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Highlights

Setting the stage



Relativistic hydrodynamics

Lorentz-invariant effective long-distance description of classical or
quantum many-body states out of global thermal equilibrium icciar

Landau and Lifshitz '60]

» Fluid variables obey conservation equations

» Fluid variables are expressed as expansions in derivatives of
u’(x), T(x) and p(x) — constitutive relations

» The coefficients of the derivative expansions describe transport
properties — related to microscopic correlation functions



Keyfeatures [Israel and Stewart '76; see book by Rezzolla and Zanotti '2013]

» Derivative expansions are asymptotic series

» One usually treat first-order hydrodynamics

» This approximation raises stability and causality issues

» Hydrodynamic-frame invariance: u can be transformed upon
simultaneous transformations of all other variables

Last feature is blurred by the derivative expansions — choosing a
hydrodynamic frame is subtle and crucial

Recent revlval [Kovtun '07-'19; Romatschke, Son, Starinets, Stephanov '08; Indian group from '07]

» Experimentally: subnuclear flows in heavy-ion collisions

» Theory: ideas from fluid/gravity holographic correspondence



Fluid/gravity correspondence

Macroscopic spin-off of AdS/CFT: Einstein’s and relativistic Euler’s
equﬂtions i?l dimension D [Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, ... 07]

Einstein asymptotically locally AdS spacetime & with A < 0

!

relativistic fluid on .# = 0§ = conformal boundary

Anti-de Sitter space: homogeneous spacetime with A < 0

i+
conformal

boundary

bulk | .7



Central question & method

» The velocity u is presumed redundant in relativistic fluids — is it
really arbitrary (putting aside any perturbation artefact)?

> If yes, is it also redundant in the dual Einstein spacetime?

Nalvely yes but « « « [Ciambelli, Petkou, Petropoulos, Siampos '17]
o ﬂt leﬂst not globall]/ invﬂriant [Campoleoni, Ciambelli, Marteau, Petropoulos, Siampos "18]

Framework: 3-dim bulk vs. 2-dim boundary — simple and efficient

» a systematic and exact bulk reconstruction is achievable
» asymptotically AdS Einstein spacetimes are known

> locally AdS (e.g. Bafiados — a subset is the BTZ family)
> labelled with their conserved charges (mass, spin, ...)

Approach: boundary fluid velocity <+ bulk conserved charges



Highlights

Relativistic fluids



Relativistic hydrodynamics

Obey V,, TH = fV plus an equation of state plus Gibbs—Duhem with

utu? utq’  uVgh
wo__ iy iy

T =¢ 2 + pht™" + T + 2 2
o

> energy density € = %Twu”u" & thermodynamic pressure p

» g#, T*: heat current and viscous stress tensor — transverse
g, =0 vty =0 q = —eu —u"Ty.

expressed as u'- and T-derivative expansions with transport
coefficients (heat conductivity, shear and bulk viscosity etc.)



The hydrodynamic-frame invariance

Landau-Lifshitz’s statement for non-perfect fluids micorctical Physics vol. 6 51361

First of all, however, we must discuss more closely the concept of the velocity u"itself. In
relativistic mechanics, an energy flux necessarily involves a mass flux. Hence, when there is
(e.g.) a heat flux, the definition of the velocity in terms of the mass flux density (as in non-
relativistic fluid dynamics) has no direct meaning.

Translation in the formalism

Any arbitrary transformation of u# (local Lorentz transformation)
can be compensated by an appropriate modification of T, ¢, p, g%
and " such that T"" and the entropy current S* remain invariant
Note: This is not Lorentz invariance (generally absent globally)



Consequences & features

Special hydrodynamic frames (“gauge conditions”)

» Landau-Lifshitz: ¢" =0
> Eckart in the presence of J' = gu" + ¥ (and p): j* =0

Subtleties
» Generically T, ¢, p, g* and T are transformed order by order
in the derivative expansion for changes u — u + du
» Global issues (as in gauge transformations) are ignored
» No microscopic definition for S¥ = sut + R—T" with R¥ built
order by order to comply with macroscopic requirements



In 2 dimensions

The transverse direction to u is unique: *u

> gy = X * Uy (x: heat density)

> __kUykuy L. bulk d .
TVV = T—kr (T. VISCOUS DUIK pressure or aynamic pressure)

— T, =p—e+1
Local Lorentz boosts are captured by a unique ¥(x) and act exactly
: u '\ _ [coshy(x) sinhyp(x) u
> on the velocity (*u’ ) - (sinh P(x) coshp(x)/) \*u
> on every scalar €, p, x, T in a way that keeps TV invariant

An invariant entropy current can be defined in closed form



Highlights

The general AdSs bulk reconstruction and the question



Reconstruct dsp . |guw, T in any D

The Uy_derlvatlve expm’lSZOTl —ﬂLlld/g}’aUlty [Bhattacharyya et al '07; Haack et al '07]

» Guideline: Weyl covariance — the bulk metric must be invariant

under boundary Weyl transformations

» Tool: Weyl connection A = % (a — %u) and Weyl covariant

derivative 2 = V + wA (a is the acceleration and ® = V - u)
» Output: dsgulk = complicated expression based on the
boundary data & their derivatives



The reconstruction from 2 to 3 dimensions

Is simpler than in higher dimensions

Most velocity-derivative tensors vanish (shear, vorticity etc.) — the
would-be series terminates & the bulk is locally AdS3 (A = —3k?)

The general expression for bulk spacetime in 2 + 1 dimensions

81tG
dsp ;. = 2 5 (dr+ rA) + r?ds® + — (et x < u)

invariant under Weyl: ds®> — ds°/82 = r — rBB

The metric is Einstein provided the fluid

» has conformal state equation p = ¢ & anomalous viscous bulk

_ R
pressure T — 817G

> obeys Euler's equations



The space of solutions

The bulk metric is always locally AdS3 — with different charges

» Solutions explicitly depend on the fluid velocity u

» Changing u is necessarily a bulk diffeomorphism

The central question is: does u — 1" induce a small or a large bulk
diffeomorphism?

Equivalently: can we choose a u-gauge (Eckart, LL, ...) and still scan
the entire solution space?

» If yes: hydrodynamic frame invariance is fully valid

» If no: hydrodynamic frame invariance has global issues



Highlights

The answer from charge indentification



The flat & Weyl-flat boundary

A more restricted — still sufficient — framework: R =0 & dA = 0
genuinely conformal i.e. - T =0

Two extreme frames

» Dissipative fluid at rest u = —k?dt
» Perfect fluid x = 0 with arbitrary velocity (Landau-Lifshitz)

Note: the latter has been considered as sufficient in the literature

[Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, Rangamani, Yarom, ...’'07]



Dissipative boundary fluid at rest

Reconstructed bulk spacetime in terms of Lo (xF)
2 1 + — 24 4+ 1 —
dSEinstein = _E (dX —dx )dr + redx"dx
1 — —
—|-p (L+d><+ —L_dx ) (z:lx+ —dx )

General Bafiados locally AdS3 solutions in BMS gauge [afiados 09]
Note: Bafiados zero-modes include BTZ solutions a1z 92 BHTZ '03]

» L, +L =4mGe = M mass of the black hole
» Ly —L_ = —4nGx = kJ spin of the black hole



kJ

Figure: Bafiados zero modes — “good” only inside the cone (fluid
energy—momentum tensor has real eigenvalues)



Charges and algebra

Associated with asymptotic Killing vectors — compatible with fall-offs
Ask Glenn Barnich for details

For Baiiados solutions

1 27 P 1
+ imx -
b = 87kG Jo dxe <Li o 4>

+ - . .
(hel’e X = %) Obey VlraSOI’O W|th Cc = 3/2kG [Brown, Henneaux '86]

i{Ly, Ly} = (m—n)LiJrn—&—%m(mz—l)(Sern,o
{tm L7} =0



Perfect fluid with arbitrary velocity (LL frame)

RCCOHStTuCted Spacetlme ZTl termS Of Ci i [Hnmk Yarom; Bhattacharyya et al "08]

ds}%instein = *% ( dX \lfde >dr

M Tt
+(M—M¢Wﬁ) (%)

L (’V’_f\/f /> <dx i
TG A=

1 / -1 M —
+ <r2+2rkfg’+§ (‘§+ +¢ )Jr k2§+§> dx " dx

not BMS unless ¢* are constant — resulting in BTZ & all
non-spinning zero-modes of Bafiados family



Charges from asymptotic Killing vectors

1 27 P 1
|t = 7/ dx e™> -1
m = 16mkG Jo O C <§ﬂ >

- 1

obey de Witt rather than Virasoro with [F = [F 4 %5,”,0
(L Y =i(m=—nio., {L.LI}=0

The family of locally AdSs spacetimes obtained holographically from
2-dim fluids in the Landau—Lifshitz frame overlap only partially
Baiiados solutions obtained in the frame where the fluid is at rest

— hydrodynamic-frame invariance is violated (or does not survive
the holographic bulk reconstruction)




Highlights

Summary



In 2-dim boundary 3-dim bulk

Achievements

» general ds2, ... from arbitrary boundary metric & fluid data

» charges and algebra of the bulk sensitive to the boundary-fluid
hydrodynamic frame — revealed in the class R = dA =0

The “same” conformal fluid viewed
» at rest with heat current gives Bafiados spacetimes

» as perfect with arbitrary velocity (i.e. LL) gives a different class
of partially overlapping Bafiados (non-spinning zero-modes)



Doubts on the validity of fluid-frame invariance

Concretely in 3-dim fluid/gravity holography: global issues

> the derivative expansion is clearly sensitive to the choice of u

» the fluid itself might also be — how to check ?

In higher dimensions — infinite series — possibly also local issues

» in fluid/gravity original literature LL frame was assumed in the
derivative expansion — possibly inaccurate

» exact closed resummation of the derivative expansion needs the

ECkaI’t frame [Ciambelli, Gath, Mukhopadhyay, Petkou, Petropoulos, Siampos '15-17]



Highlights

Fefferman—Graham vs. derivative expansion



The AdS bulk reconstruction from the boundary fluid

The “initial data”: first and second fundamental forms

» boundary metric ds? (neither flat nor conformally flat)

» conserved energy—momentum tensor T
Two options exist to reconstruct perturbatively the asymptotically
AdS bulk (pure gravity with A = —3k?):

1. Fefferman—Graham expansion: mathematically robust, locks
fall-offs, not resummable, does not discriminate asympt.
locally vs. globally AdS bulks, with singular k — 0 limit

2. Derivative expansion (close to Eddington—Finkelstein): for
fluid /gravity correspondence avoids latter caveats but requires
an extra piece of bry. data — time-like fluid congruence u — and
does not define a precise gauge




The reconstruction from 2 to 3 dimensions

Is simpler than in higher dimensions

Most velocity-derivative tensors vanish (shear, vorticity etc.) — the
would-be series terminates & the bulk is locally AdS; (A = —3k?)

The general expression for bulk spacetime in 2 + 1 dimensions

dsp ;. = 2% (dr +rA) + r’ds® + 8:—4614 (eu+ x *u)

invariant under Weyl: ds® — ds*/B2 = r — r13

> ds? = L (—u? + *u?): the boundary metric
> ¢, X, u: conformal fluid data of weight 2,2, —1
» A= 5 (©" xu—Ou): Weyl connection (A — A —dInB)



The metric is Einstein provided the fluid

» has conformal state equation p = ¢ & anomalous viscous bulk

_ R
pressure T = 817G

» obeys Euler's equations with external force of geometric nature

(ur' +xul) Dy (e +x) = ﬁ * Ut Iy F,
(ut —=xut) Dy (e — X) = 72¢ * UF Dy F.

with F = xdA the Weyl curvature



Highlights

Miscellaneous in two dimensions



Hydrodynamic frame

The energy—momentum tensor

T= 2i2 ((€+X) (u+*u)’+(e—x) (u—*u)2) +%(p—s+r)*u2

Hydrodynamic-frame transformation with ¢ = ¢(x)

. .
> on the velocity <>:J,> = <Z?::$ zg;:ll{;) (:u)

> 2 = (e+ x)e ¥ — (e~ x)e*¥ — (p+ T —¢)sinh 2y
2¢/ = (e + x)e ¥ + (¢ — x)e* + 2(p+ T —¢) sinh®
p'+ 1 —¢& = p+1—¢(trace) leave T, invariant



The Landau—Lifshitz frame: x1; = 0

S _ THPte+2x
T+p+e—2x

err is an eigenvalue and uyy an eigenvector of T

> gL = \/(p+§+r +X) (p+§+r o X) o T+gfs
» up = ucosh | + *usinh

err + T is the other eigenvalue associated with *ury



Entropy current

Local thermodynamic equilibrium

» conformal equation of state: p =¢
» Stefan: e = 0 T?
» Gibbs—Duhem: Ts = p+¢

s =2+\/0¢

Invariant entropy current (valid for T = 11, # 0)

> Sp = s LuL = 2y/0eLurL
» V-So= _«/£(®LLT+ULL'f)



So up to second order in x, T <K €

X2

Sp = su+ 3 — _ g+
0= T 2eT" 279

(a=x+u)
V - So up to first order for x, T < €

1
V- SO(]_) = —?G)T(l) = %@2

(1) = —C0O)



General requirements — all met

1.
2
3.
4

5.

2
. second-order (EIT) corrections: S,y might contain Ty, Xy

free perfect Iimit:S\X:T:0 = S(g) = su = 2y/veu

. stability: ag,%u =0

x=1=0
first-order (CIT) correction: S(y) = ¢

eT ' €T

and Fq
second law: V -S > 0 implies { > 0

Generalizable in the presence of chemical potential y with density o
and conserved current J¥



Asymptotic Killings

Dissipative fluid at rest (Bafiados)

{=0"0r+T0+ 0=

with
ro_ _£ ) — +1 -
&= 2(Y +Y)+ 2k(y -y
2k2 (Ly — L) (YT =Y
Ci — Y:I:_i(y-i—/_y—/)

2kr

for arbitrary chiral functions Y+ (x™) and Y~ (x7)



Obey an algebra for the modified Lie bracket [sarnich 10]

G3 = [C1.G2]m = [01,G2] = 6,01 + 07, G2
with
Yt = YL Yst — Yo Y

Perfect fluids with arbitrary velocity: 17 (e*)

=00, +n"0++ny o_withy" =5 (e +e'), nF=e¢
form an algebra for the Lie bracket

(111, 12] = 113

with
R )
€3 = €1 € —€6€6



Highlights

The detailed charge computation



Dissipative boundary fluid at rest: {* = +1

Reconstructed bulk spacetime in terms of L+ (xF)
1
dsginstein - Tk (dxjL - dXi) dr + rPdxtdx—
1 — —
+ﬁ (L+d><+ —L_dx ) (z:lx+ —dx )

General Bafiados locally AdS3 solutions in BMS gauge [afiados 09]
Note: Bafiados zero-modes include BTZ solutions a1z 92 BHTZ '03]

» L, +L =4mGe = M mass of the black hole
» Ly —L_ = —4nGx = kJ spin of the black hole



Determining the charges in gravitational backgrounds

Most popular: Komar charges (“surface” charges)
Killing {* — conserved current K, = R,,(" = V'V ,,{, = VYA,

QK = ﬁg_Q *A

e.g. M and J associated with d; and 9, in Kerr

More associated with asymptotic Killing vectors

ZLrgmn = —0zgmn compatible with fall-offs

For Bartiados solutions
{=10"0,+C"9, +C 0_interms of Y *(xF)

1
Sl = —YEL =20, YF + 5Yi’”



The charge computation

1
Qvlg g8l =gz Jo dx (YT (L +3) — Y (L +

)

Bl

> g: reference metric with Ly = L_ = —1/4 (empty AdS3)
» charge algebra: {Qy,, Qv,} = d7, Qv, = =67, Qy,

A Semlnﬂl T’ESLllt [Brown, Henneaux '86]

> set Y* = el™: get the modes (here x = X x")

1 27 imx* 1 +
Qeimxi = M/Q dXe <Li+4> = Lm

> determine the algebra: Virasoro with ¢ = 3/2«c

i{Ls Ly} = (m—n)L§+n+1—C2m(m2—1)5m+nyo
{7} =0



Perfect fluid with arbitrary velocity (LL frame): Ly = %

RCCOHStTuCth Spacetlme ZTl termS Of Ci i [Hmnk Yarom; Bhattacharyya et al "08]

ds}%instein = *% ( dX \lfde >dr

(g TT) (%)
() ()
+ ( 2y

r

r 1 , _, M _
ﬂgféﬂff (§+ +¢ )Jr k2(§+§> dx " dx

not BMS unless ¢* are constant — case captured by &+ = +1
resulting in BTZ & all non-spinning zero-modes of Bafiados family



Asymptotic Killing vectors
N =10, 71 +1779_ with g = —L (et +e7), nt =e*

51](::{: _ eigj:/ o C:i:ej:/

Charges and algebra

» choose empty AdSs as reference: ¢+ = 41 and M = ~1/2

H +
> set € = ™ : get the modes

1 2n P 1
) _ dx el™mx 1) = L:t
Qamt = {5716 /0 e (gﬂ ) m




> determine the algebra: de Witt rather than Virasoro
(G L} =im=n)l ., {L L7} =0

- 1
£ _ gyt _t
Em =L gigomo
The family of locally AdSs spacetimes obtained holographically from
2-dim fluids in the Landau—Lifshitz frame overlap only partially
Bariados solutions (non-spinning BTZ and excess/defects geometries

ie. Ly =M/2and ¢y = +1)
» either hydrodynamic-frame invariance is only local

» or its global invariance does not survive the holographic bulk
reconstruction
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