

Review of CP-violation and spectroscopy measurements at LHCb

Neville Harnew

University of Oxford

On behalf of the LHCb Collaboration

Corfu Summer Institute 3 September 2019

Outline

- General introduction
- A review of CP-violation measurements
 - The unitarity triangle parameters
 - Angle β_s in the B_s system
 - CP violation in charm
- New measurements on spectroscopy
- The upgraded LHCb detector and outlook
- Summary

Corfu Summer Institute

The CKM matrix

- The CKM matrix is unitary, and reduces to three rotation angles and one phase.
- The Wolfenstein parameterisation is commonly used to expand in orders of λ , the sine of the Cabibbo angle: $\lambda \sim 0.22$
- The imaginary term (phase) gives rise to CP violation in the

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} = \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

 $V_{\text{CKM}} = \begin{pmatrix} 0.97446 \pm 0.00010 & 0.22452 \pm 0.00044 & 0.00365 \pm 0.00012 \\ 0.22438 \pm 0.00044 & 0.97359^{+0.00010}_{-0.00011} & 0.04214 \pm 0.00076 \\ 0.00896^{+0.00024}_{-0.00023} & 0.04133 \pm 0.00074 & 0.999105 \pm 0.000032 \end{pmatrix}$

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-ckmmatrix.pdf

Corfu Summer Institute

3 September 2019

The Unitarity Triangle

- 6 unitarity conditions of the CKM matrix
- Gives 6 triangles in the complex plane
- 2 of these triangles do not have a side which is much shorter than the other two:

Corfu Summer Institute

Beauty and Charm triangles

Beauty system

B system : angles α , β , $\gamma \sim 1$

B_s system : angle $\beta_s \sim \lambda^2$

Charm system

Corfu Summer Institute

3 September 2019

Unitarity Triangle measurements

Amazing progress in the last 25 years; the SM remains intact, but still a whole lot still to loarn

LHCb CPviolation and Unitarity Triangle measurements

Corfu Summer Institute

3 September 2019

Measurement of the angle β

Interference between B⁰ decay to J/ψK⁰_s directly and via B⁰
 B⁰ oscillation gives rise to a CP violating phase

$$\phi = \phi_{\text{Mixing}} - 2 \phi_{\text{Decay}} = 2\beta$$

Corfu Summer Institute

3 September 2019

LHCb measurement of sin(2\beta)

The angle γ (a key measurement)

- Loop processes are very sensitive to the presence of New Physics
- Constraints on the triangle apex largely come from loop decay measurements
- Large uncertainty on γ, the only angle accessible at tree level : forms a SM benchmark*
- γ measurement theoretically
 JHEP 01 (2014) 051, PRD 92(3):033002 (2015)
- * assuming no significant New Physics in tree decays

Corfu Summer Institute

3 September 2019

γ : indirect vs direct determinations

$$\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

Combination of all direct measurements from tree decays

$$\gamma = (72.1^{+5.4}_{-5.7})$$

Reaching degree level precision from direct measurements is crucial

http://ckmfitter.in2p3. fr

Corfu Summer Institute

3 September 2019

Several methods to measure

From B[±] (and B⁰) decays : the "timeintegrated",

direct C	Gronau & London, PLB 253 (1991) 483,	₿± → [$O^0 K^{\pm}$	
	Gronau & Wyler PLB 265 (1991) 172			
GLW	Atwood, Dunietz & Soni PRL 78 (1997) 3257,			
ADS	Atwood, Dunietz & Soni PRD 63 (200 036005	1)		
	Giri, Gronau, Soffer & Zupan, PRD 68 (2003) 054018			
GGSZ				

Dunietz & Sachs Phys. Rev. D37(1988) 3186, R. Aleksan, I. Dunietz & B. Kayser, Z. Phys. C54 (1992) 653

Corfu Summer Institute

e time-integrated mode: $B^{-} \rightarrow D^{\circ}K^{-}$

(

 $\gamma \equiv \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$ (and charge conjugate mode B⁺ $\rightarrow D^0 K^+$)

- Interference possible if D⁰ and D⁰ decay to same final state
- Two possible decay paths to $K^+\pi^-$ final state via D^0 and D^0

Branching fraction for favoured B decay only $\sim 10^{-4}$ Measurements require high statistics

Model-independent GGSZ analysis

Dalitz analysis : CP observables measured in $B^{\pm} \rightarrow DK^{\pm}$ decays with $D \rightarrow K_{s}\pi^{+}\pi^{-}$ and $D \rightarrow$

3 September 2019

sensitivity to γ

Corfu Summer Institute

3 September 2019

17

Combination from different modes

The most recent combination includes the following

B decay	D decay	Method	Ref.	$\mathrm{Dataset}^{\dagger}$	Status since last combination [3]	LHCb-CONF-2018-
$B^+ \to DK^+$	$D \to h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update	002
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1	As before	LHCb average :
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	GLW/ADS	[16]	Run 1	As before	$\sim - (74.0^{+5.0})^{\circ}$
$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[17]	Run 1	As before	$\gamma = (7 + .0_{-5.8})$
$B^+ \to DK^+$	$D \to K^0_{\rm s} h^+ h^-$	GGSZ	[18]	Run 2	Most recent	
$B^+ \to DK^+$	$D \to K^0_{\rm s} K^+ \pi^-$	GLS	[19]	Run 1	As before	
$B^+ \to D^* K^+$	$D \to h^+ h^-$	GLW	[14]	$\mathrm{Run}\;1\;\&\;2$	Minor update	
$B^+ \rightarrow DK^{*+}$	$D \to h^+ h^-$	GLW/ADS	[20]	Run 1 & 2	Updated results	Dominates HFLAV average
$B^+ \to DK^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[20]	$\operatorname{Run} 1 \And 2$	Most recent	$\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	GLW/ADS	[21]	Run 1	As before	$\gamma = (73.3_{-5.1})$
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	Run 1	As before	
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[23]	Run 1	As before	Reminder of indirect
$B^0 \to DK^{*0}$	$D\to K^0_{\rm s}\pi^+\pi^-$	GGSZ	[24]	Run 1	As before	constraint
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+\!\to h^+h^-\pi^+$	TD	[25]	Run 1	Updated results	
		TD	[26]	Run 1	Most recent	$\gamma = (65.8^{+1.0})$

Run 1 corresponds to an integrated luminosity of $3 \,\mathrm{fb}^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV. Run 2 corresponds to an integrated luminosity of $2 \,\mathrm{fb}^{-1}$ taken at a centre-of-mass energy of 13 TeV.

BaBar : $\gamma = (69^{+17}_{-16})^{\circ}$

Belle:

 $\gamma = (d\beta)$

Corfu Summer Institute

3 S

LHCb combination from different modes

LHCb average $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$ Ξ HC Preliminary $B_{\rm s}^0$ decays 0.6 B^0 decays B^+ decays Combination 0.468.3% 0.295.5% 50 100 150γ [°] LHCb-CONF-2018-002 Comparison between B_{s}^{v} and B^{\pm} initial states ~ 2 sigma More B_s channels to be added ($B_s \rightarrow D_s^{(*)}K^{(*)}$, $B_s \rightarrow D\phi$) N. Harnew

19

Corfu Summer Institute

3 September 2019

${\bf B}_{{}_{s}}$ weak mixing phase $\phi_{{}_{s}}$ in ${\bf B}_{{}_{s}}$ \rightarrow J/ψ ϕ

- "Golden mode" for this study is $B_s \rightarrow J/\psi \phi (\rightarrow K^+K^-)$
- Analogue of 2β (phase of B^o mixing) but in the B_s system
- Interference between B^o decay to $J/\psi\phi$ directly and via B^o B^o oscillation gives rise to a CP violating phase in the SM

$$\phi_{\rm S} = \phi_{\rm Mixing} - 2 \phi_{\rm Decay} = -2\beta_{\rm s}$$

• $\phi_{\rm S}$ is expected to be very small in the SM and precisely predicted: $\phi_{\rm SM} = -0.036 \pm 0.002$ (see eg Charles et al PRD84 (2011) 033005) Corfu Summer Institute 3 September 2019 N. Harnew

Status of ϕ_s before Spring 2019

- World average dominated by LHCb
- Results consistent with SM-based global fits to data, but still room for NP

$$\phi_{s}^{exp} = -0.020 \pm 0.031 \text{ rad}$$

 $\phi_{sM} = -0.036 \pm 0.002$
rad

LHCb : 3 fb⁻¹ PLB 736 (2014) 186

Corfu Summer Institute

3 September 2019

NEW: Add Run-II LHCb measurements with 2015 (0.3 fb⁻¹) and 2016 (1.6 fb⁻¹) datasets

• $\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \ \mathrm{K}^{+}\mathrm{K}^{-}$

• $B_s \rightarrow J/\psi \pi^+\pi^-$

\$\overline\$ is a vector meson (spin 1)

Eur. Phys. J. C 79 (2019) 706

 Vector-vector final state: mixture of CP-odd and CP-even components

• Good tagging performance of $B_{s} \stackrel{\bullet}{\leftarrow} B_{s}$ is important

Category	$\epsilon_{\mathrm{tag}}(\%)$	D^2	$\epsilon_{ m tag} D^2(\%)$	
OS only	11.4	0.078	0.88 ± 0.04	_
SSK only	42.6	0.032	1.38 ± 0.30	
OS & SSK	23.8	0.104	2.47 ± 0.15	
Total	77.8	0.061	4.73 ± 0.34	new

Results and new LHCb combination

 ϕ_s fitted value correlated with $\Delta \Gamma_s$ = width diff. of the B_s mass eigenstates \rightarrow plot as contours in ($\phi_s vs \Delta \Gamma_s$) plane $\Delta\Gamma_{\rm S} = 0.0816 \pm 0.0048 \ {\rm ps}^{-1}$ D_{1} 5 rad ሐ $\Delta \Gamma_s [ps^{-1}]$ HFLAV 0.14 D0 8 fb⁻¹ PDG 2019 68% CL contours $(\Delta \log \mathcal{L} = 1.15)$ 0.12 CMS 19.7 fb⁻¹ BEFOR 0.10 $\mathbf{Combined}$ CDF 9.6 fb⁻¹ 0.08 HCb 3 fb⁻¹ ATLAS 19.2 fb⁻¹ 0.06 -0.2 -0.4 -0.0 0.2 0.4 $\phi_s^{c\overline{c}s}$ [rad] [HFLAV]

25

HFLAV combination

26

CP violation in charm

Most promising channels are Cabibbosuppressed (CS) decays where CPV may arise from the interference between the tree and the

SM prediction is very small $O(10^{-4}) \rightarrow O(10^{-3})$

Corfu Summer Institute

3 September 2019

The ΔA_{CP} measurement

Tag D^{o} and $\overline{D^{o}}$ via "prompt" and "semileptonic" decays:

W Prompt: coming from primary vertex, *i.e.* $D^{+-} \rightarrow D^{\circ} \pi^{+-}$

soft

W Semileptonic: coming from B-decays, *i.e.* $B^{+-} \rightarrow D^0 \mu^{+-} X$

$$\mathsf{TI}_{A(D \to f)} = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})} \text{ ibbo-suppressed}$$

$$\pi) \text{ defined as}_{Detection asymmetry}_{from \pi^{+}_{soft} \text{ or } \mu^{+}}$$
Production asymmetry includes physics and detector off of the production asymmetry of the production asymmet

includes physics and detector effection D*+ or B decays

$$A = A_{CP} + A_{D} + A_{P}$$

To eliminate these contributions and cancel the constructions measure 2019 N. Harnew

28

ΔA_{CP} measurement : fits and yields

- Measurement
 performed with
 almost full Run-2
 data- set (5.9/fb)
- Get the raw asymmetries from fits to the m(D⁰ π⁺_{soft}) or m(D⁰)
 Getributions
 [Phys. Rev. Lett. 122, 211803]

Corfu Summer Institute

Observation of CPV in charm decays

Run-2 results alone :

 $\Delta A_{CP}^{\pi\text{-tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4}$ $\Delta A_{CP}^{\mu\text{-tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}$

Add in the Run-1 result gives :

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

A 5.3σ measurement of CPV in the charm system !

This opens a completely new window for the study of CP violation Summer Institute OF violation Summer Institute N. Harnew

30

LHCb new spectroscopy measurements

Corfu Summer Institute

3 September 2019

Corfu Workshop as of last year ...

- Reported an unexpected narrow resonance in the mass spectrum of $(J/\psi p)$ in $\Lambda_b \rightarrow (J/\psi p) K^-$ decays
- First observed in 2015 \rightarrow LHC Run 1 data : 3 fb⁻¹
- Consistent with pentaquarks: allowed by QCD, but not observed in 50 years of searching.

Corfu Summer Institute

Pentaquarks – 2015 reminder

New Run I and II analysis

PRL 122 (2019) 222001

- 9.5x more data than used in Run-I
- Improvements in the data selection (2x), integrated luminosity (3x) and cross section (13 TeV vs 7-8 TeV)

Fits to data

PRL 122 (2019) 222001

Confirms the peaking structure at ~4450 MeV

- The previously observed P_c^+ (4450) is now superseded by the P_c^+ (4440) and P_c^+ (4457)
- New state P_c⁺ (4312)
- The broad P_c⁺ (4380) state is neither excluded nor confirmed by current analysis
- Updated amplitude analysis required to identify the states

State	$M \;[\mathrm{MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$			
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+ 3.7}_{- 4.5}$			
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$			
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$			

Corfu Summer Institute

3 September 2019

Nature of pentaquarks ?

Possible models describing the observed pentaquark states :

- Tightly bounded states
- Re-scattering models

- Molecular-state model favoured : bound mesons and baryons are expected to form narrow resonances just below mass thresholds
- More work needed

New : Σ_{b} and Σ_{b}^{*} spectroscopy

Study excitations by $\Lambda^+ \pi^-$ to the Λ_h

3 September 2019

- $Λ_b$ reconstructed in $Λ_b → Λ_c^+ π^-$, and also add in $Λ_b → J/ψ p K^-$
- Structure seen around 6.15 GeV/c²

N. Harnew

arXiv:1907.13598

39

$Λ_{b}$ excitations in ($Λ_{b}$ $π^{+} π^{-}$)

$Λ_{b}$ excitations in ($Λ_{b}$ $π^{+} π^{-}$)

arXiv:1907.13598

- Study excitations by adding $\pi^+\pi^-$ to the $\Lambda_{\rm b}$
- Λ_b reconstructed in Λ_b→ Λ_c⁺ π⁻ , and also add in Λ_b→ J/ψ p K⁻
- Structure seen around 6.15 GeV/c²
 - Investigate substructure of the decays where

 $X \xrightarrow{} \Sigma_{L}^{\text{corfu}} \xrightarrow{} \pi \xrightarrow{} \pi \xrightarrow{} \Lambda_{L} \pi^{+3} \xrightarrow{} \pi^{+3} \pi^{-2}$

Observation of two new $\Lambda_{\rm b}$ **excitations**

Corfu Summer Institute

Observation of new state in DD spectrum

Use full Run1+Run2 dataset

JHEP 07 (2019) 035

→ new narrow state observed in the invariant mass spectra of D^0D^0 and $D^+_{\overline{L}}D^{-1}_{\overline{L}}$

The upgraded LHCb detector and outlook

Corfu Summer Institute

3 September 2019

LHCb Upgrade planning

Corfu Summer Institute

3 September 2019

γ prospects : Run 1 & II \rightarrow Upgrade

- Run 1 target of 8° surpassed : (analyses now essentially complete)
- Run II data well into analysis : target <4°(~9 fb⁻¹)
- LHCb Upgrade : target 0.9°(~50 fb⁻¹) EPJC (2013) 73:2373

3 September 2019

N. Harnew

 $(74.0^{+5.0}_{-5.8})$ LHCb Preliminary 0.80.6 0.468.3% 0.2 95.5% 50 100150γ[°] B_s^0 decays B^0 decays B^+ decays Combination

... and beyond 2026 : Upgrade II

Evolution of the Unitarity Triangle

Summary and Outlook

- The LHCb experiment has performed spectacularly well : $\rightarrow \sim 9 \text{ fb}^{-1}$ of recorded data up to $\sqrt{s} = 13 \text{ TeV}$
- So far all Unitarity Triangle measurements are consistent with the Standard Model
 - → New Physics is becoming constrained
- LHCb is a fantastic platform for spectroscopy measurements: many measurements were never foreseen in LHCb's original physics portfolio.
- Still much room for New Physics, but higher precision required

 \rightarrow preparing for LHCb Upgrades beyond 2020 and the decade

afterwards!

Corfu Summer Institute

3 September 2019

Corfu Summer Institute

3 September 2019

LHCb forward spectrometer

- Forward-peaked production → LHCb is a forward spectrometer (operating in LHC collider mode)
- bb cross-section = 72.0 ± 0.3 ± 6.8 µb at \sqrt{s} = 7 TeV in the LHCb acceptance 2< η < 5 At \sqrt{s} = 13 TeV : 154.3 ± 1.5 ± 14.3 µt (2017)
- \rightarrow ~ 100,000 bb pairs produced/second (10⁴ × B factories)

Bo Inad

LHCb data taking

Design luminosity = 2×10^{32} cm⁻² s⁻¹ (50 times less than ATLAS/CMS). Typical running luminosity $\sim 4 \times 10^{32}$ cm⁻² s⁻¹

LHCb Run 2 trigger

After LHCb's hardware trigger, events are buffered.

LHCb's automated real-time alignment and calibration runs :

W Full detector alignment and calibration in minutes.

- Full event reconstruction in software trigger
 - w Exclusive decay modes and calibration modes fully reconstructed,
 - W Results stored and used as basis for analysis.
- See LHCb-PROC-2015-011

 Δm_d

 Length of side from ratio of B_d and B_s: mixing frequencies extracted with input from lattice QCD (systematics cancel)

Corfu Summer Institute

3 September 2019

$|V_{ub}|$ measurement for side opposite to β

- Closure test of UT mainly limited by |V_{ub}|
- Side opposite to β proportional to $|V_{ub}| / |V_{cb}|$
- V_{ud} and V_{cd} very well known. |V_{cb}| known to better than 3%
- $|V_{ub}|^2$ is directly proportional to the decay rate $B \rightarrow X_u lv$ Corfu Summer Institute 3 September 2019 and is then calculated using HQET^{N. Harnew} 56

LHCb measurement of |V_{ub}

- |V_{ub}| / |V_{cb}| difficult at hadron colliders due to presence of neutrino
- LHCb measures $\Lambda_b \rightarrow p \mu^- \nu$ (the B⁰ $\rightarrow \pi^- \mu^+ \nu$ channel is extremely difficult)
- The measurement relies on $\Lambda_b \rightarrow p$ form factors from the lattice)

 $|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06 (|V_{cb}|)) \times 10^{-3}$

Nature Physics 10 (2015) 1038

Corfu Summer Institute

3 September 2019

Tension between B-factory inclusive and exclusive $|V_{ub}|$ measurements limit the precision on UT side. World avera $|V_{ub}| = (4.49 \pm 0.15 \stackrel{+}{_{-}} \stackrel{0.16}{_{-}} \pm 0.17) \times 10^{-3}$ (inclusive) $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ (exclusive) $|V_{ub}| = (3.94 \pm 0.36) \times 10^{-3}$ (average).

> http://pdg.lbl.gov/2018/reviews/rpp2018-rev-ckmmatrix.pdf

Measurement of α

Constraints on α from $B \rightarrow \pi \pi$, $\rho \pi$ and $\rho \rho$ (Babar and Belle)

• $\alpha = (87.6 + 3.5)^{\circ}$ world average measurement

Compared to the prediction from the global CKM fit (not including the α -related measurement: $\alpha = (90.6^{+3.9}_{-1.1}) \int_{\text{fr}}^{\text{http://ckmfitter.in2p3.}} \alpha \equiv \arg \left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right]$

- As yet there has been no LHCb 'standalone' measurement of α
- LHCb can provide useful input to B-factories measurements to constrain alpha.

Corfu Summer Institute

3 September 2019

- Yields of $B^+ \rightarrow \pi + K + K^-$ and $B^- \rightarrow \pi^- K^- K +$ show a striking asymmetry in the region of phase space dominated by re-scattering effects.
- CP asymmetry between B+ → π+π+π⁻ and B⁻ → π⁻π⁻π+ decays in a region of phase space including the ρ(770)⁰ and f₂(1270), divided according to whether the cosine of the helicity angle is positive (blue) or negative (red). The bands indicate the spreads of the isobar, K-matrix and guasi-model-independent models.
 Corfu Summer Institute 3 September 2019 N. Harnew

 $\begin{aligned} & \frac{N(B^+) - N(B^+)}{N(B^-) + N(B^+)} = A_{CP+} = \frac{1}{R_{CP+}} 2r_B(2F_+ - 1)\sin(\delta_B)\sin(\gamma) \\ & \frac{N(B \rightarrow [KK]_D K) \times \Gamma(D \rightarrow K\pi)}{N(B \rightarrow [K\pi]_D K) \times \Gamma(D \rightarrow KK)} = R_{CP+} = 1 + r_B^2 + 2r_B(2F_+ - 1)\cos(\delta_B)\cos(\gamma) \end{aligned}$

For CP+ eigenstates e.g KK, $\pi \pi$, F₊ =1

Corfu Summer Institute

3 September 2019

"ADS" method

Weak phase changes sign for equivalent B⁺ diagram

- Decay into flavourspecific final states
- Larger interference effects than for GLW as both amplitudes of similar sizes.
- r_B , δ_B hadronic parameters again to be determined alongside γ ($r_B \sim 0.1$)
- Additional two parameters r_{n} . δ_{n} .

$$\frac{N(B^-) - N(B^+)}{N(B^-) + N(B^+)} = A_{ADS} = \frac{1}{R_{ADS}} 2r_B r_D \sin(\delta_B + \delta_D) \sin(\gamma)$$

$$\frac{N(B^{\pm} \rightarrow [\pi^{\pm}K^{\mp}]_{D}K^{\pm})}{N(B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}]_{D}K^{\pm})} = R_{ADS} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\gamma)$$

Again, a counting experiment : observing the rate of B- vs. B+decerfusummer Institute3 September 2019N. Harnew62

New model-independent GGSZ analysis LHCb-PAPER-2018 y_\pm 180 \Box δ_B LHCb LHCb 0.1 B^{-} 120 60 Run 1 2015 & 2016 data B^+ -0.1Combined result -0.10.1 0. 60 120 180 x_+ γ [°] $\gamma = 80^{\circ} {}^{+10^{\circ}}_{-9^{\circ}} \left({}^{+19^{\circ}}_{-18^{\circ}} \right),$ $r_B = 0.080 \, {}^{+0.011}_{-0.011} \left({}^{+0.022}_{-0.023} \right) ,$ LHCb GGSZ $\delta_B = 110^{\circ} {}^{+10^{\circ}}_{-10^{\circ}} ({}^{+19^{\circ}}_{-20^{\circ}}).$ only

The most precise determination of γ from a single analysis fiber Institute 3 September 2019 N. Harnew

64

Evolution of γ **precision**

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements still dominated by statistical Uncertainties 3 September 2019 N. Harnew

Evolution of γ **precision**

- It is necessary to pursue different B decays to provide crosschecks
- Current measurements still dominated by statistical
 Uncertainties
 3 September 2019
 N. Harnew

Two methods for accessing D decay information

Two ways to deal with the varying $r_{\scriptscriptstyle D}$,

Model dependent

Model independent

- r_D and δ_D determined from flavour tagged decays (eg Babar/Belle) via amplitude model
- Systematic uncertainties due to model hard to quantify

- Use CLEO data to measure average values of r_D and δ_D in PRD 82 (2010) 112006
- Direct phase information, uncertainties on which can be propagated

ime dependent analysis : B⁰⁻

Interference between B^0 decay to $D_S^+K^-$ directly and via $B^0 B^0$ oscillation gives a CP violating phase

$$\phi = \phi_{\text{Decay}} - \phi_{\text{Mixing}} = (\gamma - 2\beta_{\text{S}})$$

$$\beta_{\text{S}} \text{ is (small) mixing phase, } \phi_{\text{s}} = -2\beta_{\text{S}} = 0.01 \pm 0.07 \pm 0.01 \text{ (syst)} \frac{\text{Phys. Rev.}}{(2013) 112010}$$

68

$$\frac{\mathrm{d}\Gamma_{B_{s}^{0}\to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_{f}|^{2} (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + C_{f} \cos\left(\Delta m_{s}t\right) - S_{f} \sin\left(\Delta m_{s}t\right) \right],$$

$$\frac{\mathrm{d}\Gamma_{\bar{B}_{s}^{0}\to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right],$$

$$-C_{f} \cos\left(\Delta m_{s}t\right) + S_{f} \sin\left(\Delta m_{s}t\right) \right],$$

$$\mathbf{f}_{s}^{0} = \frac{1}{2} |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right],$$

$$\mathbf{f}_{s}^{0} = \frac{1}{2} |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right],$$

$$\mathbf{f}_{s}^{0} = \frac{1}{2} |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1+|\lambda_{f}|^{2}) e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) \right],$$

$B^0 \rightarrow \overline{D_s}^+ K^-$ continued

JHEP 11 (2014) 060

Only 1 fb⁻¹ of data published so far. The full Run-I 3 fb⁻¹ measurement is expected towards the end of this year.

"Visualizing" the effect of ϕ_s in $\textbf{B}_s \to J/\psi \; \phi$

- Amplitude of asymmetry $\propto \sin \phi_s$
- Frequency is the same as in B_s mixing

Measurement of CP violation in $\mathsf{B}_{s} \to \phi \phi$

- Enhanced sensitivity to NP since decay is dominated by penguin loop
 - SM prediction of CP violating phase is small
 - < arXiv:0810.0249
 Phys.Rev.D80:114026,2
 009</pre>
 - Perform time-dependent angular analysis, Run1data + 2 fb⁻¹ Run 2

Grfu Summer Institute 115 3 5 epter ber 2019

Possible assignment of excited Ω_c

States
Matching between observed peaks and predictions requires spin-parity information

3 September 2019

N. Harnew

114012 (2017)

Comparisons with SELEX

- SELEX (Fermilab E781) collides high energy hyperon beams (Σ^- , p) with nuclear targets, dedicated to study charm baryons
- Observed $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\Xi_{cc}^+ \to pD^+ K^-$ decays
- Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2 \text{ MeV}$

Previous pentaquark J^P assignments

- Preferred J^P assignments of opposite parity, with P_c⁺(4380) having 3/2⁻ and the P_c⁺(4450) having 5/2⁺
- Good evidence for the resonant character of P_c⁺(4450) Too large errors for P_c⁺(4380) : hard to make a definitive conclusion.

Corfu Summer Institute

3 September 2019

N. Harnew

Pentaquarks in $\Lambda_b \rightarrow (J/\psi p)\pi^-$

- Search for additional Pentaquark candidates in other production channels
- A_b → (J/ψ p) π⁻ (Cabbibo suppressed ≈ 15 times smaller statistics)
 PRL 115 (2015)
- Contributions from:

 $N^* \rightarrow p \pi^ P_c(4380)^+ \rightarrow J/\psi p$

- $P_c(4450)^+ \rightarrow J/\psi p$
- $Z_c(4200)^- \rightarrow J/\psi \pi^-$
- Fit with 2 pentaquarks + Z_c(4200) tetraquark : favoured by 3σ compared to no exotic
 constribution 3 September 2019

Another possible pentaquark mode

Can look for udscc pentaquark in $\Xi_{b}^{-}(bds) \rightarrow$

• Observation of Ξ_{b}^{-} in Run I data (~300 candidates)

 $M(\Xi_b^-) - M(\Lambda_b^0) = 177.08 \pm 0.47 \text{ (stat)} \pm 0.16 \text{ (syst) } \mathrm{MeV}/c^2$

Amplitude analysis with Run II data to follow Phys. Lett. B 772 (2017) 265

Corfu Summer Institute

3 September 2019

Search for the doubly charmed baryon $\Xi = \frac{++}{cc}$

- The quark model predicts three weakly decaying C = 2 $J^P = \frac{1}{2^+}$ states: $\Xi (ccu), \Xi (ccu), and \Omega$ (ccs)
- J^P = ½⁺ states decay weakly with a c quark decaying to lighter quarks

7

Decay mode of Ξ cc

Search in decay mode : $_{cc}\Xi^{++} \rightarrow \Lambda_{c}K^{-}\pi^{+}\pi^{+}$ Branching fraction can be significant (10%) (Yu et al., arXiv:1703.09086)

++ **Observation of** Ξ PRL 119 (2017) 112001 Ξ^{++} is mass-corrected for Λ_c : $m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Lambda_{c}^{+}K^{-}\pi^{+}) - m(\Lambda_{c}^{+}) + m_{\text{PDG}}(\Lambda_{c}^{+})$ MeV/c^2 180 LHCb 13 TeV Signal yield: 313 ± 33 160 +Data Candidates per 5 140 events - Total 120 ----- Signal Width 6.6 ± 0.8 MeV, --- Background 100 consistent with 80 60 resolution 40 Local significance > 20 22σ 3500 3600 3700 $m_{\text{cand}}(\Xi_{cc}^{++})$ [MeV/c²] $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^{+}) \text{ MeV}$ $m(\Xi_{cc}^{++}) - m(\Lambda_c^{+}) = 1134.94 \pm 0.72$ (stat) ± 0.27 (syst) MeV

$\Xi _{cc}^{**}$ lifetime measurement

Analysis of 1.7 fb⁻¹sample of Run 2 data, using $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}K^{-}$ $\pi^{+}\pi^{+}$ control mode to measure the Ξ_{cc}^{++} lifetime with respect to that of Λ_{b}^{0}

$$au(\Xi_{cc}^+) = (256_{-22}^{+24} \pm 14) \, \text{fs}$$

Confirms that Ξ_{cc}^{++} is a corfu weakly decay ingrate.

Phys. Rev. Lett. 121, 052002 (2018)

The puzzle of the $\Omega_{ m c}^{\,\pm}$ lifetime

- Via the decay $\Omega_b^{\pm} \rightarrow \Omega_c^{0} \mu^{\pm} \nu_{\mu} X$ then $\Omega_c^{0} \rightarrow p K^- K^- \pi^+ [\Omega_c^{0} \text{ is (css)}]$
- Measured relative to that of D⁺ meson decays (reduce systematics)

Observation of a new Ξ_{b} *resonance

- Seen both in $\Xi_b^{**-} \rightarrow \Lambda_b^0 K^- \& \Xi_b^{**-} \rightarrow \Xi_b^0 \pi^$ decays
- J^P not yet measured

 $M(\Xi_{b}^{**-}) - M(\Lambda_{b}^{0}) = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^{2},$ $\Gamma = 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^{2},$ $M(\Xi_{b}^{**-}) = 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (\Lambda_{b}^{0}) \,\text{MeV}/c^{2},$ $M(\Xi_{b}^{**-}) = 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (\Lambda_{b}^{0}) \,\text{MeV}/c^{2},$

Observation of Ω_c excited states

- All ground states have been observed, as have excited states $\Lambda = \Sigma$ and Ξ

Corfu Summer Institute

3 September 2019

N. Harnew

Observation of five new narrow Ω_c^0 **excited states**

PV

 K^{-}

π

 Ξ_c^+

 p, K^-, π^+

Masses and widths

LHCb, PRL 118 (2017) 182001

Resonance	Mass (MeV)	$\Gamma (MeV)$
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5\pm0.6\pm0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8\pm0.2\pm0.1$
		$< 1.2\mathrm{MeV}, 95\%$ CL
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$
		$<2.6{\rm MeV},95\%$ CL
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$

- 5 narrow states & evidence for 6th broader state at high mass
- Assignment of J^P states in the quark model (see backup slides) (M. Karliner, J.L. Rosner, PR D95, 114012 (2017))
- Suggestion the 2 narrowest states might be pentaquarks ?
 (Michał Praszałowicz et al Phys.Rev. D96 (2017) 014009)
 Corfu Summer Institute 3 September 2019 N. Harnew 85
 Confirmation of states awaits spin-parity assignments

LHCb Upgrade I trigger system

30 MHz collision rate

HLT

HLT1: full event reconstruction, inclusive and exclusive kinematic/ geometric selections

Buffer events to disk, online calibration/alignment

HLT2: offline precision PID and track quality. Output full event information for inclusive triggers, trigger candidates, and related PVs for exclusive triggers

100 kHz (2-5 GB/s) to storage

Corfu Summer Institute

Trigger-less readout and full software trigger

w Process data at machine clock (40 MHz crossings and 30 MHz of visible interactions)

w No L0 (hardware) bottleneck

No further offline processing

W Run II was already a critical test-bed for this technology (turbo mode) N. Harnew 86