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Relativistic hydrodynamics

Lorentz-invariant effective long-distance description of classical or
quantum many-body states out of global thermal equilibrium [Eckart ’40;

Landau and Lifshitz ’60]

I Fluid variables obey conservation equations
I Fluid variables are expressed as expansions in derivatives of

uν(x), T (x) and µ(x) – constitutive relations
I The coefficients of the derivative expansions describe transport

properties – related to microscopic correlation functions



Key features [Israel and Stewart ’76; see book by Rezzolla and Zanotti ’2013]

I Derivative expansions are asymptotic series
I One usually treat first-order hydrodynamics
I This approximation raises stability and causality issues
I Hydrodynamic-frame invariance: u can be transformed upon

simultaneous transformations of all other variables

Last feature is blurred by the derivative expansions – choosing a
hydrodynamic frame is subtle and crucial

Recent revival [Kovtun ’07–’19; Romatschke, Son, Starinets, Stephanov ’08; Indian group from ’07]

I Experimentally: subnuclear flows in heavy-ion collisions
I Theory: ideas from fluid/gravity holographic correspondence



Fluid/gravity correspondence

Macroscopic spin-off of AdS/CFT: Einstein’s and relativistic Euler’s
equations in dimension D [Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, . . . ’07]

Einstein asymptotically locally AdS spacetime E with Λ < 0

l
relativistic fluid on I = ∂E ≡ conformal boundary

Anti-de Sitter space: homogeneous spacetime with Λ < 0
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Central question & method

I The velocity u is presumed redundant in relativistic fluids – is it
really arbitrary (putting aside any perturbation artefact)?

I If yes, is it also redundant in the dual Einstein spacetime?
Naively yes but . . . [Ciambelli, Petkou, Petropoulos, Siampos ’17]

. . . at least not globally invariant [Campoleoni, Ciambelli, Marteau, Petropoulos, Siampos ’18]

Framework: 3-dim bulk vs. 2-dim boundary – simple and efficient

I a systematic and exact bulk reconstruction is achievable
I asymptotically AdS Einstein spacetimes are known

I locally AdS (e.g. Bañados – a subset is the BTZ family)
I labelled with their conserved charges (mass, spin, . . . )

Approach: boundary fluid velocity↔ bulk conserved charges
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Relativistic hydrodynamics

Obey ∇µT
µν = f ν plus an equation of state plus Gibbs–Duhem with

T µν = ε
uµuν

k2 + phµν + τµν +
uµqν

k2 +
uνqµ

k2

I ‖u‖2 = −k2, hµν = gµν + uµuν

k2

I energy density ε = 1
k2
Tµνu

µuν & thermodynamic pressure p

I qµ, τµν: heat current and viscous stress tensor – transverse

uµqµ = 0 uµτµν = 0 qν = −εuν − uµTµν.

expressed as uν- and T -derivative expansions with transport
coefficients (heat conductivity, shear and bulk viscosity etc.)



The hydrodynamic-frame invariance

Landau–Lifshitz’s statement for non-perfect fluids [Theoretical Physics vol. 6 §136]
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1 Introduction

µ

Fluid/gravity correspondence is a macroscopic spin-off of holography, originally map-
ping relativistic fluid configurations onto Einstein spacetimes. These are obtained in the
form of a derivative expansion [1–4], inspired from the fluid homonymous expansion (see
e.g. [5, 6]), and implemented in Eddington–Finkelstein coordinates.

Compared to the Fefferman–Graham expansion [7, 8], the derivative expansion has the
following distinctive features:

• the spacetime metric is expanded along a null rather than a spatial direction;

• the boundary data include a vector congruence, interpreted as the fluid velocity field,
whose derivatives set the order of the expansion;

• the derivative expansion is generically well behaved in the bulk flat limit.

The third property has recently allowed to set up a derivative expansion for asymptotically
flat spacetimes, establishing thereby, at least macroscopically, a holographic correspondence
among Ricci-flat bulk solutions and boundary Carrollian hydrodynamics [9]. The second
feature raises another important question, regarding the role played by the boundary fluid
velocity.

1

Translation in the formalism
Any arbitrary transformation of uµ (local Lorentz transformation)
can be compensated by an appropriate modification of T , ε, p, qµ

and τµν such that T µν and the entropy current Sµ remain invariant
Note: This is not Lorentz invariance (generally absent globally)



Consequences & features

Special hydrodynamic frames (“gauge conditions”)

I Landau–Lifshitz: qν = 0
I Eckart in the presence of Jν = $uν + jν (and µ): jν = 0

Subtleties

I Generically T , ε, p, qµ and τµν are transformed order by order
in the derivative expansion for changes u→ u+ δu

I Global issues (as in gauge transformations) are ignored
I No microscopic definition for Sµ = suµ + Rµ

T with Rµ built
order by order to comply with macroscopic requirements



In 2 dimensions

The transverse direction to u is unique: ∗u
I qµ = χ ∗ uµ (χ: heat density)

I τµν = τ
∗uµ∗uν

k2
(τ: viscous bulk pressure or dynamic pressure)

−→ T
µ

µ = p − ε + τ

Local Lorentz boosts are captured by a unique ψ(x) and act exactly

I on the velocity
(

u′

∗u′
)
=

(
coshψ(x) sinhψ(x)
sinhψ(x) coshψ(x)

)(
u
∗u

)
I on every scalar ε, p,χ, τ in a way that keeps T µν invariant

An invariant entropy current can be defined in closed form
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Reconstruct ds2bulk

[
gµν,T

µν
]

in any D

The uµ-derivative expansion – fluid/gravity [Bhattacharyya et al ’07; Haack et al ’07]

I Guideline: Weyl covariance – the bulk metric must be invariant
under boundary Weyl transformations

I Tool: Weyl connection A = 1
k2

(
a− Θ

2 u
)
and Weyl covariant

derivative D = ∇+ wA (a is the acceleration and Θ = ∇ · u)
I Output: ds2

bulk = complicated expression based on the
boundary data & their derivatives



The reconstruction from 2 to 3 dimensions

Is simpler than in higher dimensions
Most velocity-derivative tensors vanish (shear, vorticity etc.) – the
would-be series terminates & the bulk is locally AdS3 (Λ = −3k2)

The general expression for bulk spacetime in 2+ 1 dimensions

ds2
bulk = 2

u
k2 (dr + rA) + r2ds2 +

8πG

k4 u (εu + χ ∗ u)

invariant under Weyl: ds2 → ds2/B2 ⇒ r → rB

The metric is Einstein provided the fluid

I has conformal state equation p = ε & anomalous viscous bulk
pressure τ = R

8πG

I obeys Euler’s equations



The space of solutions

The bulk metric is always locally AdS3 – with different charges

I Solutions explicitly depend on the fluid velocity u
I Changing u is necessarily a bulk diffeomorphism

The central question is: does u→ u′ induce a small or a large bulk
diffeomorphism?

Equivalently: can we choose a u-gauge (Eckart, LL, . . . ) and still scan
the entire solution space?

I If yes: hydrodynamic frame invariance is fully valid
I If no: hydrodynamic frame invariance has global issues
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The flat & Weyl-flat boundary

A more restricted – still sufficient – framework: R = 0 & dA = 0
genuinely conformal i.e. ∂∂∂ · T = 0

Two extreme frames

I Dissipative fluid at rest u = −k2dt
I Perfect fluid χ = 0 with arbitrary velocity (Landau–Lifshitz)

Note: the latter has been considered as sufficient in the literature
[Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, Rangamani, Yarom, . . . ’07]



Dissipative boundary fluid at rest

Reconstructed bulk spacetime in terms of L±(x±)

ds2
Einstein = − 1

k

(
dx+ − dx−

)
dr + r2dx+dx−

+
1
k2

(
L+dx+ − L−dx−

) (
dx+ − dx−

)
General Bañados locally AdS3 solutions in BMS gauge [Bañados ’99]

Note: Bañados zero-modes include BTZ solutions [BTZ ’92; BHTZ ’93]

I L+ + L− = 4πG ε = M mass of the black hole
I L+ − L− = −4πGχ = kJ spin of the black hole
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Figure: Bañados zero modes – “good” only inside the cone (fluid
energy–momentum tensor has real eigenvalues)



Charges and algebra

Associated with asymptotic Killing vectors – compatible with fall-offs
Ask Glenn Barnich for details

For Bañados solutions

L±m =
1

8πkG

∫ 2π

0
dx eimx±

(
L± +

1
4

)
(here x = x++x−

2 ) obey Virasoro with c = 3/2kG [Brown, Henneaux ’86]

i
{
L±m, L

±
n

}
= (m− n)L±m+n +

c

12
m
(
m2 − 1

)
δm+n,0{

L±m, L
∓
n

}
= 0



Perfect fluid with arbitrary velocity (LL frame)

Reconstructed spacetime in terms of ξ±(x±) [Haack, Yarom; Bhattacharyya et al ’08]

ds2
Einstein = − 1

k

(√
− ξ−

ξ+
dx+ −

√
− ξ+

ξ−
dx−

)
dr

+

(
M

2k2−
r

2k

√
−ξ+ξ−ξ+′

)(
dx+

ξ+

)2

+

(
M

2k2−
r

2k

√
−ξ+ξ−ξ−′

)(
dx−

ξ−

)2

+

(
r2+

r

2k
1√
−ξ+ξ−

(
ξ+′ + ξ−′

)
+

M

k2ξ+ξ−

)
dx+dx−

not BMS unless ξ± are constant – resulting in BTZ & all
non-spinning zero-modes of Bañados family



Charges from asymptotic Killing vectors

L±m =
1

16πkG

∫ 2π

0
dx eimx±

(
1

ξ±2 − 1
)

obey de Witt rather than Virasoro with L̃±m = L±m +
1

8kG
δm,0{

L̃±m, L̃
±
n

}
= i(m− n)L̃±m+n

{
L̃±m, L̃

∓
n

}
= 0

The family of locally AdS3 spacetimes obtained holographically from
2-dim fluids in the Landau–Lifshitz frame overlap only partially
Bañados solutions obtained in the frame where the fluid is at rest
→ hydrodynamic-frame invariance is violated (or does not survive
the holographic bulk reconstruction)
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In 2-dim boundary 3-dim bulk

Achievements

I general ds2
Einstein from arbitrary boundary metric & fluid data

I charges and algebra of the bulk sensitive to the boundary-fluid
hydrodynamic frame – revealed in the class R = dA = 0

The “same” conformal fluid viewed
I at rest with heat current gives Bañados spacetimes
I as perfect with arbitrary velocity (i.e. LL) gives a different class

of partially overlapping Bañados (non-spinning zero-modes)



Doubts on the validity of fluid-frame invariance

Concretely in 3-dim fluid/gravity holography: global issues

I the derivative expansion is clearly sensitive to the choice of u
I the fluid itself might also be – how to check ?

In higher dimensions – infinite series – possibly also local issues

I in fluid/gravity original literature LL frame was assumed in the
derivative expansion – possibly inaccurate

I exact closed resummation of the derivative expansion needs the
Eckart frame [Ciambelli, Gath, Mukhopadhyay, Petkou, Petropoulos, Siampos ’15–17]
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The AdS bulk reconstruction from the boundary fluid

The “initial data”: first and second fundamental forms
I boundary metric ds2 (neither flat nor conformally flat)
I conserved energy–momentum tensor T

Two options exist to reconstruct perturbatively the asymptotically
AdS bulk (pure gravity with Λ = −3k2):

1. Fefferman–Graham expansion: mathematically robust, locks
fall-offs, not resummable, does not discriminate asympt.
locally vs. globally AdS bulks, with singular k → 0 limit

2. Derivative expansion (close to Eddington–Finkelstein): for
fluid/gravity correspondence avoids latter caveats but requires
an extra piece of bry. data – time-like fluid congruence u – and
does not define a precise gauge



The reconstruction from 2 to 3 dimensions

Is simpler than in higher dimensions
Most velocity-derivative tensors vanish (shear, vorticity etc.) – the
would-be series terminates & the bulk is locally AdS3 (Λ = −3k2)

The general expression for bulk spacetime in 2+ 1 dimensions

ds2
bulk = 2

u
k2 (dr + rA) + r2ds2 +

8πG

k4 u (εu + χ ∗ u)

invariant under Weyl: ds2 → ds2/B2 ⇒ r → rB
I ds2 = 1

k2

(
−u2 + ∗u2): the boundary metric

I ε,χ, u: conformal fluid data of weight 2, 2,−1
I A = 1

k2 (Θ
∗ ∗ u−Θu): Weyl connection (A→ A− d lnB)



The metric is Einstein provided the fluid

I has conformal state equation p = ε & anomalous viscous bulk
pressure τ = R

8πG

I obeys Euler’s equations with external force of geometric nature{
(uµ + ∗uµ)Dµ (ε + χ) = 1

4πG ∗ uµDµF ,

(uµ − ∗uµ)Dµ (ε− χ) = 1
4πG ∗ uµDµF .

with F = ∗dA the Weyl curvature
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Hydrodynamic frame

The energy–momentum tensor

T =
1

2k2

(
(ε + χ) (u+ ∗u)2 + (ε− χ) (u− ∗u)2

)
+

1
k2 (p − ε + τ) ∗ u2

Hydrodynamic-frame transformation with ψ = ψ(x)

I on the velocity
(

u′

∗u′
)
=

(
coshψ sinhψ
sinhψ coshψ

)(
u
∗u

)
I 2χ′ = (ε + χ)e−2ψ − (ε− χ)e2ψ − (p + τ − ε) sinh 2ψ

2ε′ = (ε + χ)e−2ψ + (ε− χ)e2ψ + 2(p + τ − ε) sinh2 ψ
p′ + τ′ − ε′ = p + τ − ε (trace) leave Tµν invariant



The Landau–Lifshitz frame: χLL = 0

e4ψLL =
τ + p + ε + 2χ

τ + p + ε− 2χ

εLL is an eigenvalue and uLL an eigenvector of T

I εLL =
√( p+ε+τ

2 + χ
) ( p+ε+τ

2 − χ
)
− τ+p−ε

2

I uLL = u coshψLL + ∗u sinhψLL

εLL + τ is the other eigenvalue associated with ∗uLL



Entropy current

Local thermodynamic equilibrium

I conformal equation of state: p = ε

I Stefan: ε = σT 2

I Gibbs–Duhem: Ts = p + ε

s = 2
√

σε

Invariant entropy current (valid for τ = τLL 6= 0)

I S0 = sLLuLL = 2
√

σεLLuLL

I ∇ · S0 = −
√

σ
εLL

(ΘLLτ + uLL · f)



S0 up to second order in χ, τ � ε

S0 = su+
q
T
− χ2

4εT
u− τ

2εT
q+ · · ·

(q = χ ∗ u)

∇ · S0 up to first order for χ, τ � ε

∇ · S0(1) = −
1
T

Θτ(1) =
ζ

T
Θ2

(τ(1) = −ζΘ)



General requirements – all met

1. free perfect limit:S|χ=τ=0 = S(0) = su = 2
√

σεu

2. stability: ∂S·u
∂τ

∣∣∣
χ=τ=0

= 0

3. first-order (CIT) correction: S(1) =
q
T

4. second-order (EIT) corrections: S(2) might contain τ2

εT u, χ2

εT u
and τ

εT q
5. second law: ∇ · S > 0 implies ζ > 0

Generalizable in the presence of chemical potential µ with density $
and conserved current Jν



Asymptotic Killings

Dissipative fluid at rest (Bañados)

ζ = ζr∂r + ζ+∂+ + ζ−∂−

with

ζr = − r

2
(
Y +′ + Y −′

)
+

1
2k
(
Y +′′ − Y −′′

)
− 1
2k2r

(L+ − L−)
(
Y +′ − Y −′

)
ζ± = Y ± − 1

2kr
(
Y +′ − Y −′

)
for arbitrary chiral functions Y +(x+) and Y −(x−)



Obey an algebra for the modified Lie bracket [Barnich ’10]

ζ3 = [ζ1, ζ2]M = [ζ1, ζ2]− δζ2ζ1 + δζ1ζ2

with
Y ±3 = Y ±1 ∂±Y ±2 − Y ±2 ∂±Y ±1

Perfect fluids with arbitrary velocity: η (ε±)

η = ηr∂r + η+∂+ + η−∂− with ηr = − r
2 (ε

+′ + ε−′), η± = ε±

form an algebra for the Lie bracket

[η1, η2] = η3

with
ε±3 = ε±1 ε±′2 − ε±2 ε±′1
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Dissipative boundary fluid at rest: ξ± = ±1

Reconstructed bulk spacetime in terms of L±(x±)

ds2
Einstein = − 1

k

(
dx+ − dx−

)
dr + r2dx+dx−

+
1
k2

(
L+dx+ − L−dx−

) (
dx+ − dx−

)
General Bañados locally AdS3 solutions in BMS gauge [Bañados ’99]

Note: Bañados zero-modes include BTZ solutions [BTZ ’92; BHTZ ’93]

I L+ + L− = 4πG ε = M mass of the black hole
I L+ − L− = −4πGχ = kJ spin of the black hole



Determining the charges in gravitational backgrounds

Most popular: Komar charges (“surface” charges)
Killing ζµ → conserved current Kµ = Rµνζν = ∇ν∇µζν = ∇νAµν

QK =
∮
SD−2

∞

∗A

e.g. M and J associated with ∂t and ∂ϕ in Kerr

More associated with asymptotic Killing vectors
LζgMN = −δζgMN compatible with fall-offs

For Bañados solutions
ζ = ζr∂r + ζ+∂+ + ζ−∂− in terms of Y ±(x±)

δζL± = −Y ±L′± − 2L±Y ±′ +
1
2
Y ±′′′



The charge computation

QY [g − ḡ , ḡ ] =
1

8πkG

∫ 2π
0 dx

(
Y +

(
L+ + 1

4

)
− Y −

(
L− + 1

4

))
I ḡ : reference metric with L+ = L− = −1/4 (empty AdS3)
I charge algebra: {QY1 ,QY2} = δζ1QY2 = −δζ2QY1

A seminal result [Brown, Henneaux ’86]

I set Y ± = eimx± : get the modes (here x = x++x−
2 )

Qeimx± =
1

8πkG

∫ 2π

0
dx eimx±

(
L± +

1
4

)
= L±m

I determine the algebra: Virasoro with c = 3/2kG

i
{
L±m, L

±
n

}
= (m− n)L±m+n +

c

12
m
(
m2 − 1

)
δm+n,0{

L±m, L
∓
n

}
= 0



Perfect fluid with arbitrary velocity (LL frame): L± = M
2

Reconstructed spacetime in terms of ξ±(x±) [Haack, Yarom; Bhattacharyya et al ’08]

ds2
Einstein = − 1

k

(√
− ξ−

ξ+
dx+ −

√
− ξ+

ξ−
dx−

)
dr

+

(
M

2k2−
r

2k

√
−ξ+ξ−ξ+′

)(
dx+

ξ+

)2

+

(
M

2k2−
r

2k

√
−ξ+ξ−ξ−′

)(
dx−

ξ−

)2

+

(
r2+

r

2k
1√
−ξ+ξ−

(
ξ+′ + ξ−′

)
+

M

k2ξ+ξ−

)
dx+dx−

not BMS unless ξ± are constant – case captured by ξ± = ±1
resulting in BTZ & all non-spinning zero-modes of Bañados family



Asymptotic Killing vectors
η = ηr∂r + η+∂+ + η−∂− with ηr = − r

2 (ε
+′ + ε−′), η± = ε±

δηξ± = ε±ξ±′ − ξ±ε±′

Charges and algebra

I choose empty AdS3 as reference: ξ± = ±1 and M = −1/2

I set ε± = eimx± : get the modes

Qeimx± =
1

16πkG

∫ 2π

0
dx eimx±

(
1

ξ±2 − 1
)
= L±m



I determine the algebra: de Witt rather than Virasoro{
L̃±m, L̃

±
n

}
= i(m− n)L̃±m+n,

{
L̃±m, L̃

∓
n

}
= 0

L̃±m = L±m +
1

8kG
δm,0

The family of locally AdS3 spacetimes obtained holographically from
2-dim fluids in the Landau–Lifshitz frame overlap only partially
Bañados solutions (non-spinning BTZ and excess/defects geometries
i.e. L± = M/2 and ξ± = ±1)

I either hydrodynamic-frame invariance is only local
I or its global invariance does not survive the holographic bulk

reconstruction
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