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Fuzzy spaces

I Fuzzy spaces = noncommutative compact spaces

[xi , xj ] = θij

I Algebra of functions↔ finite dimensional matrix algebra
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Examples

I Fuzzy sphere
Hoppe ’82; Madore ’92; Grosse, Klimčík, Prešnajder ’90s

[xi , xj ] = iθεijkxk x2
1 + x2

2 + x2
3 = R2

xi =
2R√

N2 − 1
Li θ =

2R√
N2 − 1

I Li are SU(2) generators in N dimensional matrix
representation.

I Limit N →∞ recovers commutative sphere.
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Examples

I CPn fuzzy spaces
Alexanian, Balachandran, Immirzi, Ydri ’02; Karabali, Nair, Randjbar-Daemi ’04; Grosse, Steinacker ’05

[xa, xb] = iθfabcxc xaxa = R2

xa =
R√

L(L + n)
Ta θ =

2R√
L(L + n)

N =
(L + n)!

n!L!
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Scalar field theory

Scalar field theory on a fuzzy space↔ random matrix model

Z =

∫
[dM]e−S[M]

S[M] = Tr
(

1
2

m2M2 + gM4 +
1
2

MKM
)

Kinetic term:

MKM = M[Li , [Li ,M]]
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Analytical treatment

I We rewrite the integration parameters:

M = U†ΛU
Λ = (λ1, λ2, . . . λN) U ∈ U(n)

dM =

[∏
i<j

(λi − λj)
2
]
dΛdU

Z =

∫ ( N∏
i=1

dλi

)
e−N2

[
1
2 r 1

N
∑
λ2

i +g 1
N
∑
λ4

i − 2
N2

∑
i<j log |λi−λj |

]
∫

dUe−
1
2 Tr[U†ΛUK(U†ΛU)]
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Effective action

I To study the model analytically we introduce the effective
action:

e−N2Seff [Λ] =

∫
dUe−

1
2 Tr[U†ΛUκ(U†ΛU)]

Z =

∫
dΛe−N2S̃[Λ]

S̃[Λ] =
1
2

r
1
N

∑
λ2

i + g
1
N

∑
λ4

i −
2

N2

∑
i<j

log |λi − λj |+ Seff [Λ]

I The key problem is therefore to determine Seff [λ].
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Perturbative treatment

High temperature expansion:

e−N2Seff [Λ] =

∫
dUe−

1
2 εTr[U†ΛUK(U†ΛU)]

O’Connor, Sämann ’07; Sämann ’10; Sämann ’15

In large N limit:

Seff =
1
2

[
ε
1
2

t2 − ε2
1

24
t2
2 + ε4

1
2880

t4
2

]
− ε3 1

432
t2
3 − ε4

1
3456

(t4 − 2t2
2 )2

tn = Tr
(

M − 1
N

(TrM) IN
)n

Natural choice of parameters due the symmetry of the kinetic
term M → M + αIN.
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Non-perturbative treatment

I Non-perturbative treatment is based on the fact that free
theory is analytically solvable.
Steinacker ’05

I The free theory results are reproduced by the effective
action:
Polychronakos ’13

Seff =
1
2

F (t2) +R

F (t2) = log

(
t2

1− e−t2

)
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Analytical treatment of the multitrace matrix models

I We can use the saddle point approximation.

I In large N limit, the integral Z is dominated by the most
probable eigenvalue configuration.

Z =

∫
dΛe−N2S̃[Λ]

∂S̃
∂λi

= 0
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Solving the aproximatives models

I The basic matrix models:

S = Tr
(

1
2

rM2 + gM4
)

S = Tr
(

aM +
1
2

rM2 + gM4
) Brezin, Itzykson, Parisi, Zuber ’78

Tekel ’18

I What we need to solve now:

S = Tr
(

1
2

rM2 + gM4
)

+ F(t2, t3, t4)

Itzykson, Zuber ’80; Das, Dhar, Sengupta, Wadia ’90
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Saddle point equation
I For the symmetric solutions:

t3 = 0, t2n = c2n cn = TrMn

∂S
∂λi

= rλi + 4gλ3
i +

∂F
∂c2

λi + 4
∂F
∂c4

λ3
i −

2
N

∑
j 6=i

1
λi − λj

= 0

reffλi + 4geffλ
3
i −

2
N

∑
j 6=i

1
λi − λj

= 0

reff = r +
∂F(c2,0, c4)

∂c2

geff = g +
∂F(c2,0, c4)

∂c4

c2n =

∫
λ2nρ(λ, reff ,geff )
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Saddle point equation

I The same procedure can be done for the asymmetric
solution with the related effective model:

Se = Tr
(

aeff M +
1
2

reff M2 + geff M4
)

and we get the equations for aeff (cn), reff (cn), geff (cn) .
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Types of solutions

Mária Šubjaková Multitrace matrix models and fuzzy field theories 14 / 28



Fuzzy sphere- numerical simulations

Kováčik, O’Connor ’18
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Non-perturbative approximation of fuzzy sphere model

S = Tr
(

1
2

rM2 + gM4
)

+
1
2

log

(
t2

1− e−t2

)

I The equations obtained from saddle point can be solved
numerically.
Tekel ’15; Tekel ’18

I The equations for the non-uniform and uniform order
phases allow also for a nice perturbative solution in the
large |r |, small g parameters.
MŠ, J. Tekel ’19

I The perturbative solution for the disorder phase is a little
bit trickier.
MŠ, J. Tekel ’19

Mária Šubjaková Multitrace matrix models and fuzzy field theories 16 / 28



Non-uniform order phase

suppρ =
(
−
√

D + δ,−
√

D − δ
)
∪
(√

D − δ,
√

D + δ
)

ρ(λ) = ...

4Dg + r + F ′[D] = 0, δ =
1
√

g

D = − r
4g

+
1
r

+
4g
r3 +

32g2

r5 +
320g3

r7 + . . .
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Uniform order phase

suppρ = (D −
√
δ,D +

√
δ)

ρ(λ) = ...

D2 =
(4 + 3δ2g)(8− 3δ2g − δr)

δ(80g + 36δ2g2)

0 = 4
4 + 15δ2g + 2δr
δ(4 + 9δ2g)

−

− F ′
[
δ(64 + 160δ2g + 144δ4g2 + 81δ6g3 + 36δ3gr + 27δ5g2r)

64(4 + 9δ2g)

]

δ = −2
r
− 1

2r2 −
4 + 720g

24r3 − 2 + 864g
1920r4 + . . .
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Phase transition
I The solution with the minimal free energy will be realized:

Fe =
1

N2 log Z

Fenonuni = − r2

16g
+

1
2

log (−r) +
3
8
− 1

4
log (4g)− g

r2 + . . .

Feuni = − r2

16g
+

1
2

log (−r) +
3
4

+
1
2

log (2)− 1
8r

+ . . .

I The phase transition:

Fenonuni − Feuni = 0

g(r) =
1

16e3/2 +
1

32e3/2r
+

9 + 5e3/2

384e3r2 +
141 + 16e3/2

3072e3r3 + . . .

I In order to obtain reasonable line even for small |m2| we
use Padé aproximantion.
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The transition between disorder phase and
non-uniform order phase

I This transition line can be obtained analytically from the
existence boundary of the phases:

reff = −4
√

g

r = −5
√

g − 1
1− e1/

√
g
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Phase diagram

Tekel ’17; MŠ, J.Tekel ’19
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Numerical simulations

Kováčik, O’Connor ’18
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Perturbative approximation of fuzzy sphere model

S = Tr
(

1
2

rM2 + gM4
)

+
1
2

[
1
2

t2 −
1

24
t2
2 +

1
2880

t4
2

]
−

− 1
432

t2
3 −

1
3456

(t4 − 2t2
2 )2

I The model was studied numerically.
Tekel ’15

I This approximation does not reproduce the behaviour of
the full model for small g parameter. We need large tn
expansion of the kinetic term to obtain the disorder and
non-uniform solutions correctly.

I However, the model has merit for the large g parameter.
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Perturbative approximation

Tekel ’15
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The addition of the higher moment terms

Seff =
1
2

[
1
2

t2 −
1

24
t2
2 +

1
2880

t4
2

]
− 1

432
t2
3 −

1
3456

(t4 − 2t2
2 )2

Seff =
1
2

F (t2) + F3(t3) + F4(t4 − 2t2
2 )
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Summary

I Scalar field theories on fuzzy spaces can be described as
matrix models.

I The kinetic term in the action leads to the multitrace terms
that are known only approximatively.

I Two main approximations are considered:

I Non-perturbative approximation gives correct behaviour
around the triple point, but not further from the origin.

I Perturbative approximation does not reproduce the theory
behaviour around the triple point but further from the origin
is more successful.
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Outlook

I How to include the higher moments?

I Can we get rid of the non-uniform order phase?

K = a(r ,g)C2 + b(r ,g)C2
2

Gubser, Sondhi ’01; Dolan, O’Connor,Presnajder ’02
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Thank you for your attention.
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