Localization and Reference Frames in κ -Minkowski Spacetime Corfù Summer Institute: "Workshop on Quantum Geometry, Field Theory and Gravity "

Mattia Manfredonia

Dipartimento di Fisica "Ettore Pancini", Universitá di Napoli Federico II, Istituto Nazionale di Fisica Nucleare, Sezione di Napoli.

9/21/2019

This talk is based on...

PRD

"Localization and Reference Frames in κ-Minkowski Spacetime"

(F.Lizzi, M. Manfredonia, F. Mercati, T. Poulain) Phys. Rev. D 99, 085003 (2019) [arXiv:1811.08409]

Figure: Scan to open PDF version of the paper $a \to a = -9 \circ a$

Table of Contents

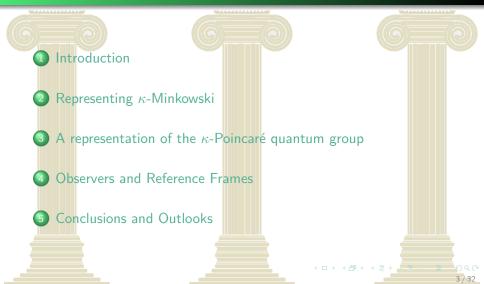


Table of Contents

κ -Minkowski space time

Q.G. suggests classical space-time (at basis of GR and QFT) to be replaced with quantum structure.

κ -Minkowski space time

Q.G. suggests classical space-time (at basis of GR and QFT) to be replaced with quantum structure.

Non Commutative Geometry

₩

κ -Minkowski

κ -Minkowski space time

Q.G. suggests classical space-time (at basis of GR and QFT) to be replaced with quantum structure.

Non Commutative Geometry

₩

κ -Minkowski

$$[x^0, x^i] = i\lambda x^i, \quad [x^i, x^j] = 0,$$

 $i, j \in \{1, 2, 3\}$

where $x^0 = ct$, sometimes $\lambda = 1/\kappa$, hence the name

5/32

κ-Minkowski not invariant under Poincaré

κ -Minkowski not invariant under Poincaré

Invariant under non commutative generalization: *k*-Poincaré

$\kappa\textsc{-Minkowski}$ not invariant under Poincaré

Invariant under non commutative generalization: *k*-Poincaré

 $\kappa\text{-Poincaré},\ \kappa\text{-Minkowski}\Rightarrow \mathsf{group}\ \mathsf{manifold}\ \mathsf{becomes}\ \mathsf{a}\ \mathsf{n.c.}\ \mathsf{space}$

1

Principle of Non Localizability

$$\Delta x^0 \Delta x^i \geq rac{\lambda}{2} |\langle x^i
angle|$$

Somehow similar to Heisenberg principle

$$\Delta p_i \Delta q^j \geq rac{\hbar}{2}$$

6/32

Table of Contents

Operator Representation for κ -Minkowski

We introduce the following representation as operators on $L^2(\mathbb{R}^3)$

$$\begin{aligned} \hat{x}^{i}\psi(x) &= x^{i}\psi(x), \\ \hat{x}^{0}\psi(x) &= \mathrm{i}\lambda\left(\sum_{i}x^{i}\partial_{x^{i}}+\frac{3}{2}\right)\psi(x) = \mathrm{i}\lambda\left(r\partial_{r}+\frac{3}{2}\right)\psi(x). \end{aligned}$$

which is compatible with κ -Minkowski commutators.

Caution!

Other representation are allowed. We want to consider those in future works.

The Time Eigenvalue Equation

Since \hat{x}^0 commutes with all spherical harmonics, we adopt polar basis (r, θ, φ) and we solved **eigenvalue equation**.

The Time Eigenvalue Equation

Since \hat{x}^0 commutes with all spherical harmonics, we adopt polar basis (r, θ, φ) and we solved **eigenvalue equation**.

$$i\lambda\left(r\partial_r+\frac{3}{2}\right)r^{\alpha}=i\lambda(\alpha+\frac{3}{2})r^{\alpha}=\ell_{\alpha}r^{\alpha},\quad \ell_{\alpha}=i\lambda(\alpha+\frac{3}{2})$$

We want eigenvalues to be real!

$$\{\ell_{\alpha} \in \mathbb{R}\} \Leftrightarrow \{\alpha = -\frac{3}{2} - \mathrm{i}\tau, \tau \in \mathbb{R}\}$$

The adimensional τ is related to time $t = \frac{\lambda}{c}\tau$

Between Time and Space

Eigenfunction of Time

$$T_{\tau}[r] = rac{r^{-rac{3}{2}-\mathrm{i} au}}{\lambda^{-\mathrm{i} au}} = r^{-rac{3}{2}}\mathrm{e}^{-\mathrm{i} au\log\left(rac{r}{\lambda}
ight)}$$

Between Time and Space

Eigenfunction of Time

$$T_{\tau}[r] = rac{r^{-rac{3}{2}-\mathrm{i} au}}{\lambda^{-\mathrm{i} au}} = r^{-rac{3}{2}}\mathrm{e}^{-\mathrm{i} au\log\left(rac{r}{\lambda}
ight)}$$

Self-adjointness of operators allow us to expand $\psi(r, \theta, \varphi)$ on functions $\{T_{\tau}[r]\}$

$$\psi(\mathbf{r},\theta,\varphi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}\tau \mathbf{r}^{-\frac{3}{2}} \mathrm{e}^{-\mathrm{i}\tau \log\left(\frac{\mathbf{r}}{\lambda}\right)} \widetilde{\psi}(\tau,\theta,\varphi)$$

Between Time and Space

Eigenfunction of Time

$$T_{\tau}[r] = \frac{r^{-\frac{3}{2}-\mathrm{i}\tau}}{\lambda^{-\mathrm{i}\tau}} = r^{-\frac{3}{2}}\mathrm{e}^{-\mathrm{i}\tau\log\left(\frac{r}{\lambda}\right)}$$

Self-adjointness of operators allow us to expand $\psi(r, \theta, \varphi)$ on functions $\{T_{\tau}[r]\}$

$$\psi(\mathbf{r},\theta,\varphi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}\tau \mathbf{r}^{-\frac{3}{2}} \mathrm{e}^{-\mathrm{i}\tau \log\left(\frac{\mathbf{r}}{\lambda}\right)} \widetilde{\psi}(\tau,\theta,\varphi)$$

Of course this is not a Fourier transform...

... it is a Mellin transform!

$$\psi(r,\theta,\varphi) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\tau}{\sqrt{2\pi}} r^{-\frac{3}{2}} \mathrm{e}^{-\mathrm{i}\tau \log\left(\frac{r}{\lambda}\right)} \widetilde{\psi}(\tau,\theta,\varphi) = \mathcal{M}^{-1} \left[\widetilde{\psi}(\tau,\theta,\varphi), r \right]$$

$$\widetilde{\psi}(\tau,\theta,\varphi) = \int_0^\infty \frac{\mathrm{d}r}{\sqrt{2\pi}} \, r^{\frac{1}{2}} \mathrm{e}^{\mathrm{i}\tau \log\left(\frac{r}{\lambda}\right)} \psi(r,\theta,\varphi) = \mathcal{M}\left[\psi(r,\theta,\varphi), \frac{3}{2} + \mathrm{i}\tau\right]$$

... it is a **Mellin** transform!

$$\psi(\mathbf{r},\theta,\varphi) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\tau}{\sqrt{2\pi}} \, \mathbf{r}^{-\frac{3}{2}} \mathrm{e}^{-\mathrm{i}\tau \log\left(\frac{\mathbf{r}}{\lambda}\right)} \widetilde{\psi}(\tau,\theta,\varphi) = \mathcal{M}^{-1}\left[\widetilde{\psi}(\tau,\theta,\varphi), \, \mathbf{r}\right]$$

$$\widetilde{\psi}(\tau,\theta,\varphi) = \int_0^\infty \frac{\mathrm{d}r}{\sqrt{2\pi}} \, r^{\frac{1}{2}} \mathrm{e}^{\mathrm{i}\tau \log\left(\frac{r}{\lambda}\right)} \psi(r,\theta,\varphi) = \mathcal{M}\left[\psi(r,\theta,\varphi), \frac{3}{2} + \mathrm{i}\tau\right]$$

Good News: It is still an isometry!

The above transformation preserves the norm

$$\int_{0}^{\infty} \mathrm{d}r \; r^{2} |\psi(r)|^{2} = \int_{-\infty}^{\infty} \mathrm{d} au |\widetilde{\psi}(au)|^{2}$$

Physical Interpretation

Our Conjecture

We assume the usual theory of measurements and observables to stand in this framework.

As an example, the average time measured by an observer would be

$$\langle \hat{x}^{0} \rangle_{\psi} = 4\pi \int r^{2} \mathrm{d}r \overline{\psi}(r) \mathrm{i}\lambda \left(r \partial_{r} + \frac{3}{2}\right) \psi(r)$$

□ ▶ < ⊡ ▶ < ≧ ▶ < ≧ ▶ ≧ < ♀ < 12/32

Points at the origin of space

We recall space-time uncertainty

$$\Delta x^0 \Delta x^i \geq rac{\lambda}{2} |\langle x^i
angle|$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

13/32

Points at the origin of space

We recall space-time uncertainty

$$\Delta x^0 \Delta x^i \geq rac{\lambda}{2} |\langle x^i
angle|$$

NOTE

 $\langle x^i\rangle$ on the right hand side suggests spatial localized states to be possible at spatial origin.

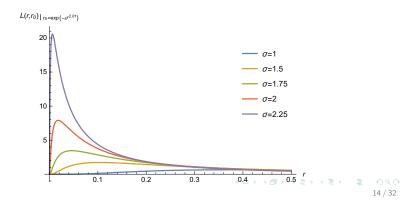
We have to search for states that saturate uncertainty bound.

$\begin{array}{rcl} \mathsf{Gaussian} & \rightarrow & \mathsf{log-Gaussian} \end{array}$

$\begin{array}{rcl} \mathsf{Gaussian} & \rightarrow & \mathsf{log-Gaussian} \end{array}$

log-Gaussians play the role of coherent states

$$L(r,r_0) = N \mathrm{e}^{-\frac{(\log r - \log r_0)^2}{\sigma^2}}$$



The average values of r^n and $(\hat{x}^0)^n$ are

$$\langle \hat{r}^n \rangle_L = e^{\frac{\sigma^2}{8}n(n+6)} r_0^n; \quad \langle (\hat{x}^0)^n \rangle_L = \frac{1}{4\pi} \left(\frac{\lambda}{\sigma}\right)^n \begin{cases} 0 & n \text{ odd} \\ (n-1)!! & n \text{ even} \end{cases}$$

Eigenstate of the origin

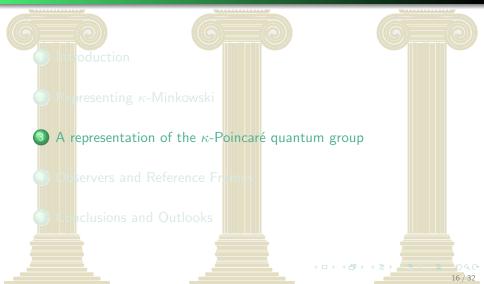
There is a localized state $|o\rangle$ localized at origin (au = 0, r = 0).

Multiplication by $r^{i\tau'}$ shifts time

We have a one parameter family of states localized at spatial origin at different time

$$\{|o\rangle_{\tau}\} := \{|o\rangle_{\tau} \text{ is localized at } r = 0, \ \tau \neq 0\}$$

Table of Contents



κ -Poincaré quantum group

The noncommutative algebra of functions \mathcal{P}_{κ} , generated by $\Lambda^{\mu}{}_{\nu}$ and a^{μ} that leave κ -Minkowski commutation relations invariant under the transformation:

$$\begin{aligned} x^{\mu} &\to x'^{\mu} = \Lambda^{\mu}{}_{\nu} \otimes x^{\nu} + a^{\mu} \otimes 1 \,. \\ [x'^{\mu}, x'^{\nu}] &= \mathrm{i}\lambda \left(\delta^{\mu}{}_{0} \, x'^{\nu} - \delta^{\nu}{}_{0} \, x'^{\mu} \right) \end{aligned}$$

 κ -Poincaré commutation relations

$$\begin{bmatrix} \boldsymbol{a}^{\mu}, \boldsymbol{a}^{\nu} \end{bmatrix} = \mathrm{i}\lambda \left(\delta^{\mu}{}_{0} \boldsymbol{a}^{\nu} - \delta^{\nu}{}_{0} \boldsymbol{a}^{\mu} \right) , \qquad \begin{bmatrix} \Lambda^{\mu}{}_{\nu}, \Lambda^{\rho}{}_{\sigma} \end{bmatrix} = \mathbf{0} ,$$
$$\begin{bmatrix} \Lambda^{\mu}{}_{\nu}, \boldsymbol{a}^{\rho} \end{bmatrix} = \mathrm{i}\lambda \left[\left(\Lambda^{\mu}{}_{\sigma} \delta^{\sigma}{}_{0} - \delta^{\mu}{}_{0} \right) \Lambda^{\rho}{}_{\nu} + \left(\Lambda^{\sigma}{}_{\nu} \delta^{0}{}_{\sigma} - \delta^{0}{}_{\nu} \right) \eta^{\mu\rho} \right] .$$

Hopf Algebra Structure

$$\begin{array}{l} \text{Coproduct } \Delta: \mathcal{P}_{\kappa} \to \mathcal{P}_{\kappa} \otimes \mathcal{P}_{\kappa}:\\ \Delta(a^{\mu}) = a^{\nu} \otimes \Lambda^{\mu}{}_{\nu} + 1 \otimes a^{\mu}, \qquad \Delta(\Lambda^{\mu}{}_{\nu}) = \Lambda^{\mu}{}_{\rho} \otimes \Lambda^{\rho}{}_{\nu},\\ \text{Antipode } S: \mathcal{P}_{\kappa} \to \mathcal{P}_{\kappa}\\ S(a^{\mu}) = -a^{\nu}(\Lambda^{-1})^{\mu}{}_{\nu}, \qquad S(\Lambda^{\mu}{}_{\nu}) = (\Lambda^{-1})^{\mu}{}_{\nu},\\ \text{Counit } \varepsilon: \mathcal{P}_{\kappa} \to \mathbb{C},\\ \varepsilon(a^{\mu}) = 0, \qquad \varepsilon(\Lambda^{\mu}{}_{\nu}) = \delta^{\mu}{}_{\nu}, \end{array}$$

Have to be homorphisms with respect to the commutation relations

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 0 Q (~ 18 / 32

A representation for κ - Poincarè

Long story short, a representation on $L^2(so(3,1))$ turns out to be non faithful. Thus we enlarged the Hilbert space with 3 more coordinates $q^i \in \mathbb{R}^3: L^2(SO(3,1)) \Rightarrow L^2(so(3,1) \times \mathbb{R}^3)$

A representation for κ - Poincarè

Long story short, a representation on $L^2(so(3,1))$ turns out to be non faithful. Thus we enlarged the Hilbert space with 3 more coordinates $q^i \in \mathbb{R}^3: L^2(SO(3,1)) \Rightarrow L^2(so(3,1) \times \mathbb{R}^3)$

A faithful (although complicated) representation

$$\begin{split} \mathbf{a}^{\rho}\phi &= \mathrm{i}\lambda\delta^{\rho}_{0}\left(\frac{3}{2}\phi(\mathbf{q},\omega) + \mathbf{q}^{i}\frac{\partial\phi}{\partial\mathbf{q}^{i}}\right) + \delta^{\mu}{}_{i}\,\mathbf{q}^{i}\,\phi \\ &- \mathrm{i}\lambda:\left[\left(\Lambda^{\mu}{}_{\sigma}\delta^{\sigma}{}_{0} - \delta^{\mu}{}_{0}\right)\Lambda^{\rho}{}_{\nu} + \left(\Lambda^{\sigma}{}_{\nu}\delta^{0}{}_{\sigma} - \delta^{0}{}_{\nu}\right)\eta^{\mu\rho}\right]\Lambda^{\nu}{}_{\alpha}\frac{\partial}{\partial\omega^{\mu}{}_{\alpha}}:\phi\,,\\ \Lambda^{\mu}{}_{\nu}\phi &= \Lambda^{\mu}{}_{\nu}(\omega)\phi = (\exp\omega)^{\mu}{}_{\nu}\phi\,, \end{split}$$

where $\phi = \phi(q, \omega)$ with $q \in \mathbb{R}^3$ and $\omega \in so(3, 1)$.

Table of Contents

Observers and Reference Frames

Algebra of \hat{x}^i, \hat{x}^0 and its states represent position and time in κ -Minkowski. Question: Who is the observer?

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q (* 21/32)

Observers and Reference Frames

Algebra of \hat{x}^i, \hat{x}^0 and its states represent position and time in κ -Minkowski.

Question: Who is the observer?

We have been implicitly assumed that measurement are carried out by an observer in the origin.

Symmetry is the quantum κ -Poincaré, it is impossible to locate the position of transformed observer (translation do not commute).

Observers and Reference Frames

Algebra of \hat{x}^i, \hat{x}^0 and its states represent position and time in κ -Minkowski.

Question: Who is the observer?

We have been implicitly assumed that measurement are carried out by an observer in the origin.

Symmetry is the quantum κ -Poincaré, it is impossible to locate the position of transformed observer (translation do not commute). Question:How do we change the observer?

Observers and Reference Frames

Algebra of \hat{x}^i, \hat{x}^0 and its states represent position and time in κ -Minkowski.

Question: Who is the observer?

We have been implicitly assumed that measurement are carried out by an observer in the origin.

Symmetry is the quantum κ -Poincaré, it is impossible to locate the position of transformed observer (translation do not commute).

Question: How do we change the observer?

State of the observer!

Algebra of a's and Λ 's represent the state of a translated and Lorentz transformed observer

Identity Transformation state

We define the state $|o
angle_{\mathcal{P}}$ of \mathcal{P}_{κ} such that

 ${}_{\mathcal{P}}\langle o|f(a,\Lambda)|o\rangle_{\mathcal{P}}=\varepsilon(f)$

The state returns the value of the function on the identity transformation.

It describes the Poincaré transformation between two coincident

observers

Physical Interpretation

Consider two different observers

AliceBob(at the origin)(in relative motion) $1 \otimes x^{\nu}$ $\Lambda^{\mu}{}_{\nu} \otimes x^{\nu} + a^{\mu} \otimes 1$

both coordinates are $\hat{x^{\mu}}, \hat{x}'^{\mu} \in \mathcal{P}_{\kappa} \otimes \mathcal{M}_{\kappa}$

Physical Interpretation

Consider two different observers

AliceBob(at the origin)(in relative motion) $\mathbb{1} \otimes x^{\nu}$ $\Lambda^{\mu}{}_{\nu} \otimes x^{\nu} + a^{\mu} \otimes \mathbb{1}$

both coordinates are $\hat{x^{\mu}}, \hat{x}'^{\mu} \in \mathcal{P}_{\kappa} \otimes \mathcal{M}_{\kappa}$

Bob's coordinates must carry information on the transformation between the twos!

Physical Interpretation

Consider two different observers

AliceBob(at the origin)(in relative motion) $\mathbb{1} \otimes x^{\nu}$ $\Lambda^{\mu}{}_{\nu} \otimes x^{\nu} + a^{\mu} \otimes \mathbb{1}$

both coordinates are $\hat{x^{\mu}}, \hat{x}'^{\mu} \in \mathcal{P}_{\kappa} \otimes \mathcal{M}_{\kappa}$

Bob's coordinates must carry information on the transformation between the twos!

We take direct sum of the representation of \mathcal{P}_{κ} and \mathcal{M}_{κ} .

States of a transformed observer

$$ert g
angle \in L^2\left(SO(3,1) imes \mathbb{R}^3_q
ight) \qquad ert \psi
angle \in L^2\left(\mathbb{R}^3
ight)$$

(related to the observer) (related to the event)

Generic element of Hilbert space

$$|\mathbf{g},\psi
angle = |\mathbf{g}
angle \otimes |\psi
angle$$

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < C 24/32

States of a transformed observer

$$ert g
angle \in L^2\left(SO(3,1) imes \mathbb{R}^3_q
ight) \qquad ert \psi
angle \in L^2\left(\mathbb{R}^3
ight)$$

(related to the observer) (related to the event)

Generic element of Hilbert space

$$|\mathbf{g},\psi\rangle = |\mathbf{g}\rangle\otimes|\psi\rangle$$

Expectation values measured by Bob are related to those measured by Alice through relation

$$\begin{split} \langle x^{\prime \mu} \rangle &= \langle g | \otimes \langle \psi | \left(\Lambda^{\mu}{}_{\nu} \otimes x^{\nu} + a^{\mu} \otimes 1 \right) | g \rangle \otimes | \psi \rangle \\ &= \langle g | \Lambda^{\mu}{}_{\nu} | g \rangle \langle \psi | x^{\nu} | \psi \rangle + \langle g | a^{\mu} | g \rangle \end{split}$$

(averages transforms with averaged κ -Poincaré transformation rule) $\frac{23}{24/32}$

Example: Transforming the origin state

The origin state for Alice is:

$$|1,o
angle=|o
angle_{\mathcal{P}}\otimes|o
angle$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の < C 25 / 32

Example: Transforming the origin state

The origin state for Alice is:

$$|1,o
angle = |o
angle_{\mathcal{P}}\otimes |o
angle$$

...and for Bob:

$$|g,o
angle=|g
angle\otimes|o
angle$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q () 25 / 32

Example: Transforming the origin state

The origin state for Alice is:

$$|1,o
angle = |o
angle_{\mathcal{P}}\otimes |o
angle$$

...and for Bob:

$$|g,o
angle=|g
angle\otimes|o
angle$$

We want to know what Bob measures with the coordinates centred on his reference frame

$$\langle x'^{\mu}
angle = \langle g | \Lambda^{\mu}{}_{
u} | g
angle \langle o | x^{
u} | o
angle + \langle g | a^{\mu} | g
angle \langle o | o
angle \,,$$

$$\langle x'^{\mu}
angle = \langle g|\Lambda^{\mu}{}_{
u}|g
angle\langle o|x^{
u}|o
angle + \langle g|a^{\mu}|g
angle\langle o|o
angle \,,$$

Since $\left< o \right| x^{
u} \left| o \right> = 0$ and $\left< o \right| o \right> = 1$ we have:

 $\langle x'^{\mu}
angle = \langle g | a^{\mu} | g
angle$

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 < つ Q (~ 26 / 32

$$\langle x'^{\mu}
angle = \langle g | \Lambda^{\mu}{}_{
u} | g
angle \langle o | x^{
u} | o
angle + \langle g | a^{\mu} | g
angle \langle o | o
angle \,,$$

Since $\langle o | \, x^{
u} \, | o
angle = 0$ and $\langle o | o
angle = 1$ we have:

 $\langle x'^{\mu}
angle = \langle g | a^{\mu} | g
angle$

The expectation value of coordinates x' is fully determinated by the expectation value of translation a

This is natural: the different observers are comparing positions, not directions.

Table of Contents

Conclusions ans Outlooks

 We gave representation of κ-Minkowski algebra as operators on Hilbert space L²(R³)

- We gave representation of κ-Minkowski algebra as operators on Hilbert space L²(R³)
- We adopted observables interpretation and discussed physical meaning

- We gave representation of κ-Minkowski algebra as operators on Hilbert space L²(R³)
- We adopted observables interpretation and discussed physical meaning
- We gave representation of κ -Poincaré group as operators on Hilbert space $L^2\left(SO(3,1) imes \mathbb{R}^3_q
 ight)$

- We gave representation of κ-Minkowski algebra as operators on Hilbert space L²(R³)
- We adopted observables interpretation and discussed physical meaning
- We gave representation of κ -Poincaré group as operators on Hilbert space $L^2\left(SO(3,1) \times \mathbb{R}^3_q\right)$
- We implemented all the above results to introduce transformations between different observers

- We gave representation of κ-Minkowski algebra as operators on Hilbert space L²(R³)
- We adopted observables interpretation and discussed physical meaning
- We gave representation of κ -Poincaré group as operators on Hilbert space $L^2\left(SO(3,1) imes \mathbb{R}^3_q\right)$
- We implemented all the above results to introduce transformations between different observers
- We developed a new framework based on a representation of $\mathcal{P}_{\kappa} \otimes M_{\kappa}$ as operators on $L^2(SO(3,1) \times \mathbb{R}^3_q \times \mathbb{R}^3)$ in which a state has informations about both the event and the observer who is staring at it.

Future Perspectives

 Introduce the whole phase space or at least some notion of momentum space

Future Perspectives

- Introduce the whole phase space or at least some notion of momentum space
- Introduce dynamics and evolution parameter for observers and events

Future Perspectives

- Introduce the whole phase space or at least some notion of momentum space
- Introduce dynamics and evolution parameter for observers and events
- Better understand the role of \hat{x}_0 and time t in the dynamics.

THANK YOU FOR **ATTENTION! ANY QUESTIONS?**

30/32