3rd nodes and between 2nd and 4th nodes appear because of (4.2). The bifundamental

contribution between the 3rd and 4th nodes cancels thanks to the same mechanism as above.

Remark: This construction is motivated by the brane construction of D-type quiver. The brane

construction with ON0 for D-type quiver gauge theories was originally reported in [14, 15], but

instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold construction

proposed in [19].

ON0 ON�

Remark: This construction can also be translated to the IKV formalism. The reflection state

simply transforms the property of �⇤ in the vertical representation to that of �. We can confirm

the decoupling of two gauge groups, e.g. U(1)⌦U(1), by assigning f�(t, q)P 0(�t; t, q)/P 0(�; q, t) to

the reflection state in the IKV formalism. This factor is motivated from the action of the boundary

state, |⌦ii, which turns the vertical-representational property of �⇤ into �.

t

q

q

t

t

q

t P 0(�t;t,q)
P 0(�;q,t) f�(t, q)

12

Interestingly, in this twist construction, if we do not put the framing factor f
�

(t, q) into the calcu-

lation, there will be a natural nonzero Chern-Simons level coming out. We can check that there

is no Q-dependence in the partition function, which is the realization of the cacnellation of bifun-

damental contributions, and we can see that the partition function factorizes into two part, i.e.

”SU(1)”⇥”SU(1)” theory (in the language of arXiv:1512.08239).

By adding more branes on the left-hand side, we can achieve higher-rank D

n

type quiver gauge

theories. The generalization to arbitrary gauge groups is also straghtforward.

Let us give one example, which will be important in later discussion: SU(2)⌦SU(2) quiver gauge

theory. The twist-contructed pure SU(2) part is given as the following.

The full construction of SU(2)⌦SU(2) is given by

Double Trick

A natural way to eliminate the use of the boundary-state-like operator in the above construction is

to copy all branes into two copies and connect the branes with their mirror images.

The twisted connection in the middle can be ”resolved” into the following diagram.

3



Generalization: adding more branes

U(1)

U(1)

U(1)

U(1)

In this case, from the contraction between �2 and �⇤
3, �

⇤
4, the bifundamental contributions between

2nd and 3rd nodes and between 2nd and 4th nodes appear because of (4.2). The bifundamental

contribution between the 3rd and 4th nodes cancels thanks to the same mechanism as above.

Remark: This construction is motivated by the brane construction of D-type quiver. The brane

construction with ON0 for D-type quiver gauge theories was originally reported in [14, 15], but

instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold construction

proposed in [19].

ON0 ON�

Remark: This construction can also be translated to the IKV formalism. The reflection state

simply transforms the property of �⇤ in the vertical representation to that of �. We can confirm

the decoupling of two gauge groups, e.g. U(1)⌦U(1), by assigning f�(t, q)P 0(�t; t, q)/P 0(�; q, t) to

the reflection state in the IKV formalism. This factor is motivated from the action of the boundary

state, |⌦ii, which turns the vertical-representational property of �⇤ into �.

t

q

q

t

t

q

t P 0(�t;t,q)
P 0(�;q,t) f�(t, q)

12

Interestingly, in this twist construction, if we do not put the framing factor f
�

(t, q) into the calcu-

lation, there will be a natural nonzero Chern-Simons level coming out. We can check that there

is no Q-dependence in the partition function, which is the realization of the cacnellation of bifun-

damental contributions, and we can see that the partition function factorizes into two part, i.e.

”SU(1)”⇥”SU(1)” theory (in the language of arXiv:1512.08239).

By adding more branes on the left-hand side, we can achieve higher-rank D

n

type quiver gauge

theories. The generalization to arbitrary gauge groups is also straghtforward.

Let us give one example, which will be important in later discussion: SU(2)⌦SU(2) quiver gauge

theory. The twist-contructed pure SU(2) part is given as the following.

The full construction of SU(2)⌦SU(2) is given by

Double Trick

A natural way to eliminate the use of the boundary-state-like operator in the above construction is

to copy all branes into two copies and connect the branes with their mirror images.

The twisted connection in the middle can be ”resolved” into the following diagram.

3

The full construction of SU(2)⌦SU(2) is given by

SU(2)

SU(2)

4 Short Notations

As seen from the last section, the diagram for the brane construction with oribifold is rather

complicated, especially for the most interesting cases we want to analyze for D
n

quivers (n � 4).

We would like to introduce a simpler diagram to represent the brane web. We only depicts NS5-

branes and D5-branes in the simpler diagram. For example, the pure SU(2) gauge theory is depicted

as

and the A3 quiver ”SU(1)” gauge theory is given by

The Chern-Simons level, or the local geometry O(m � 1) � O(�m � 1) ! CP1, becomes implicit

in these simpler diagrams. We denote the boundary-state-like operator ⌦� as a reflected curve, i.e.

the twisted construction for ”SU(1)” is

More examples are given in Figure 4.

7

U(1)

U(1)

U(1)

U(1)

In this case, from the contraction between �2 and �⇤
3, �

⇤
4, the bifundamental contributions between

2nd and 3rd nodes and between 2nd and 4th nodes appear because of (4.2). The bifundamental

contribution between the 3rd and 4th nodes cancels thanks to the same mechanism as above.

Remark: This construction is motivated by the brane construction of D-type quiver. The brane

construction with ON0 for D-type quiver gauge theories was originally reported in [14, 15], but

instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold construction

proposed in [19].

ON0 ON�

Remark: This construction can also be translated to the IKV formalism. The reflection state

simply transforms the property of �⇤ in the vertical representation to that of �. We can confirm

the decoupling of two gauge groups, e.g. U(1)⌦U(1), by assigning f�(t, q)P 0(�t; t, q)/P 0(�; q, t) to

the reflection state in the IKV formalism. This factor is motivated from the action of the boundary

state, |⌦ii, which turns the vertical-representational property of �⇤ into �.

t

q

q

t

t

q

t P 0(�t;t,q)
P 0(�;q,t) f�(t, q)

12



How to realize the bifundamental contribution in non-
simply-laced quiver?

and the initial condition,

Y(d)

X ;
i

(z) =
d/d

i

�1Y
k=0

(1� v

i

q

kd

i

1

/z) =
Y
x2X ;

i

1� x/z

1� q

d

1

x/z

, (4.16)
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Solving the recursive relation in a similar way by using the expressions of Y(d)
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where X
i

and X
j

are respectively the characteristic sets associated to Young diagram � and ⌫. The

above alternative expression will be a key rewriting formula in the construction with web of vertex

operators presented in the following section.

5 Web Construction for BCFG Quivers and Half-blood Ver-

tex

We are now ready to construct the web of vertex operators that realizes non-simply-laced quivers

of BCFG-type.

Let us define the following vertex operators,
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is the refinement parameter associated to the i-th node. We further define

a new vertex with the above two vertex operators,
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Examples: BC-type construction
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correspondence between vertices and simple roots I

A-type: n+1 Fock spaces for An quiver
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for which we can draw a similar diagram as Figure 9 with all external thick lines either in the

horizontal or in the vertical directions. This class of solutions can always be found for general

B-type quivers.

The superconformal condition for G
2

, whose field contents are again labeled by
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We again have two special solutions,

N

0
f

= 0, N

1

= 2N
f

, N

2

= 3N
f

, (5.35)

and
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f

, (5.36)

indicating di↵erent directions of the middle brane (in the unpreferred direction) of these two super-

conformal quiver theories.

6 E-type Quivers and “Square-root” Vertices

E-type quivers are more tricky to deal with at the level of the brane web. In the case of quivers

corresponding to classical Lie algebras, one can see an implicit relation between the web diagram

and the set of simple roots. It is most clear for A-type quivers: for the A

n

quiver, we have n + 1

Fock spaces in unpreferred directions to express n gauge nodes, and each gauge node is sandwiched

by two topological vertices, � and �⇤. This resembles the construction of n simple roots with n+1

independent unit vectors e
i

,
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In the case of D
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quiver, n� 1 of n simple roots are expressed in the same way, i.e. ↵
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i+1

for i = 1, . . . n� 1, while the last simple root is given by the sum of two unit vectors,

↵

n

= e

n

+ e

n+1

. (6.2)

The di↵erent form of the last simple root ↵

n

exactly corresponds to the realization of a gauge

node by gluing two topological vertices of type � with a reflection state, or one �-vertex and one

�̄⇤-vertex, which essentially behaves like a �-vertex.
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D-type:

ON�

Figure 5: The web diagram for the D

2

quiver theory.
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�

�1]
|⌦, ��1ii

Figure 6: The vertex assignment for the D

2

quiver theory.

case, D
2

' A

1

⇥ A

1

quiver, for example is given in Figure 5. The orientifold ON� in the diagram

is assigned with the reflection state defined by

|⌦,↵ii :=
X
�

a

�

|v,�i ⌦ |v↵,�i , (3.1)

with the rule

|⌦, ��1ii.

(3.2)

The explicit assignment of vertices is presented in Figure 6 for D
2

quiver theory and can be easily

generalized to higher rank D-type quiver algebras.

We also introduce simplified webs for these constructions with orientifold as shown in Figure 7,

where the “reflection” of D5-brane is represented by a bended brane in the preferred direction.

Figure 7: Examples for simpler brane diagrams for D
2

, D
3

and D

4

quiver theories.
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and the set of simple roots. It is most clear for A-type quivers: for the A

n

quiver, we have n + 1

Fock spaces in unpreferred directions to express n gauge nodes, and each gauge node is sandwiched

by two topological vertices, � and �⇤. This resembles the construction of n simple roots with n+1

independent unit vectors e
i

,

↵

i

= e

i

� e

i+1

, s.t. ↵
i

· ↵
i

= 2, ↵

i

· ↵
i+1

= �1. (6.1)

In the case of D
n

quiver, n� 1 of n simple roots are expressed in the same way, i.e. ↵
i

= e

i

� e

i+1

for i = 1, . . . n� 1, while the last simple root is given by the sum of two unit vectors,

↵

n

= e

n

+ e

n+1

. (6.2)

The di↵erent form of the last simple root ↵

n

exactly corresponds to the realization of a gauge

node by gluing two topological vertices of type � with a reflection state, or one �-vertex and one

�̄⇤-vertex, which essentially behaves like a �-vertex.
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recovers

for which we can draw a similar diagram as Figure 9 with all external thick lines either in the

horizontal or in the vertical directions. This class of solutions can always be found for general

B-type quivers.

The superconformal condition for G
2

, whose field contents are again labeled by

N

1

N

2

N

0
f

N

f

(5.32)

is given by

2N
1

= N

2

+N

f

, (5.33)

2N
2

= 3N
1

+N

0
f

. (5.34)

We again have two special solutions,

N

0
f
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1

= 2N
f
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2

= 3N
f

, (5.35)

and

N

f

= 0, N

2

= 2N
1

= 2N 0
f

, (5.36)

indicating di↵erent directions of the middle brane (in the unpreferred direction) of these two super-

conformal quiver theories.
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node by gluing two topological vertices of type � with a reflection state, or one �-vertex and one

�̄⇤-vertex, which essentially behaves like a �-vertex.
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E-type from simple roots

This correspondence can be found also in BC-type quivers, but in a more complicated (and

subtle) way. In the case of C-type quiver, as the positive-mode part of the half-blood vertex

�̃⇤(d
i

)

X
j

[v
j

] can be factorized into d
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/d

j

vertex operators, which appear in the topological vertex

defined in DIM
q

d

j

1 ,q2
,
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a simple root of a di↵erent form, ↵
n

= d

i

/d

j

e

n

, will be induced in the root system8. We note

that we need to neglect the rightmost Fock space in the web construction using half-blood vertices

described in the previous section to establish the correspondence with simple roots in the above

discussion, and this neglect can only be done to B-type quivers. For B-type quivers, the half-blood

vertex can only be viewed as one single topological vertex defined in DIM
q

d

i

,q2
, and thus we have a

simple root of the form, ↵
1

= �e

1

(be neglecting the leftmost Fock space in the web construction

given in the previous section). We note that this neglect indeed agrees with the discussion on the

web diagram of superconformal quiver theories shown in Figure 9.

The splitting of one half-blood vertex into d

i

/d

j

usual vertices reminds us the folding trick to

construct non-simply-laced simple Lie algebras from simply-laced ones. However, the folding in

the current case is slightly di↵erent from the traditional one since we are considering the (q
1

, q

2

)-

deformed algebra: As discussed in [49], we have to shift the variables in the vertices (each by q

d

j

1

)

when folding them into a single vertex. The factor q
�nkd

j

1

in (6.3) and (6.4) is a manifestation of

this shift.

We now turn to the construction of E
8

quiver from an analogy to the realization of its simple

roots and obtain the whole E-series by removing some D5 branes from the web diagram. One

beautiful realization of the simple-root system in 8 unit vectors is given by
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= e

6

� e
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where the label of the simple roots can be read from the following Dynkin diagram,

8We in fact absorbed d

i

/d

j

� 1 vertex operators into the usual topological vertex � of the node with d = d

i

here.
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we have to use fractional coefficients to write down the simple roots.

We need to introduce a new type of vertex, “square-root vertex”.
1/2-power of the usual vertices

8

543 6 721

The web construction can be found as

where the long line (connecting 8 vertices)

is a short representation of the following computation,

P
�

a

�

|v,�i

hv,�|

|v,�i

hv,�|

|v,�i

hv,�|

|v,�i

hv,�|

(6.8)

and we introduced two types of new vertices as the “square-root” of �̄ and �⇤:

�̄[1/2][v], (6.9)

�̄[1/2][v] |v,�i = �̄
1
2
; [v]

Y
x2�

⌘̄

1
2 (�

x

), (6.10)

�⇤[ 12 ][v], (6.11)
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what we had for D-type quiverE8 quiver

“square-root vertices”



hv,�|�⇤[ 12 ][v] = �
⇤ 1
2

; [v]
Y
x2�

⇠

1
2 (�

x

). (6.12)

We notice again that we omitted the prefactor that corresponds to t

n

(�, u, v) in �[u, v] in the

expression of new vertices here. As �̄ vertex behaves in a similar way to �⇤ as a vertex operator

in the unpreferred direction, the construction of the 7-th node, i.e. the long line, indeed resembles

the expression of the simple root ↵
7

.

With the long line standing for the 7-th node in the quiver diagram, the quiver structure can

be read from the web diagram (by computing the instanton partition function) as

(6.13)

For example, it is easy to see that the D5 brane corresponding to the first node and the long line

completely decouple from each other (factors from the contraction in the left-most Fock space and

those from the second left Fock space cancel with each other as in the computation for D
2

quiver,

refer to (3.3)). We first remark that at the 7-th node simply piling up the long lines as

(6.14)

raises the rank of the gauge group of the 7-th node, and therefore one is allowed to raise or lower

the rank of gauge group at each node freely. The partition function obtained from this construction

is consistent with that written down in terms of the E

8

(q-)Cartan matrix [18]. Another remark

is that the summation computation given in (6.8) can be achieved by combining several pieces of

trivalent vertices, whose definitions and graphical representations are given by

P
�

a

�

|v,�i ⌦ hv,�|⌦ hv,�| , (6.15)

P
�

a

�

|v,�i ⌦ |v,�i ⌦ hv,�| . (6.16)

These trivalent vertices are natural generalizations of the identity operator 1 =
P

�

a

�

|v,�i hv,�|
and the reflection state |⌦,↵ii =

P
�

a

�

|v,�i ⌦ |v↵,�i, and they are the basic building blocks for

such generalizations with more legs. We give the prescription to deal with these trivalent vertices in

Appendix D when deriving the qq-characters via the Ward identity approach. We leave the concrete

computation of qq-characters of E-type quivers to future works.
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quiver structure

removing the branes corresponding to unnecessary nodes, 
we obtain E6 and E7 quivers.

Affine quivers?

affine A-type: well-known

8

543 6 721

The web construction can be found as

where the long line (connecting 8 vertices)

is a short representation of the following computation,
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hv,�|

(6.8)

and we introduced two types of new vertices as the “square-root” of �̄ and �⇤:

�̄[1/2][v], (6.9)

�̄[1/2][v] |v,�i = �̄
1
2
; [v]

Y
x2�

⌘̄

1
2 (�

x

), (6.10)

�⇤[ 12 ][v], (6.11)
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identify the branes on the two ends

affine D-type: already mentioned
affine BC-type: more or less the same as BC



From Wikipedia

Affine Dynkin diagrams

The only non-trivial ones in our approach are again the affine E-type quivers.

8 A�ne Quivers

There is almost no di�culty to proceed to a�ne quivers (including the twisted ones),9 with all the

new vertices we introduced in this article. For example, the untwisted a�ne D-type quivers, D(1)

n

has already appeared as an example of superconformal quiver theories before. The untwisted a�ne

E-type quivers, E(1)

6,7,8

, are the only tricky ones to construct. Let us describe in this section how

to build E

(1)

6

, E(1)

7

and E

(1)

8

quivers in the language of web diagram by only using the topological

vertices introduced in this article and their “square-roots”.

The Dynkin diagram for E(1)

7

reads

8

432 5 61 7

(8.1)

The construction for the E

(1)

7

quiver, which is actually simpler, is given by

(8.2)

where the horizontal line (corresponding to the 7-th node) at the bottom only intersects with the

Fock space on the most left and that on the most right. The quiver structure is again contained in

9One may expect a Langlands duality exhibited in the construction of non-simply-laced and a�ne quivers when

we swap two ⌦-background parameters ✏1 $ ✏2, which converts the parameter b = �✏1/✏2 as b $ b

�1. Actually the

W-algebra shows an isomorphism W

b

(g) ' W

b

�1(Lg) under the swap [51]. However, for the q-deformed W-algebras,

corresponding to our 5d gauge theory setup, such an isomorphism does not hold for non-simply-laced algebras

g 6= Lg [52], and thus the Langlands duality is not expected to be present in our vertex formalism. The 4d limit of

the topological vertex has been investigated in [53], and from this point of view the 4d limit of the half-blood vertex

might be an interesting and relevant direction to look into in the future.
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for example, E(1)7



From Wikipedia

Affine Dynkin diagrams

The only non-trivial ones in our approach are again the affine E-type quivers.

for example, E(1)7the web diagram as

(8.3)

Note that the e↵ective Coulomb modulus of the 7-th node is shifted by � in this construction. The

realization of the 7-th node is designed so that piling up the same structure raises the rank of the

gauge group there. This will be true for all constructions presented in this section.

The Dynkin diagram for E(1)

8

is given by

9

321 4 5 6 7 8

(8.4)

and can be constructed as

(8.5)

We note that the top line only intersects the second left Fock space and the most right one, and two

bottom lines, as in the case of E(1)

7

, intersect only with the Fock spaces at the most left and right.

The quiver structure, which is more non-trivial compared to previous examples in this article, in
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Interestingly, by using the “square-root” vertices and usual vertices, we 
could only reproduce all affine E-type quivers, but not to go beyond.



Conclusion

• We built the “brane” web for ABCDEFG-type and affine 
quivers by introducing new vertices, half-blood vertex and 
“square-root” vertex.

• Our construction not only reproduces the Nekrasov partition 
function, but also realizes qq-characters as Ward identities.



Thank you very much 
for your attention!!



Remark: We mainly set the gauge group in each node of the quiver diagram to be U(1), but

we can easily generate it to any A-type gauge group by replacing �(n) and �⇤(n0) with generalized

intertwiners �(n,m) and �⇤(n0
,m

0) introduced in [4]. For more details, refer to [4].

3 A Twisted Construction

In this section, we make our main claim of this paper, which will be checked in the remaining

sections. We propose one way to assign topological vertices, or equivalently DIM operators, to the

orbifold-construction diagram for D-type quiver gauge theories.

The brane construction with ON0 for D-type quiver gauge theories was originally reported in

[5, 6], but instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold

construction proposed in [7].

ON0 ON�

The above diagram is a D2-quiver construction for the ”SU(1)”⌦”SU(1)” gauge theory1, but we

can generalize it to arbitrary D-type gauge theories by adding more branes on the left. We only

give a description in this specific case of D2, as the generalization is straightforward (see Figure3).

Figure 3: Example of generalization to D3 quiver ”SU(1)” gauge theory.

We first describe our proposal in the language of intertwiners of the DIM algebra, as it looks

much clearer in this framework.
1
The tensor product here means that the two gauge groups are completely decoupled.

5

Let us assign the refined topological vertex and ignore this part first. 

λ

σ

Left: 

where the sum if taken over the realizations of the Young diagrams µ, ⌫, � and �, and Q1, Q2, Q

are related to Kähler parameters of the local geometry13. We note that the factor
�
q
t

� 1
2 |⌫| exactly

corresponds to the �-shift of the Coulomb branch parameter v2 in the AFS approach. We can

extract from this partition function the factors corresponding to the contribution of the horizontal

representations in the AFS approach. There are two such factors14,

X

µ

(�Q
p

q/t)|µ|sµ(t
��t

q�⇢)sµ(q
��t�⇢),

X

⌫

(Q
p
q/t)|⌫|s⌫t(t

��t

q�⇢)s⌫(q
��t�⇢),

which obviously cancel each other due to the following identities involving Schur functions,

X

µ

sµ(x)sµ(y) =
Y

i,j

(1� xiyj)
�1,

X

⌫

s⌫t(x)s⌫(y) =
Y

i,j

(1 + xiyj). (4.21)

It is also possible to generalize this prescription to D2 quivers with higher-rank gauge groups

using more general identities of similar type for Schur functions. These identities follow from the

vertex-operator realization of the skew Schur function.

sµ/⌘(~x) = h⌘| Ṽ+(~x) |µi = hµ| Ṽ�(~x) |⌘i , (4.22)

where

Ṽ±(~x) = exp

 1X

n=1

1

n

X

i

xn
i J±n

!
, (4.23)

and Jn :=
P

j2Z+1/2  �j 
⇤
j+n denotes the modes of a free boson constructed from two Neveu-

Schwarz free fermions, whose modes satisfy { n, m} = { ⇤
n, 

⇤
m} = 0 and { n, 

⇤
m} = �n+m,0. The

free fermion basis labeled by a Young diagram here takes the form |µi =Qd
i=1  �↵

i

Qd
i=1  

⇤
��

i

|vaci,
where µ = (↵1,↵2, . . . |�1, �2 . . . ) denotes the set of Frobenius coordinates of the Young diagram:

↵i = �i � i and �i = �0i � i with i ranging from one to the number of squares on the diagonal.

When all the external legs are trivial, factors corresponding to the horizontal representation can be

written as the vev of vertex operators of a free boson, Ṽ±(~x). The cancellation of bifundamental

factors occurs essentially in the same way as in the AFS approach, and thus we omit the details

here.
13In terms of the AFS approach, Q = v1/v2, and Q1,2 = �

�1q1,2.
14The factor (�pq/t)|µ| comes from a combination of several additional factors, including the framing factor,

fµ(t, q)
�
q
t

� ||µ||2
2

t

�(µ)
2 = (�pq/t)|µ|. The calculation is done using the following identities:

n(⌫) =
1

2
(||⌫t||2 � |⌫t|) =

X

x2⌫

a(x), n(⌫t) =
1

2
(||⌫||2 � |⌫|) =

X

x2⌫

`(x), n(⌫) = n(⌫t)� 1

2
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1

2
(⌫).

(4.20)

The functions n(�), |�|, ||�|| and (�) of a Young diagram � are defined in the Appendix C.
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Right:

They cancel each other due to the Cauchy identity,

where the sum if taken over the realizations of the Young diagrams µ, ⌫, � and �, and Q1, Q2, Q
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where
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↵i = �i � i and �i = �0i � i with i ranging from one to the number of squares on the diagonal.

When all the external legs are trivial, factors corresponding to the horizontal representation can be

written as the vev of vertex operators of a free boson, Ṽ±(~x). The cancellation of bifundamental

factors occurs essentially in the same way as in the AFS approach, and thus we omit the details

here.
13In terms of the AFS approach, Q = v1/v2, and Q1,2 = �

�1q1,2.
14The factor (�pq/t)|µ| comes from a combination of several additional factors, including the framing factor,

fµ(t, q)
�
q
t

� ||µ||2
2

t

�(µ)
2 = (�pq/t)|µ|. The calculation is done using the following identities:

n(⌫) =
1

2
(||⌫t||2 � |⌫t|) =

X

x2⌫

a(x), n(⌫t) =
1

2
(||⌫||2 � |⌫|) =

X

x2⌫

`(x), n(⌫) = n(⌫t)� 1

2
(⌫t) = n(⌫t) +

1

2
(⌫).

(4.20)

The functions n(�), |�|, ||�|| and (�) of a Young diagram � are defined in the Appendix C.

19



Let us examine some well-known examples: 

SU(2) gauge A1 quiver theory
SU(3) gauge A1 quiver theory

SU(2) gauge A2 quiver theory

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

2

We see that the horizontal lines in the central area corresponds to the branes that generates the

vectormultiplets. We can further guess that parallel horizontal lines stretching to the infinity give

rise to hypermultiplets. Indeed, the case U(3) with Nf = 4 was checked in the literature explicitly

and its toric diagram reads

More precise gluing rules

Let us formulate the vertex calculation in a more proper language. The vertex we assign Cµ⌫�(t, q)

is as the following diagram.

�

µ, q

⌫, t

There is a preferred direction in the vertex diagram, which is assigned with a Young diagram �, and

we also need to label the remaining two legs with q and t. There are two ways to glue the vertices.

One is to glue two preferred ones together, and the other one is to glue a q vertex with a t vertex.

In both cases, we need a framing factor, as stated before. In principle, it is determined by the local

geometry of the contracted line. There is an alternative way to compute it. Let us assign the lines

separated by the contracted line with vector v and v0 (the one on the right-hand side with v0), then

the framing factor power n = v0 ^ v. Another implicit rule is that when we glue in the preferred

4
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One can easily confirm that the vertex operator 

Equivalence between Two Types of Refined Topological
Vertex

1 Melting Crystal Picture

C

µ,⌫,�

(t, q) /
X

⌘

s

µ

t
/⌘

(t

��

q

�⇢+{1/2}
)s

⌫/⌘

(q

��

t
t

�⇢�{1/2}
)

= hµt|V�(t
��

q

�⇢+{1/2}
)V

+

(q

��

t
t

�⇢�{1/2}
) |⌫i . (1.1)

2 AFS Vertex

�

�

[u, t

i

] = t

n

(�, u, t

i

) : �;(ti)
Y

x2�

⌘(�

x

) :, (2.1)

�

⇤
�

[u, t

i

] = t

⇤
n

(�, u, t

i

) : �

⇤
;(ti)

Y

x2�

⇠(�

x

) :, (2.2)

where

�;(z) = exp

 
�
X

n>0

1

n

z

n

1� q

n

a�n

!
exp

 
X

n>0

1

n

z

�n

1� q

�n

a

n

!
, (2.3)

�

⇤
;(z) = exp

 
X

n>0

1

n

(�z)

n

1� q

n

a�n

!
exp

 
�
X

n>0

1

n

�

n

z

�n

1� q

�n

a

n

!
, (2.4)

⌘(z) = exp

 
X

n�1

1� t

�n

n

z

n

a�n

!
exp

 
�
X

n�1

1� t

n

n

z

�n

a

n

!
,

⇠(z) = exp

 
�
X

n�1

1� t

�n

n

�

n

z

n

a�n

!
exp

 
X

n�1

1� t

n

n

�

n

z

�n

a

n

!
.

We change the normalization to (for n > 0)

a

n

=

1� q

�n

1� t

n

â

n

, a�n

= �q

n

â�n

, (2.5)

so that

[â

n

, â

m

] = n�

n+m,0

. (2.6)

1

matches with the vertex written down by Awata, Feigin and Shiraishi, 
on which they found that the so-called Ding-Iohara-Miki algebra acts 
in the adjoint way.

???

Ding-Iohara-Miki algebra

doubly affinized quantum group

U
q,t

(

bbgl1) (29)

2

[Ding, Iohara, 1997] [Miki, 2007]

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

2

U
q,t

(

bbgl1) (29)

2

Yangian/SHc algebra

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

2

(A-type)
… [Prochazka, 2015]

q-deformed

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

2

[Awata, Feigin, Shiraishi, 2011]

[Maulik, Okounkov, 2012]
[Shiffmann, Vasserot, 2012]



One thing I would like to mention is 

Elliptic Extension of the Whole Story

• elliptic Ding-Iohara-Miki algebra
[Saito, (2013)]

• elliptic AGT/Kimura-Pestun
[Nieri, (2015)] [Iqbal, Kozcaz, Yau, (2015)] [Kimura, Pestun, (2016)]

• elliptic topological vertex,  
with elliptic Ding-Iohara-Miki acting on it in the adjoint way

[RZ, (2017)] [Foda, RZ, (2018)]

elliptic Schur and Macdonald functions (might be) related
~ two copies q-Whittaker function



Some properties of Ding-Iohara-Miki (DIM)

• Ding-Iohara-Miki algebra on the coproduct of N Fock spaces 
contains a U(1)x (q-deformed) WN algebra.

[Feigin, Hoshino, Shibahara, Shiraishi, Yanagida, 2010]

• There is an SL(2,Z) automorphism of the algebra, among which 
there is an S-duality symmetry permutes three legs of the 
refined topological vertex.

[Miki, 2007] 
[Awata, Feigin, Shiraishi, 2011]

• Since the algebra is a quantum group, it is equipped with a 
universal R-matrix, which reduces to Maulik-Okounkov’s R-
matrix in the 4d limit, 

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

2

[Feigin, Jimbo, Miwa, Mukhin, 2015] 
[Fukuda, Harada, Matsuo, RZ, 2017]



This can certainly be translated into the language of 
Awata-Feigin-Shiraishi vertex, and we can easily prove 
that this cancellation mechanism occurs in the most 
general case.

Now, let us consider the ignored part. 

Remark: We mainly set the gauge group in each node of the quiver diagram to be U(1), but

we can easily generate it to any A-type gauge group by replacing �(n) and �⇤(n0) with generalized

intertwiners �(n,m) and �⇤(n0
,m

0) introduced in [4]. For more details, refer to [4].

3 A Twisted Construction

In this section, we make our main claim of this paper, which will be checked in the remaining

sections. We propose one way to assign topological vertices, or equivalently DIM operators, to the

orbifold-construction diagram for D-type quiver gauge theories.

The brane construction with ON0 for D-type quiver gauge theories was originally reported in

[5, 6], but instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold

construction proposed in [7].

ON0 ON�

The above diagram is a D2-quiver construction for the ”SU(1)”⌦”SU(1)” gauge theory1, but we

can generalize it to arbitrary D-type gauge theories by adding more branes on the left. We only

give a description in this specific case of D2, as the generalization is straightforward (see Figure3).

Figure 3: Example of generalization to D3 quiver ”SU(1)” gauge theory.

We first describe our proposal in the language of intertwiners of the DIM algebra, as it looks

much clearer in this framework.
1
The tensor product here means that the two gauge groups are completely decoupled.

5

Expected structure:

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

2

$ hh⌦, �| ,

where the bra reflection is defined by hh⌦, �|⌦, �ii = 1, that is hh⌦, �| = P

~� a~�hh~v,~�|⌦ hh�~v,~�| .
Nick: are these two reflection states S-dual to each other? Seems to be. Can we examine the

brane construction for the S-dual configuration? z ! z

�1 implies �x ! �

�1
x , does not make sense

to me...

Remark: In the limit q ! 1 (t = q

� with � fixed), using the dictionary of SHc [4], we can easily

show that (3.10), (3.11) and (3.11) reduce to the boundary state condition, (3.1).

4 D-type Quiver and vertical reflection

In this section, we make our main claim of this paper, which will be checked in the remaining

sections. We propose one way to assign topological vertices, or equivalently DIM operators, to the

orbifold-construction diagram for D-type quiver gauge theories. For brevity, we only consider (0, 1)

vertical representations (the ”SU(1)” gauge groups) at each nodes of quivers.

In order to understand the point, we consider the following contractions of AFS intertwinners

with the vertical reflection state (left):

�⇤[v1]

�⇤[v2]

�[v1]
�⇤[v2��1]

hh⌦, ��1|

U(1)

U(1)

For simplicity, we omitted the horizontal weights u’s, which can always be easily assigned consis-

tently. Note that the v-parameter of �⇤ in the right is shifted by �

�1, because of the reflection

operator. The assignment of topological vertex is as usual, while we need a reflection operator

hh⌦, ��1|, defined in (3.9).

Theorem We claim that such combination produces the partition function for D2-type gauge

theory:

X

�1,�2

a�1a�2h�⇤(n⇤�1)
�2

[u⇤
2, v2]�

⇤(n⇤)
�1

[u⇤
1, v1]iHh�⇤(n)

�2
[�1/(u2v2�

2), v2�
�1]�(n)

�1
[�u1v1, v1]iH = ZD2 (4.1)

10

two decoupled U(1) instanton sectors.

➡ need the orientifold to replace 
the behavior in the preferred 
direction of                       to  

t

q

q
t

t
q

t P 0(�t;t,q)
P 0(�;q,t) f�(t, q)

q

Figure 9: Realization of the D2 quiver with U(1) ⇥ U(1) gauge group by topological vertices and

orientifold plane.

We recover here the product of two A1 instanton partition functions,

hT [D2]i =
0

@
X

~�1

q|
~�1|
1 Zvect.(~v1,~�1)ZCS(1,~�1)

1

A

0

@
X

~�2

q|
~�2|
2 Zvect.(~v2,~�2)ZCS(2,~�2)

1

A , (4.17)

upon the identifications

1 = n⇤
1 � n3, 2 = �m2 � n2 � n4, q1 = ��1�m1u3/u

⇤
1, q2 = u2u4�

�n4�2

m2Y

l=1

(�v
(2)
l ). (4.18)

It is important to remark that the constraints (4.12) on the algebraic quantities bring no further

constraints on the gauge theory parameters. The rank of the two gauge groups U(m1) and U(m2) are

clearly independent in (4.12), and so are the two sets of Coulomb branch vevs. On the other hand,

the identities (4.12) imply that 1 = n2�n4�m1, which is still independent from 2 = �m2�n2�n4.

A similar argument holds for the gauge couplings q1 and q2.

Remark In the case of ranks m1 = m2 = 1, our construction can be easily translated to the

IKV topological vertex formalism (see Appendix C for a brief review). First we see that Figure

8 immediately reduces to the resolved brane web in Figure 6 in this case. The reflection state

simply transposes � in the preferred direction (vertical representation). It thus becomes a ket,

thereby allowing us to replace �⇤ by this object in the definition of the operator T . It is possible to

reproduce the decoupling of the U(1) components of the gauge group of U(1)⇥ U(1) by assigning

the factor f�(t, q)P 0(�t; t, q)/P 0(�; q, t) to the reflection state which is motivated by the replacement

of �⇤ by � (see Figure 9).

Let us see how the cancellation occurs in the IKV formalism. According to the prescription

given above, the instanton partition function of the U(1)⇥ U(1) gauge theory reads

Zinst.[D2](Q1, Q2) =
X

µ,⌫,�,�

Q
|�|
1 Q

|�|
2 Q|µ|+|⌫|

⇣q
t

⌘ 1
2 |⌫|

fµ(t, q)f�(t, q)P
0(�t; t, q)/P 0(�; q, t)

⇥C;µ�(t, q)C⌫;�t(q, t)Cµt;�(t, q)C⌫t;�(t, q), (4.19)

18

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

C
⌫

t;�t
(q, t) (35)

2

In the calculation of partition 
function, we just need to divide a 
Macdonald polynomial and 
multiply its transposed one. 



• What is interesting is that this replacement is an automorphism 
of the Ding-Iohara-Miki algebra.

The action of the orientifold can thus be represented as a 
reflection state:

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

C
⌫

t;�t
(q, t) (35)

X

�

|v,�i ⌦ |v�,�i (36)

2

$ |⌦,↵ii

Figure 4: Graphical representation of the boundary state in the (p, q)-web diagram.

where ✏ is the co-unit, ✏(x±
k ) = 0, ✏( ±

±k) = 1. ⇢̄ provides a representation of DIM, it is the transposed

of the contragredient representation ⇢̂ defined in (2.14). More explicitly, the characterization (3.2)

of the boundary state in terms of the action of the Drinfeld currents (2.2) reads

(⇢(0,m)(x+(z))⌦ 1)|⌦ii = �(1⌦ ⇢(0,m)(x�(z)))|⌦ii ,
(⇢(0,m)(x�(z))⌦ 1)|⌦ii = �(1⌦ ⇢(0,m)(x+(z)))|⌦ii ,
(⇢(0,m)( ±(z))⌦ 1)|⌦ii = (1⌦ ⇢(0,m)( ±(z)))|⌦ii .

(3.4)

These constraints are satisfied by a coherent state given by

|⌦ii =
X

~�

a~� |~v,~�ii ⌦ |~v,~�ii. (3.5)

Indeed, this state is obtained from the identity operator

id =
X

~�

a~� |~v,~�iihh~v,~�| , (3.6)

with the second state has been transposed. The identities (3.2) are the equivalent of ⇢(0,m)(e) · id =

id · ⇢̂(0,m)(e) with ⇢̂ replaced by its transpose ⇢̂t = ⇢̄.

In the definition (3.5) of the boundary state, we have assumed that the two vertical modules

have the same weights. In the following, we will need a more general definition that relaxes this

condition,

|⌦,↵ii =
X

~�

a~� |~v,~�ii ⌦ |↵~v,~�ii. (3.7)

From the scaling property of the vertical representation with respect to the automorphism ⌧↵, it

can be shown that this state satisfies the property

�
⇢(0,m)(e)⌦ 1

� |⌦,↵ii = �
1⌦ ⇢̄(0,m)(⌧↵ · e)� |⌦,↵ii, e 2 DIM. (3.8)

In the correspondence with (p, q)-web diagrams, the boundary state will be associated to an

orientifold plane that realizes the vertical reflection �V . Graphically, it will be represented as a

dashed line in the brane web diagram (see Figure 4).

We would like to conclude this section with two important remarks. Firstly, the vertical repre-

sentation of rank m = 1 can be rephrased as an action of the DIM algebra on Macdonald symmetric

12

position of D5-brane

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

C
⌫

t;�t
(q, t) (35)

X

�

|v,�i ⌦ |v�,�i (36)

� =

p
t/q (37)

2

• One intriguing observation here is that the reflection state above 
reduces to the boundary state in the 4d limit                         .

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

2

be found in [23]). Using these contractions, the instanton partition function of linear quivers is

reproduced by the (Fock) vacuum expectation value of the product of intertwiners following the

prescription of the (p, q)-web diagram [23].

3 Reflection states of the Ding-Iohara-Miki algebra

Our proposal for the reflection states in DIM algebra is inspired by the boundary states of Virasoro

algebra [24] that play an important role in 2d boundary conformal field theories [33]. These states

live in the tensor product of two Verma modules, and satisfy10

(Ln ⌦ 1� 1⌦ L�n)|⌦i = 0. (3.1)

In the second term, L�n = (Ln)† corresponds to the contragredient action of Virasoro generators.

Note the presence of the morphism � ·Ln = L�n that sends the Virasoro algebra with central charge

c to a Virasoro algebra with central charge �c.

Compared to the Virasoro algebra, the DIM algebra has a richer (auto)morphism structure,

and we expect a large class of boundary states. In this paper, we will not attempt to a general

classification of boundary states but present only the simplest constructions associated with the

horizontal and vertical representations. We hope to come back to the classification issue in the near

future.

The action of DIM algebra on instanton partition functions is very di↵erent from the action

of Virasoro algebra on 2d conformal field theory. In our context, the interpretation of the states

satisfying (3.1) as boundary states seems misleading, and we will use instead the terminology

reflection state.

3.1 Vertical reflection state

By analogy with Virasoro boundary states, we are looking for states in the tensor product of two

vertical modules and satisfying the constraint

�
⇢(0,m)(e)⌦ 1

� |⌦ii = �
1⌦ ⇢̄(0,m)(e)

� |⌦ii, e 2 DIM. (3.2)

The RHS involves the dual action that has been expressed in terms of the reflection symmetry �V .

⇢̄(0,m)(e) = (�)✏(e)�1⇢(0,m)(�V · e), (3.3)

10This condition is not restrictive enough to define these states, and one should rely on the Sugawara construction

and impose the condition (Ja
n ⌦ 1 + 1⌦ J

a
�n)|Bi = 0 [24].
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“2d” picture of this construction?

Equivalence between Two Types of Refined Topological
Vertex

1 Melting Crystal Picture

C

µ,⌫,�

(t, q) /
X

⌘

s

µ

t
/⌘

(t

��

q

�⇢+{1/2}
)s

⌫/⌘

(q

��

t
t

�⇢�{1/2}
)

= hµt|V�(t
��

q

�⇢+{1/2}
)V

+

(q

��

t
t

�⇢�{1/2}
) |⌫i . (1.1)

2 AFS Vertex

�

�

[u, t

i

] = t

n

(�, u, t

i

) : �;(ti)
Y

x2�

⌘(�

x

) :, (2.1)

�

⇤
�

[u, t

i

] = t

⇤
n

(�, u, t

i

) : �

⇤
;(ti)

Y

x2�

⇠(�

x

) :, (2.2)

where

�;(z) = exp

 
�
X

n>0

1

n

z

n

1� q

n

a�n

!
exp

 
X

n>0

1

n

z

�n

1� q

�n

a

n

!
, (2.3)

�

⇤
;(z) = exp

 
X

n>0

1

n

(�z)

n

1� q

n

a�n

!
exp

 
�
X

n>0

1

n

�

n

z

�n

1� q

�n

a

n

!
, (2.4)

⌘(z) = exp

 
X

n�1

1� t

�n

n

z

n

a�n

!
exp

 
�
X

n�1

1� t

n

n

z

�n

a

n

!
,

⇠(z) = exp

 
�
X

n�1

1� t

�n

n

�

n

z

n

a�n

!
exp

 
X

n�1

1� t

n

n

�

n

z

�n

a

n

!
.

We change the normalization to (for n > 0)

a

n

=

1� q

�n

1� t

n

â

n

, a�n

= �q

n

â�n

, (2.5)

so that

[â

n

, â

m

] = n�

n+m,0

. (2.6)

1

�

(�1) |�i = (43)
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In fact, we can put the product of refined topological vertices in the 
unpremerred direction into normal ordering and redefine it as a new object.

Q

q

Q
1

Q
2

Figure 4: (a) toric diagram corresponding to O(�2,�2) ! CP1 with one rhombus in it. (b)

configuration with two rhombi.

6 Building blocks and dualities

Let us evaluate the partition function of O(�1)�O(�1) ! CP1 as
X

�

(�Q)|�|P
�

(t�⇢, q, t)P
�

t(q�⇢, t, q) =
X

�

(Q
p
q/t)|�|

Y

(i,j)2�

1

(1� q�a(i,j)t�`(i,j)�1)(1� t`(i,j)qa(i,j)+1)

=
X

�

(Q
p
q/t)|�|

Y

(i,j)2�

1

N
��

(1; t, q�1)
.

(6.1)

This is exactly the U(1) instanton partition function of 5d gauge theory on the Omega-background,

⌦
t,q

�1 ⇥ S1 [12]. q
1

= t =: e✏1R and q
2

= q�1 =: e✏2R are two Omega-background parameters.

Similarly, the partition function of O(0)�O(�2) ! CP1 is given by,
X

�

Q|�|(tq)
|�|
2 t2n(�)

Y

(i,j)2�

1

(1� qa(i,j)t`(i,j)+1)(1� t`(i,j)qa(i,j)+1)

=
X

�

(�Q)|�|(q/t)
|�|
2

Y

(i,j)2�

ti�1q�j+1

(1� q�a(i,j)t�`(i,j)�1)(1� t`(i,j)qa(i,j)+1)

=
X

�

(�Q)|�|(q/t)
|�|
2

Y

(i,j)2�

ti�1q�j+1

N
��

(1; t, q�1)
. (6.2)

It matches with the 5d U(1) instanton partition function with non-trivial Chern-Simons level 
cs

=

1.

Let us further consider two fundamental classes of toric diagrams. The first one is with the

shape of a pile of n� 1 rhombi (see Figure 4).

The partition function for n = 2 in the first class can be divided into four parts. We first consider

the gluing of vertices on the left vertical internal line.
X

⌫

(�Q)|⌫|q
||⌫||2

2 t�
||⌫t||2

2 f
⌫

(t, q)�1s
⌫

(t��

t
1q�⇢)s

⌫

(q��2t�⇢) =
X

⌫

(Q
p
q/t)|⌫|s

⌫

(t��

t
1q�⇢)s

⌫

(q��2t�⇢)

=
1Y

i,j=1

1

1�Qt��

t
1,i+j�1q��2,j+i

=
1

G(Qq/t; t, q�1)N
�1�2(Qq/t; t, q�1)

,(6.3)

26

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

C
⌫

t;�t
(q, t) (35)

X

�

|v,�i ⌦ |v�,�i (36)

� =

p
t/q (37)

2

Factors from the contraction in the unpremerred direction are absorbed into 
the preferred direction.

Generalized Vertex
[Bourgine, Fukuda, Harada, Matsuo, RZ, 2017]

This object captures the feature of quiver, enabling us to work on web 
with “U(1) gauge group”.



The Ward identity can be converted to operators acting on 
Fock spaces by using the adjoint nature of the vertex.

✏1,2 ! 0 (38)

X

�

q|�|Z
vect

(�)

X

x2R(�)

1

z � �

x

Res

z!�

x

Y
�

(zq

�1
3 ) =

X

�

q|�|+1
z

�1
Z

vect

(�)

X

x2A(�)

1

z � �

x

Res

z!�

x

1

Y
�

(z)

. (39)

X

�

q|�|Z
vect

(�)

✓
Y
�

(zq

�1
3 ) +

q

Y
�

(z)

◆
= (residue at x ⇠ 1). (40)

:

t

q

�

�(g)

g

3

Equality of action

Let us consider a trivial identity:

�(�1)

�⇤(�1)

x+(z) �(�1)

�⇤(�1)

x+(z)

Then we can convert the ”vertical” action to the ”horizontal” ones.

x

+

(��1

z)

x

+

(��1

z)

 �
(��1/2

z)

x

+

(z)

 �
(��1/2

z)

x

+

(z)

(⇤)

c.f. [Kimura-Mori-Sugimoto, 2017]

Interpretation as a commutation relation

We define T :=
P

� a��
⇤
� ⌦ ��. The identity (⇤) can be

interpreted as

⇥
�
�
x+(z)

�
, T ⇤

= 0.

Note that h0| T |0i gives rise to the correct partition function, we
can identify T as the screening charge used in [Kimura-Pestun,
2015], and � (x+(z)) the generator of quiver q-Virasoro algebra.

This idea immediately generalizes to arbitrary rank of the gauge
group, by using the generalized intertwiner vertex operators
instead.
We evaluate the expectation value of the q-Virasoro generator as

z

u
2

h0|�(x+)(z)T |0i
h0| T |0i = hY(zq�1

3

) +
q

Y(z)
i,

which agrees with the qq-character.

[Bourgine, Fukuda, Harada, Matsuo, RZ, 2017]

With this rewriting, we reach to that the qq-character commutes with 
a screening-charge-like object, in analogy to [Kimura, Pestun, 2015]. 

Kimura-Pestun: qq-characters are generators of quiver W-algebra.



S-duality

the dual reflection state

✏1,2 ! 0 (38)
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✏1,2 ! 0 (38)
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[work in progress] 
see also [Kim, Yagi, 2017]

✏1,2 ! 0 (38)
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The partition function is invariant only in the unrefined limit.



Trivalent reflection operator?
with this object and its generalization, we can do ABCDEFG 
and affine, hyperbolic…
It was used in a recent (different) proposal for D, E instanton.

[Hayashi, Ohmori, 2017]

The qq-character can be checked.     ✔

Problem: no idea how to formally define it in the algebra.

DIM algebra has charges corresponding to axio-dilaton charge. 
This trivalent operator looks charged.

What are they (reflection objects with more than 
two legs) physically and mathematically?

10 qq-characters of fractional quivers

11 qq-characters of Hayashi-Ohmori

Appendix

A Contractions

In this Appendix, we summarize the contraction rules among ⌘(z), ⇠(z), �
�

[u, v] and �⇤
�

[u, v] for

the convenience to do computations.

As a warm up, let us work out the contraction ⌘(z)⇠(w).

⌘(z)⇠(w) = exp

 X
n�1

1

n

(1� t

�n)(1� q

n)(�w/z)n

!
: ⌘(z)⇠(w) :

=
(1� t

�1
�w/z)(1� q�w/z)

(1� �w/z)(1� �

�1
w/z)

: ⌘(z)⇠(w) : .

The other contractions we need are

⌘(z)�
�
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1

1� v/z

Y
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x
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�

�2
/z)

(1� �

x

t

�1
/z)(1� �

x

q/z)
: ⌘(z)�

�
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1

Y
�

(z)
: ⌘(z)�

�

:, (92)

�
�

⌘(z) =
1

1� �

�2
z/v

Y
x2�

(1� z/�

x

)(1� z�

�2
/�

x

)

(1� zt

�1
/�

x

)(1� zq/�

x

)
: �

�

⌘(z) := �v�

2

z

1

Y
�

(zq�1
3 )

: �
�

⌘(z) :,

(93)

⇠(z)�
�

= Y
�

(z��1) : ⇠(z)�
�

:, (94)

�
�

⇠(z) = � z

v�

Y
�

(z��1) : �
�

⇠(z) :, (95)

⌘(z)�⇤
�

= (1� v�/z)
Y
x2�

(1� �

x
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�1
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�q/z)
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�1
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x
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�
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Y
�
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�

⌘(z) :,

(97)
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Backup1: An quiver
This agrees with the correct instanton partition function for SU(2) SYM. From the first to second

line, we used the definition of the SU(2) vector multiplet contribution (B.4),

Zvec(v1, v2,�1,�2) = Zvec(�1)Zvec(�2)Z�1
bifund(v1, v2,�1,�2)Z�1

bifund(v2, v1,�2,�1) .

We can generalize this to the An quiver, which is described by the following brane web.

· · ·

�⇤�

�⇤�

�⇤�

· · ·

U(1)

U(1)

U(1)

Remark: As we mentioned, we mainly set n = 1 in each vertical representations, but we

can easily generate it to any A-type gauge group by replacing �(n) and �⇤(n0) with generalized

intertwiners �(n,m) and �⇤(n0,m0) introduced in [13]. For more details, we refer the readers to [13].

3 Reflection states in DIM

As we wrote in the introduction, the reflection state is an analog of boundary state in 2d conformal

field theory which satisfies:

(Ln � L̄�n)|Bi = 0, (3.1)

for the chiral (Ln) and anti-chiral (L̄n) Virasoro generators (for example, [17]).

Compared with Virasoro algebra (and its generalizations), DIM generators (or more generally

elliptic Hall algebra) have two integer indices instead of one. From this reason, we have more freedom

to define analogues of boundary states. In this paper, we will not try to pursue the classification

of such states but present only the simplest two constructions associated with the horizontal and

vertical representations. We hope to come back to the classification issue in the near future.

In the application to brane-web, we have only chiral sectors and it may be misleading to re-

fer it as ”boundary state”. We will instead use “reflection state” which intertwines two chiral

representations.

3.1 Horizontal reflection

Since the horizontal (1, n)-representation is described in terms of bosonic oscillators, the reflection

state takes similar form as the boundary state. We define the reflection state by:

a

(1)
k |⌦, vih = (tv)�k

a

(2)
�k|⌦, vih , (3.2)
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D51

D52

(a)

e1 � e2

e1 + e2

O5�

NS51NS52

D1

D1

(b)
ON�

Figure 1. (a): The brane configuration of two D5-branes and an O5�-plane on a Coulomb branch
of the SO(4) gauge theory. The red lines denote the fundamental strings which yield gauge fields
in the SO(4) gauge theory. (b): The S-dual diagram to the figure (a). The orange lines denote
NS5-branes. The D1-branes between the ON�-plane and the NS52 looks separated pictorially but
they are coincident.

fields in the adjoint representation of the SO(4) gauge group. Let us denote the two D5-

brane D5
1

by D5
1

and D5
2

. Fundamental strings which connect D5
1

directly to D5
2

yield

gauge fields in roots ±(e
1

� e
2

) where e
1

and e
2

are the orthonormal basis in R2. There

are also another type of fundamental strings which originate from D5
1

, pass through D5
2

and also the O5�-plane, and then end on the mirror D5
2

or vice versa. The fundamental

strings yield gauge fields in roots ±(e
1

+e
2

). On the other hand, fundamental strings which

connect D5
1

to the mirror D5
2

or fundamental strings which connect D5
2

to the mirror

D5
2

are projected out by the orientifold action. Those fundamental strings supply all the

roots of the SO(4) Lie algebra. The configuration of the fundamental strings is drawn in

Figure 1 (a). The S-dual picture gives rise to D1-strings which connect two NS5-branes

and an ON�-plane but the configuration of the connections should be essentially the same

as how the fundamental strings connect between the two D5-branes and the O5�-plane.

See Figure 1 (b).

Performing T-duality in directions transverse to D1-strings but along the NS5-branes,

one finally obtains a 5-brane web with an ON�-plane. We propose that the brane con-

figuration in Figure 2 (a) is a microscopic description of an ON0-plane in the system of

5-brane webs. The two coincident D5-branes separate the ON�-plane into two pieces.

Indeed, we have a pair of an ON�-plane and an NS5-brane in the left part in Figure 2

(a) which may form an ON0-plane after a suitable tuning. A shorthand way to write the

brane configuration is depicted in Figure 2 (b). In the later sections, we will often make

use of the picture in Figure 2 (b). Whenever we write Figure 2 (b), we always mean that

the precise configuration is the one in Figure 2 (a).

A simple generalization by adding multiple NS5-branes to Figure 2 is straightforward

and given in Figure 3 (a). We also put two semi-infinite D5-branes at the right end of the

brane configuration of Figure 3 (a) since we will often encounter this case.

– 4 –

Backup2: simplest D-type strings.



Backup3: Ding-Iohara-Miki

2.1 DIM algebra

The algebra constructed by Ding-Iohara [11] and Miki [12] is the quantum toroidal deformation of

gl1. It can also be regarded as a one-parameter (q, t) deformation of theW1+1-algebra. In the second

Drinfeld presentation, the DIM algebra is engendered by the modes
�
x±
k , 

±
l , �̂|k 2 Z, l 2 Z�0

 
with

 +
0 = ( �

0 )
�1 and �̂ central elements. The algebra depends on the parameters q1, q2, q3 2 C⇥

constrained by relation q1q2q3 = 1. In the gauge theory, these parameters relate to the equivariant

parameters of the Omega background ✏1, ✏2 and the radius R of the compact dimension as follows:

q1 = e�R✏1 , q2 = e�R✏2 . (2.1)

In the (refined) topological vertex formalism, these parameters are usually denoted q1 = t�1, q2 = q.

The algebraic relations between the generators can be presented in terms of the Drinfeld currents

x±(z) =
X

k2Z

z�kx±
k ,  +(z) =

X

k�0

z�k +
k ,  �(z) =

X

k�0

zk �
�k, (2.2)

they obey the following set of relations:

[ ±(z), ±(w)] = 0,  +(z) �(w) =
g(�̂w/z)

g(�̂�1w/z)
 �(w) +(z) ,

 +(z)x±(w) = g(�̂⌥1/2w/z)⌥1x±(w) +(z),  �(z)x±(w) = g(�̂⌥1/2z/w)±1x±(w) �(z) ,

x±(z)x±(w) = g(z/w)±1x±(w)x±(z) ,

[x+(z), x�(w)] =
(1� q1)(1� q2)

(1� q1q2)

�
�(�̂�1z/w) +(�̂1/2w)� �(�̂z/w) �(�̂�1/2w)

�
.

(2.3)

The delta function here is defined as the formal sum �(z) =
P

k2Z z
k, and the function g(z) encodes

the dependence in the parameters q1, q2, q3 of the algebra:

g(z) =
Y

a=1,2,3

1� qaz

1� q�1
a z

. (2.4)

Like any a�ne algebra, the DIM algebra can be supplemented by grading operators. The algebra

being twice a�ne, two grading operators can be introduced, denoted respectively d and d̄:

[d, x±
k ] = �kx±

k , [d, ±
±k] = ⌥k ±

±k, [d, �̂] = 0,

[d̄, x±
k ] = ±x±

k , [d̄, ±
±k] = 0, [d̄, �̂] = 0, [d, d̄] = 0.

(2.5)

These grading operators can be employed to define two automorphisms of the DIM algebra, ⌧↵ · e =
↵de↵�d and ⌧̄↵ ·e = ↵d̄e↵�d̄ acting on any element e of the algebra. Explicitly, these automorphisms

act on the Drinfeld currents (2.2) as follows:

⌧↵ · x±(z) = x±(↵z), ⌧↵ ·  ±(z) =  ±(↵z), ⌧̄↵ · x±(z) = ↵±1x±(z), ⌧̄↵ ·  ±(z) =  ±(z). (2.6)
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2.1 DIM algebra

The algebra constructed by Ding-Iohara [11] and Miki [12] is the quantum toroidal deformation of

gl1. It can also be regarded as a one-parameter (q, t) deformation of theW1+1-algebra. In the second

Drinfeld presentation, the DIM algebra is engendered by the modes
�
x±
k , 

±
l , �̂|k 2 Z, l 2 Z�0

 
with

 +
0 = ( �

0 )
�1 and �̂ central elements. The algebra depends on the parameters q1, q2, q3 2 C⇥
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Backup4: “horizontal” representation of DIM

Backup5: Awata-Feigin-Shiraishi vertex
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As shown in [21] we have the following representation of the elliptic DIM labeled by n.

Proposition 2 The following map gives a representation of the elliptic DIM algebra at �̂ = �,

x
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n

'(z). (4.23)

u is the highest-weight parameter of the representation. We denote this map with the notation

⇢

(1,n)
u

, and F (1,n)
u

as the representation space of it3.

⇤

We check this claim in Appendix G.

Remark: In the definition of vertex operators (4.19)-(4.22), we observe that whenever b
n

appear,

it is always accompanied by a factor p|n|. We can absorb this factor into the normalization of b
n

,

and then the Heisenberg algebra of b
n

becomes completely commutative in the limit p ! 0. In this

limit, b
n

no longer contributes any factor to the correlators, and can be completely dropped out.

Therefore, the vertex operators (4.19)-(4.22) reduce to those used in the (1, n) representation of

DIM algebra [22, 6], when we take p ! 0.

Remark: Note that  ±
0,0 = �

⌥n, and indeed (`1, `2) = (1, n) for the representation (4.23).

5 Elliptic Awata-Feigin-Shiraishi vertex

As explained in [16], in the AFS approach, each D5-brane (or (1, 0)-brane) in the brane web is

mapped to a vertical representation in the algebra and each (n, 1)-brane to a (1, n) horizontal

representation. The highest weight parameters u’s and v’s respectively have the physical meaning

of the position parameters of NS5 and D5-branes. At the intersections of three branes, we assign

AFS vertices to the brane web, and the VEV of the product of all these vertices gives the instanton

partition function of the brane web. In the elliptic case, we will use the elliptic vertex introduced

in the this section instead, and will adopt the same rule of assignment to the brane web (without

compactification).

Definition 4 (elliptic vertex) We introduce the following elliptic vertices
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�uv

, (5.1)
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and define them in terms of their vector components,
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3F (1,n)
u for any n and u is essentially a tensor product of two Fock spaces.
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