





#### Workshop on Connecting Insights in Fundamental Physics: Standard Model and Beyond

AUGUST 31 - SEPTEMBER 11, 2019

### Neutrino CP Violation with the European Spallation Source neutrino Super Beam Marcos Dracos IPHC-Strasbourg

M. Dracos. IPHC-IN2P3/CNRS/UNISTRA

# INDEXTRINO SUPER BEAM EUROPEAN Spallation Source





Corfu, 04/09/2019

CSI

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

2



- The ESS will be a copious source of spallation neutrons.
- 5 MW average beam power.
- 125 MW peak power.
- 14 Hz repetition rate (2.86 ms pulse duration, 10<sup>15</sup> protons).
- Duty cycle 4%.
- 2.0 GeV protons
  - up to 3.5 GeV with linac upgrades

```
    >2.7x10<sup>23</sup> p.o.t/year.
    ac ready by 2023 (full power)
```





M. Dracos, IPHC-IN2P3/CNRS/UNISTRA





# What does it mean 5 MW?

### • One beam pulse:

- has the same energy as a 16 lb (7.2kg) shot traveling at
  - 1100 km/hour
  - Mach 0.93
- Has the same energy as a 1000 kg car traveling at 96 km/hour
- You boil 1000 kg of ice in 83 seconds
- And this for 14 pulses/sec...

Corfu, 04/09/2019









### **ER BEAM** European Spallation Source





CSSI

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA





### **European Spallation Source**









### ESS schedule



Corfu, 04/09/2019





## European Spallation Source as Neutrino Facility for CP violation observation (2<sup>nd</sup> Oscillation maximum)





# **Oscillation probability**

#### (neutrino beams)

$$P_{\nu_{\mu} \rightarrow \nu_{e}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})} \simeq 4s_{23}^{2}s_{13}^{2}\frac{1}{(1-r_{A})^{2}}\sin^{2}\frac{(1-r_{A})\Delta L}{2}$$
 "atmospheric"  
+ $8J_{r}\frac{r_{\Delta}}{r_{A}(1-r_{A})}\cos\left(\delta_{CP}-\frac{\Delta L}{2}\right)\sin\frac{r_{A}\Delta L}{2}\sin\frac{(1-r_{A})\Delta L}{2}$  "interference"  
+ $4c_{23}^{2}c_{12}^{2}s_{12}^{2}\left(\frac{r_{\Delta}}{r_{A}}\right)^{2}\sin^{2}\frac{r_{A}\Delta L}{2}$  "solar"

$$J_{r} = c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta = \frac{\Delta m_{31}^{2}}{2E_{v}}, r_{A} = \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a \neq 2\sqrt{2}G_{F}N_{e}E_{v}$$
matter effect

- for antimatter:  $\delta_{CP} \rightarrow -\delta_{CP}$  and  $a \rightarrow -a$
- fake matter/antimatter asymetry due to matter effect  $A = \frac{P_{\nu_{\mu} \to \nu_{e}} P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}}$   $\delta_{CP}$  dependence, sizable matter effect for long baselines

 $\mathbf{A} = \frac{P_{\nu_{\mu} \to \nu_{e}} - P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} + P_{\overline{\nu}_{\mu} \to \overline{\nu}_{e}}} \qquad \qquad \text{long tr}$ 

CS



BIG BANG STAL

Seems to be a bia

#### **iphc**δ<sub>CP</sub> and matter-antimatter Institut Pluridisciplinaire STRASBOURG **asymmetry magnitude**

$$A_{\alpha\beta}^{CP} = P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) = J_{CP}^{PMNS} \cdot \sin\delta_{CP}$$

with:  $J_{CP}^{PMNS} \sim 3 \times 10^{-3}$  (Jarlskog invariant)

(for hadrons:  $J_{CP}^{CKM} \sim 3 \times 10^{-5}$ , not enough even if  $\delta_{CP} \sim 70^{\circ}$ )

m the already observed CP violation in the hadronic sector)

Theoretical models predict that if  $|\sin\delta_{CP}| \ge 0.7$ (45°< $\delta_{CP}$ <135° or 225°< $\delta_{CP}$ <315°), this could be enough to (Nexplain: the observed asymmetry.

### Use all this ESS linac power to go to the second oscillation maximum

but why?



Corfu, 04/09/2019

M. Dracos, IPHC-IN2P3/CNRS/UNIST



![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

# Having access to a powerful proton beam...

- What can we do with:
- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate

![](_page_12_Figure_7.jpeg)

conventional neutrino (super) beam

- 10<sup>15</sup> protons/pulse
- >2.7x10<sup>23</sup>

![](_page_13_Picture_0.jpeg)

![](_page_13_Picture_1.jpeg)

### **ESSvSB v energy distribution**

![](_page_13_Figure_3.jpeg)

- almost pure  $v_{\mu}$  beam
- small v<sub>e</sub>

   contamination which could be used to measure v<sub>e</sub> cross-sections in a near detector

|                  | $\operatorname{positive}$         |       | negative                          |      |  |  |
|------------------|-----------------------------------|-------|-----------------------------------|------|--|--|
|                  | $N_{ u}~(	imes 10^{10})/{ m m}^2$ | %     | $N_{ u}~(	imes 10^{10})/{ m m}^2$ | %    |  |  |
| $ u_{\mu}$       | 396                               | 97.9  | 11                                | 1.6  |  |  |
| $\bar{ u}_{\mu}$ | 6.6                               | 1.6   | 206                               | 94.5 |  |  |
| $ u_e$           | 1.9                               | 0.5   | 0.04                              | 0.01 |  |  |
| $\bar{\nu}_e$    | 0.02                              | 0.005 | 1.1                               | 0.5  |  |  |

at 100 km from the target, per year (in absence of oscillations)

#### (Nucl. Phys. B 885 (2014) 127)

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_1.jpeg)

### **Can we go to the 2nd oscillation maximum using our proton beam?**

Yes, if we place our far detector at around 500 km from the neutrino source.

 $\pi^0$ 

MEMPHYS like Cherenkov detector (MEgaton Mass PHYSics studied by LAGUNA)

- Neutrino Oscillations
- Proton decay
- Astroparticles
- Understand the gravitational collapsing: galactic SN

e

- Supernovae "relics"
- Solar Neutrinos
- Atmospheric Neutrinos
  - 500 kt fiducial volume (~20xSuperK)
  - Readout: ~240k 8" PMTs
  - 30% optical coverage

New 20" PMTs with higher QE and cheaper (see JUNO), the detection efficiency will improve the detector performance keeping the price constant, not yet taken into account.

(arXiv: hep-ex/0607026)

![](_page_14_Picture_17.jpeg)

![](_page_15_Picture_0.jpeg)

### **Neutrinos in the far detector**

![](_page_15_Figure_2.jpeg)

ow  $\nu_{\tau}$  production, almost only QE events, not suffering too much by π<sup>0</sup> backgrou

Corfu, 04/09/2019

ESS NEUTRINO

CS

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

### 2nd Oscillation max. coverage

![](_page_16_Figure_3.jpeg)

# ESS Linac modifications to produce a neutrino Super Beam

Allon State of the source of t

Corfu, 04/0

# How to add a neutrino facility?

- The neutron program must not be affected and if possible synergetic modifications.
- Linac modifications: double the rate (14 Hz  $\rightarrow$  28 Hz), from 4% duty cycle to 8%.
- Accumulator (C~400 m) needed to compress to few μs the 2.86 ms proton pulses, affordable by the magnetic horn (350 kA, power consumption, Joule effect)
  - H<sup>-</sup> source (instead of protons),
  - space charge problems to be solved.
- ~300 MeV neutrinos.
- Target station (studied in FP7 EUROv).
- Underground detector (studied in FP7 LAGUNA).
- Short pulses (~µs) will also allow DAR experiments (as those proposed for SNS) using the neutron target.

![](_page_18_Figure_10.jpeg)

### **CSNSD** SUPER BEAM **Possible locations for far detector**

![](_page_19_Figure_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

### Candidate active mines

Garpenberg mine

–Distance from ESS Lund 5 km

–Depth **1200 m** –Truck access tunnel

Zinkgruvan mine

–Distance from ESS Lund **3 km** 

-Depth **1500 m** 

-Truck access tunnel

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)

![](_page_20_Picture_12.jpeg)

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)

possible location of MEMPHYS in

Corfu, 04/09/2019

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

### Which baseline?

![](_page_21_Figure_3.jpeg)

- ~60%  $\delta_{CP}$  coverage at 5  $\sigma$  C.L.
- >75%  $\delta_{CP}$  coverage at 3  $\sigma$  C.L.
- systematic errors: 5%/10% (signal/backg.)

Corfu, 04/09/2019

Candidate active mines

![](_page_22_Picture_0.jpeg)

#### CENSO SUPER BEAM Physics Performance (CPV discovery)

![](_page_22_Figure_2.jpeg)

- little dependence on mass hierarchy,
- $\delta_{CP}$  coverage at 5  $\sigma$  C.L. up to **60%**,
- δ<sub>CP</sub> accuracy down to **6**° at 0° and 180° (absence of CPV for these two values),
- not yet optimized facility,
- **5/10%** systematic errors on Corfu, 04/09/2019 M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_23_Picture_0.jpeg)

# **Physics Performance**

### (accuracy)

ESS NEUTRINO

CS

![](_page_23_Figure_3.jpeg)

- δ<sub>CP</sub> accuracy down to 6° at 0° and 180°
- 12° accuracy at  $\delta_{_{CP}} =$  -90° and 10° at  $\delta_{_{CP}} =$  90°

Corfu, 04/09/2019 5/10% SVStem 24 Praces PHG EN2B3/CNRS/UNISTRA

![](_page_24_Picture_0.jpeg)

### Required modifications of the ESS accelerator for ESSvSB

*F. Gerigk and E. Montesinos* CERN, Geneva, Switzerland

#### Contents

- 1 The charge for the assessment
- 2 Scenarios for ESSnuSB
- <u>3 Executive Summary</u>
- 4 Detailed upgrade measures
- 4.1 Civil engineering & integration
- 4.2 Electrical network
- 4.3 RF sources, RF distribution & modulators
- 4.4 Cryogenics (plant + distribution)
- 4.5 Water cooling
- 4.6 Superconducting cavities, couplers & cryomodules
- 4.7 Beam physics
- 5. Appendix 1: Visit time table
- 6. Appendix 2: Indicative costing of the upgrade

Quotation from "Executive Summary: "<u>No show stoppers</u> have been identified for a possible future addition of the capability of a 5 MW H- beam to the 5 MW H+ beam of the ESS linac built as presently foreseen. Its additional cost is roughly estimated at 250 MEuros."

**CERN-ACC-NOTE-2016-0050 8 July 2016** 

Better to go to 2.5 GeV

# The Linac modifications and operation

![](_page_25_Figure_1.jpeg)

![](_page_26_Picture_0.jpeg)

### lattice development umulator

ESS NEUTRINO

SUPER BEAM

CS

![](_page_26_Figure_2.jpeg)

Corfu, 04/09/2019

![](_page_27_Picture_0.jpeg)

CS

![](_page_27_Picture_1.jpeg)

AND TECHNOLOGY

Shield

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

- Packed-bed target studied at RAL within the EuroNu project ( arXiv:1212.0732 )
- Titanium alloy canister containing packed bed of titanium spheres (Gas Helium as cooling medium)
- Single sphere diameter: 3 mm
- Canister radius/length: 12 mm / 780 mm

![](_page_28_Figure_8.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

### Muons at the level of the beam dump

![](_page_29_Figure_3.jpeg)

more than  $4 \times 10^{20} \mu$ /year from ESS compared to  $10^{14} \mu$  used by all experiments up to now ( $10^{18} \mu$  for COMET in the future).

- input beam for future 6D μ cooling experiments (for muon collider),
- low energy nuSTORM,
- Neutrino Factory,
- Muon Collider.

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

### **ESS neutrino and muon facility**

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

### Muons at ESS (ESSµSB)

![](_page_31_Picture_3.jpeg)

Slide# : 15

### SM Higgs rate $\approx 10^5$ ev/year (10<sup>7</sup> s) per crossing point

Corfu. 04/09/2019

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_32_Picture_0.jpeg)

### **EuroNuNet**

#### • COST application for networking: CA15139 (2016-2020)

- EuroNuNet : Combining forces for a novel European facility for neutrinoantineutrino symmetry violation discovery ( <u>http://www.cost.eu/COST\_Actions/ca/CA15139</u>)
- Major goals of EuroNuNet:
  - to aggregate the community of neutrino physics in Europe to study a neutrino long baseline concept in a spirit of inclusiveness,
  - to impact the priority list of High Energy Physics policy makers and of funding agencies to this new approach to the experimental discovery of leptonic CP violation.
  - 13 participating countries

#### http://euronunet.in2p3.

![](_page_32_Picture_9.jpeg)

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_32_Picture_11.jpeg)

![](_page_32_Picture_12.jpeg)

33

The members are countries which signed the Action MoU

![](_page_32_Figure_14.jpeg)

### **ESSvSB at the European level**

- A H2020 EU Design Study (Call INFRADEV-01-2017)
  - **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
  - Duration: 4 years

NEUTRINO

- Total cost: 4.7 M€
- Requested budget: 3 M€
- 15 participating institutes from
   11 European countries including CERN and ESS
- 6 Work Packages
- Approved end of August 2017

![](_page_33_Figure_9.jpeg)

![](_page_33_Picture_10.jpeg)

![](_page_33_Picture_11.jpeg)

![](_page_33_Figure_12.jpeg)

### **Design Study ESSvSB** (2018-2021)

H2020-INFRADEV-2017-1

RIA

48

777419

**ESSnuSB** 

Call: Funding scheme: Proposal number: Proposal acronym: Duration (months):

Proposal title:

Feasibility Study for employing the uniquely powerful ESS linear accelerator to generate an intense neutrino beam for leptonic CP violation discovery and measurement. INFRADEV-01-2017

Activity:

| N. | Proposer name                                                    | Country |
|----|------------------------------------------------------------------|---------|
| 1  | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE                     | FF      |
| 2  |                                                                  | SE      |
| 3  | KUNGLIGA TEKNISKA HOEGSKOLAN                                     | SE      |
| 4  | EUROPEAN SPALLATION SOURCE ERIC                                  | SE      |
| 5  | UNIVERSITY OF CUKUROVA                                           | TF      |
| 6  | UNIVERSIDAD AUTONOMA DE MADRID                                   | ES      |
| 7  | NATIONAL CENTER FOR SCIENTIFIC RESEARCH<br>"DEMOKRITOS"          | El      |
| 8  | ISTITUTO NAZIONALE DI FISICA NUCLEARE                            | 11      |
| 9  | RUDER BOSKOVIC INSTITUTE                                         | HF      |
| 10 | SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI                      | BC      |
| 11 | LUNDS UNIVERSITET                                                | SE      |
| 12 | AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA<br>STASZICA W KRAKOWIE | Pl      |
| 13 | EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH                       | CF      |
| 14 | UNIVERSITE DE GENEVE                                             | CF      |
| 15 | UNIVERSITY OF DURHAM                                             | Uł      |
|    | Total:                                                           |         |

#### partners: IHEP, BNL, SCK•CEN, SNS, PSI, RAL

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

35

<u>http://essnusb.eu/</u>

More information on:

CDR end of 2021

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

### Possible ESSvSB schedule

(2<sup>nd</sup> generation neutrino Super Beam)

![](_page_35_Figure_4.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

# Conclusion

- The ESS proton linac will be soon the most powerful linac in the world.
- ESS can also become a neutrino facility with enough protons to go to the 2<sup>nd</sup> oscillation maximum and increase the CPV sensitivity.
- CPV: 5  $\sigma$  could be reached over 60% of  $\delta_{CP}$  range by ESSvSB with large physics potential.
- Large associated detectors have a rich astroparticle physics program.
- The European Spallation Source will be ready by 2025, upgrade decisions by this moment.
- Rich muon program for future ESS upgrades.
- COST network project CA15139 and a EU-H2020 Design Study supports this project.

![](_page_37_Picture_0.jpeg)

# Backup

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_38_Picture_0.jpeg)

T2HK:

![](_page_38_Picture_1.jpeg)

39

### How the CPV coverage and resolution curves have been produced

- Same curves that Hyper-K has showed at the Neutrino Town Meeting at CERN and the one that was showed at Neutrino 2018.
- Systematics are said by T2HK to be between 3% to 4%.
- $\sin^2 2\theta_{13} = 0.1$  and  $\theta_{23} = \pi / 2$ .
- DUNE:
  - Public globes file released by the DUNE collaboration with the CDR, the only change is to increase the number of years from 7 to 10.
  - $\sin^2 2\theta_{13} = 0.1$  and  $\theta_{23} = \pi/2$ , to be compatible with the T2HK line.
- ESSnuSB:

• Instead of considering as usual "Opt. Snowmass errors" it is

![](_page_39_Picture_0.jpeg)

![](_page_39_Picture_1.jpeg)

# Beyond DUNE, JUNO, HyperK: ESSvSB, P2O and Neutrino factory

#### European Neutrino "Town" meeting and ESPP 2019 discussion, CERN, 24.10.2018

![](_page_39_Picture_4.jpeg)

Roumen Tsenov Department of Atomic Physics, University of Sofia

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

![](_page_40_Picture_0.jpeg)

![](_page_40_Picture_1.jpeg)

<u>CPV performance comparison between ESSnuSB, DUNE and Hyper-K</u> assuming 3% systematic errors for ESSnuSB in line with the other two.

![](_page_40_Figure_3.jpeg)

![](_page_41_Picture_0.jpeg)

Corfu, 04/09/2019

42

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

### **Systematic errors**

|                                               | SB   |      | BB    |                             |      | NF    |            |      |       |
|-----------------------------------------------|------|------|-------|-----------------------------|------|-------|------------|------|-------|
| Systematics                                   | Opt. | Def. | Cons. | Opt.                        | Def. | Cons. | Opt.       | Def. | Cons. |
| Fiducial volume ND                            | 0.2% | 0.5% | 1%    | 0.2%                        | 0.5% | 1%    | 0.2%       | 0.5% | 1%    |
| Fiducial volume FD                            | 1%   | 2.5% | 5%    | 1%                          | 2.5% | 5%    | 1%         | 2.5% | 5%    |
| (incl. near-far extrap.)                      |      |      |       |                             |      |       |            |      |       |
| Flux error signal $\nu$                       | 5%   | 7.5% | 10%   | 1%                          | 2%   | 2.5%  | 0.1%       | 0.5% | 1%    |
| Flux error background $\nu$                   | 10%  | 15%  | 20%   | $\operatorname{correlated}$ |      |       | correlated |      |       |
| Flux error signal $\bar{\nu}$                 | 10%  | 15%  | 20%   | 1%                          | 2%   | 2.5%  | 0.1%       | 0.5% | 1%    |
| Flux error background $\bar{\nu}$             | 20%  | 30%  | 40%   | correlated                  |      |       | correlated |      |       |
| Background uncertainty                        | 5%   | 7.5% | 10%   | 5%                          | 7.5% | 10%   | 10%        | 15%  | 20%   |
| Cross secs $\times$ eff. QE <sup>†</sup>      | 10%  | 15%  | 20%   | 10%                         | 15%  | 20%   | 10%        | 15%  | 20%   |
| Cross secs $\times$ eff. RES <sup>†</sup>     | 10%  | 15%  | 20%   | 10%                         | 15%  | 20%   | 10%        | 15%  | 20%   |
| Cross secs $\times$ eff. DIS <sup>†</sup>     | 5%   | 7.5% | 10%   | 5%                          | 7.5% | 10%   | 5%         | 7.5% | 10%   |
| Effec. ratio $\nu_e/\nu_\mu \ QE^{\star}$     | 3.5% | 11%  | —     | 3.5%                        | 11%  | —     | —          | —    | —     |
| Effec. ratio $\nu_e/\nu_\mu$ RES <sup>*</sup> | 2.7% | 5.4% | —     | 2.7%                        | 5.4% | —     | —          | _    | —     |
| Effec. ratio $\nu_e/\nu_\mu$ DIS <sup>*</sup> | 2.5% | 5.1% | —     | 2.5%                        | 5.1% | _     | —          | —    | _     |
| Matter density                                | 1%   | 2%   | 5%    | 1%                          | 2%   | 5%    | 1%         | 2%   | 5%    |

#### Phys. Rev. D 87 (2013) 3, 033004 [arXiv:1209.5973 [hep-ph]]

Corfu, 04/09/2019

![](_page_43_Picture_0.jpeg)

![](_page_43_Picture_1.jpeg)

### **Comparisons**

![](_page_43_Figure_3.jpeg)

#### Comparison using the same systematic errors

Phys. Rev. D 87 (2013) 3, 033004 [arXiv:1209.5973 [hep-ph]]

# The ESS neutron facility

![](_page_44_Picture_1.jpeg)

![](_page_44_Figure_2.jpeg)

Corfu, 04/09/2019

CS

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

45