

An interacting theory for multiple partially massless spin-2 fields

Based on arXiv:1906.03868, with N. Boulanger, C. Deffayet and S. Garcia-Saenz

Lucas Traina

"Physics of the Universe, Fields and Gravitation" unit University of Mons, Belgium

Recent Developments in Strings and Gravity Corfu 2019

Plan

1 Motivations

- 2 Deformation procedure
- **3** Fully non-linear theory of PM spin-2 fields
- 4 Conclusions et perspectives

What is a partially massless field?

Wigner's classification of the irreducible representations of the Poincaré group :

 \implies Fields are either massless or massive.

Classification of the irreducible representations of (A)dS:

 \implies Fields can also be partially massless (PM) [Deser, Nepomechie (1983)].

They have a non-zero mass parameter

$$m^2 = \frac{2\Lambda}{(D-1)(D-2)}(s-t-1)(s+t), \quad t = 0, \dots, s-2.$$

They possess a gauge symmetry

$$\delta\varphi_{\mu_{\mathbf{1}}\ldots\mu_{s}}=\bar{\nabla}_{(\mu_{t+1}}\ldots\bar{\nabla}_{\mu_{s}}\xi_{\mu_{\mathbf{1}}\ldots\mu_{t}})+\ldots$$

Simplest case of PM field :

$$m^2 = \frac{4\Lambda}{(D-1)(D-2)}$$
 and $\delta h_{\mu\nu} = \bar{\nabla}_{\mu}\bar{\nabla}_{\nu}\epsilon + \frac{2\Lambda}{(D-1)(D-2)}\,\bar{g}_{\mu\nu}\,\epsilon$

Simplest case of PM field :

$$m^2 = rac{4\Lambda}{(D-1)(D-2)}$$
 and $\delta h_{\mu
u} = ar{
abla}_{\mu} ar{
abla}_{
u} \epsilon + rac{2\Lambda}{(D-1)(D-2)} ar{g}_{\mu
u} \epsilon$

Description of gravity

Simplest case of PM field :

$$m^2 = rac{4\Lambda}{(D-1)(D-2)}$$
 and $\delta h_{\mu
u} = ar{
abla}_\mu ar{
abla}_
u \epsilon + rac{2\Lambda}{(D-1)(D-2)} ar{g}_{\mu
u} \epsilon$

- Description of gravity
- Positive cosmological constant $\Lambda>0$ (AdS can be accomodated but we loss classical unitarity)

Simplest case of PM field :

$$m^2 = rac{4\Lambda}{(D-1)(D-2)}$$
 and $\delta h_{\mu
u} = ar{
abla}_{\mu} ar{
abla}_{
u} \epsilon + rac{2\Lambda}{(D-1)(D-2)} ar{g}_{\mu
u} \epsilon$

- Description of gravity
- Positive cosmological constant $\Lambda>0$ (AdS can be accomodated but we loss classical unitarity)
- Possible resolution of the cosmological constant problem :

[de Rham, Gabadadze, Heisenberg, Pirtskhalava (2012)]

Natural small graviton mass $< 1.2 \, 10^{-22} eV$ [Abbott et al (2016)]

 \longleftrightarrow

Small cosmological constant

4 / 15

Why studying PM spin-2 fields?

Simplest case of PM field :

$$m^2 = rac{4\Lambda}{(D-1)(D-2)}$$
 and $\delta h_{\mu
u} = ar{
abla}_{\mu} ar{
abla}_{
u} \epsilon + rac{2\Lambda}{(D-1)(D-2)} ar{g}_{\mu
u} \epsilon$

- Description of gravity
- Positive cosmological constant $\Lambda>0$ (AdS can be accomodated but we loss classical unitarity)
- Possible resolution of the cosmological constant problem :

[de Rham, Gabadadze, Heisenberg, Pirtskhalava (2012)]

- Natural small graviton
mass $< 1.2 \, 10^{-22} eV$ Small cosmological
constant[Abbott et al (2016)] \longleftrightarrow
- Solve problems of massive gravity related to the scalar mode [van Dam, Veltman (1970), Zakharov (1970)], [Vainshtein (1972)]
 Stueckelberg decomposition :

$$h_{\mu
u}
ightarrow h_{\mu
u} + rac{1}{m}ar{
abla}_{\mu}A_{
u} + rac{1}{m}ar{
abla}_{
u}A_{\mu} + rac{1}{m^2}ar{
abla}_{\mu}ar{
abla}_{
u}arphi$$

Single PM spin-2 field : cubic vertex in 4D [Zinoviev (2007)] but obstructed at second order [Joung, Li, Tarrona (2014)].

- Single PM spin-2 field : cubic vertex in 4D [Zinoviev (2007)] but obstructed at second order [Joung, Li, Tarrona (2014)].
- Strong constraints on non-linear extension of the PM symmetry. [Garcia-Saenz, Rosen (2014)]

- Single PM spin-2 field : cubic vertex in 4D [Zinoviev (2007)] but obstructed at second order [Joung, Li, Tarrona (2014)].
- Strong constraints on non-linear extension of the PM symmetry. [Garcia-Saenz, Rosen (2014)]
- Self-interacting PM theory cannot come as a limit of dRGT massive gravity. [Deser, Sandora, Waldron (2013)] [de Rham, Hinterbichler, Rosen, Tolley (2013)]

- Single PM spin-2 field : cubic vertex in 4D [Zinoviev (2007)] but obstructed at second order [Joung, Li, Tarrona (2014)].
- Strong constraints on non-linear extension of the PM symmetry. [Garcia-Saenz, Rosen (2014)]
- Self-interacting PM theory cannot come as a limit of dRGT massive gravity. [Deser, Sandora, Waldron (2013)] [de Rham, Hinterbichler, Rosen, Tolley (2013)]
- No Yang-Mills-like cubic interactions.
 [Garcia-Saenz, Hinterbichler, Joyce, Mitsou, Rosen (2016)]

- Single PM spin-2 field : cubic vertex in 4D [Zinoviev (2007)] but obstructed at second order [Joung, Li, Tarrona (2014)].
- Strong constraints on non-linear extension of the PM symmetry. [Garcia-Saenz, Rosen (2014)]
- Self-interacting PM theory cannot come as a limit of dRGT massive gravity. [Deser, Sandora, Waldron (2013)] [de Rham, Hinterbichler, Rosen, Tolley (2013)]
- No Yang-Mills-like cubic interactions.
 [Garcia-Saenz, Hinterbichler, Joyce, Mitsou, Rosen (2016)]

Our results :

- Enhancement of the above no-go results.
- First interacting theory of PM fields consistent at the mathematical level.

Motivations	Deformation procedure	Interacting theory of PM spin-2 fields	Conclusion

Plan

1 Motivations

2 Deformation procedure

3 Fully non-linear theory of PM spin-2 fields

4 Conclusions et perspectives

Deformation procedure

Goal: Introduction of interactions preserving the number of gauge symmetries of the free theory.

Deformation procedure

• Perturbative deformation of the initial action S_0 and gauge transformation δ_0 :

$$\begin{split} S &= S_0 + \alpha S_1 + \alpha^2 S_2 + O(\alpha^3) \,, \\ \delta &= \delta_0 + \alpha \delta_1 + \alpha^2 \delta_2 + O(\alpha^3) \,. \end{split}$$

Gauge invariance $\delta S = 0$ order by order in perturbation implies the conditions

$$\begin{split} 0 &= \delta_0 S_0 \,, \\ 0 &= \delta_0 S_1 + \delta_1 S_0 \,, \\ 0 &= \delta_0 S_2 + \delta_1 S_1 + \delta_2 S_0 \,, \end{split}$$

.

Cohomological reformulation of the deformation procedure:

Interactions = Deformation of the BV functional of the initial theory [Barnich, Henneaux 1993]

Cohomological reformulation of the deformation procedure: Interactions = Deformation of the BV functional of the initial theory [Barnich, Henneaux 1993]

 Deformations modulo trivial redefinitions of the fields and the gauge parameters of the theory.

Cohomological reformulation of the deformation procedure: Interactions = Deformation of the BV functional of the initial theory [Barnich, Henneaux 1993]

 Deformations modulo trivial redefinitions of the fields and the gauge parameters of the theory.

Information for free on all the gauge structure of the deformed theory.

Cohomological reformulation of the deformation procedure: Interactions = Deformation of the BV functional of the initial theory [Barnich, Henneaux 1993]

- Deformations modulo trivial redefinitions of the fields and the gauge parameters of the theory.
- Information for free on all the gauge structure of the deformed theory.
- Possibility to have strong results without any restrictions on the number of derivatives and at higher-orders in the fields.

	tiv			

Plan

1 Motivations

2 Deformation procedure

3 Fully non-linear theory of PM spin-2 fields

4 Conclusions et perspectives

Starting point

Sum of N decoupled Fierz-Pauli actions around $(A)dS_D$ in the PM limit. Invariant under the PM gauge symmetry

$$\delta_0 h^a_{\mu
u} = \bar{
abla}_\mu \bar{
abla}_
u \epsilon^a + rac{2\Lambda}{(D-1)(D-2)} \, \bar{g}_{\mu
u} \, \epsilon^a$$

- $a = 1, \ldots, N$ is a "color index".
- The tensors $F^a_{\mu\nu\rho} := \bar{\nabla}_{\mu} h^a_{\nu\rho} \bar{\nabla}_{\nu} h^a_{\mu\rho}$ are abelian field strengths in the sense that they are invariant under the PM gauge symmetry.

Starting point

Sum or difference of N decoupled Fierz-Pauli actions around $(A)dS_D$ in the PM limit :

$$S_0 = -\frac{1}{4} \int d^D x \sqrt{-\bar{g}} k_{ab} \left[F^{a\mu\nu\rho} F^b_{\mu\nu\rho} - 2F^{a\mu} F^b_{\mu} \right]$$

Invariant under the PM gauge symmetry

$$\delta_0 h^a_{\mu\nu} = \bar{\nabla}_\mu \bar{\nabla}_
u \epsilon^a + rac{2\Lambda}{(D-1)(D-2)} \, \bar{g}_{\mu
u} \, \epsilon^a$$

• $a = 1, \ldots, N$ is a "color index".

• The tensors $F^a_{\mu\nu\rho} := \bar{\nabla}_{\mu} h^a_{\nu\rho} - \bar{\nabla}_{\nu} h^a_{\mu\rho}$ are abelian field strengths in the sense that they are invariant under the PM gauge symmetry.

$$\bullet F^{\mathsf{a}}_{\mu} := \bar{g}^{\nu\rho} F^{\mathsf{a}}_{\mu\nu\rho} \,.$$

• k_{ab} is an internal metric that may be chosen to be diagonal, with entries +1 and -1.

Deformation of the gauge algebra

Consistency implies that the deformed gauge transformation must form an algebra

$$\left[\delta^{(\epsilon_1)}, \, \delta^{(\epsilon_2)}\right] h^{a}_{\mu\nu} = \delta^{(\chi)} h^{a}_{\mu\nu} + \text{trivial} \, .$$

Deformation of the gauge algebra

Consistency implies that the deformed gauge transformation must form an algebra

$$\left[\delta^{(\epsilon_1)}, \, \delta^{(\epsilon_2)}\right] h^{a}_{\mu\nu} = \delta^{(\chi)} h^{a}_{\mu\nu} + \text{trivial} \,.$$

Unique candidate at first order :

$$\begin{bmatrix} \delta^{(\epsilon_1)}, \, \delta^{(\epsilon_2)} \end{bmatrix} h^a_{\mu\nu} = \delta^{(\chi)}_0 h^a_{\mu\nu} + O(\alpha^2)$$
$$\chi = \alpha \left(m^a{}_{bc} \, \epsilon^b_1 \epsilon^c_2 + n^a{}_{bc} \, \bar{\nabla}^\mu \epsilon^b_1 \bar{\nabla}_\mu \epsilon^c_2 \right) + O(\alpha^2) \,,$$

with no assumption neither on the number of derivatives nor on the dependence of χ on the fields $h^{\rm a}_{\mu\nu}$.

Deformation of the gauge algebra

Consistency implies that the deformed gauge transformation must form an algebra

$$\left[\delta^{(\epsilon_1)}, \, \delta^{(\epsilon_2)}\right] h^{\mathfrak{s}}_{\mu\nu} = \delta^{(\chi)} h^{\mathfrak{s}}_{\mu\nu} + \text{trivial} \,.$$

Unique candidate at first order :

$$\begin{bmatrix} \delta^{(\epsilon_1)}, \, \delta^{(\epsilon_2)} \end{bmatrix} h^a_{\mu\nu} = \delta^{(\chi)}_0 h^a_{\mu\nu} + O(\alpha^2)$$
$$\chi = \alpha \left(m^a{}_{bc} \, \epsilon^b_1 \epsilon^c_2 + n^a{}_{bc} \, \bar{\nabla}^\mu \epsilon^b_1 \bar{\nabla}_\mu \epsilon^c_2 \right) + O(\alpha^2) \,,$$

with no assumption neither on the number of derivatives nor on the dependence of χ on the fields $h^{\rm a}_{\mu\nu}$.

Result valid to all orders : abelian algebra

$$m^a{}_{bc}=0\,,\qquad n^a{}_{bc}=0\,.$$

Extends the result of [Garcia-Saenz, Hinterbichler, Joyce, Mitsou, Rosen (2016)] without any assumption on the number of derivatives and at higher-orders in the fields.

Lucas Traina UMONS An interacting theory for multiple partially massless spin-2 fields 15/09/2019 11 / 15

First-order deformations

Result consistent with the gauge invariance at first order :

$$\delta_1 h^a_{\mu\nu} = \alpha f^a_{\ b,c} F^b_{\rho(\mu\nu)} \overline{\nabla}^{\rho} \epsilon^c , \quad D = 4 ,$$

with $f_{ab,c} := k_{ad} f^d_{\ b,c} = f_{(ab),c} .$

This leads to the cubic action $S_1=\int d^4x\sqrt{-{ar g}}\;h^a_{\mu
u}J^{\mu
u}_a$, where

$$J_{a}^{\mu\nu} := f_{bc,a} \left[F^{b\mu}_{\rho\sigma} F^{c\nu\rho\sigma} - F^{b\mu} F^{c\nu} - F^{b\rho(\mu\nu)} F^{c}_{\rho} - \frac{1}{4} \bar{g}^{\mu\nu} F^{b\rho\sigma\lambda} F^{c}_{\rho\sigma\lambda} + \frac{1}{2} \bar{g}^{\mu\nu} F^{b\rho} F^{c}_{\rho} \right]$$

Consistency condition implies on the current that it must be conserved in the sense

$$\bar{\nabla}_{\mu}\bar{\nabla}_{\nu}J^{\mu\nu}_{a} + \frac{2\Lambda}{(D-1)(D-2)}\,\bar{g}_{\mu\nu}J^{\mu\nu}_{a} \approx 0\,.$$

First-order deformations

Result consistent with the gauge invariance at first order :

$$\delta_1 h^a_{\mu\nu} = \alpha f^a_{b,c} F^b_{\rho(\mu\nu)} \bar{\nabla}^{\rho} \epsilon^c , \quad D = 4 ,$$

with $f_{ab,c} := k_{ad} f^d_{b,c} = f_{(ab),c} .$

This leads to the cubic action $S_1=\int d^4x\sqrt{-{ar g}}\;h^a_{\mu
u}J^{\mu
u}_a$, where

$$J_{a}^{\mu\nu} := f_{bc,a} \left[F^{b\mu}_{\rho\sigma} F^{c\nu\rho\sigma} - F^{b\mu} F^{c\nu} - F^{b\rho(\mu\nu)} F^{c}_{\rho} - \frac{1}{4} \bar{g}^{\mu\nu} F^{b\rho\sigma\lambda} F^{c}_{\rho\sigma\lambda} + \frac{1}{2} \bar{g}^{\mu\nu} F^{b\rho} F^{c}_{\rho} \right]$$

Consistency condition implies on the current that it must be conserved in the sense

$$\bar{\nabla}_{\mu}\bar{\nabla}_{\nu}J^{\mu\nu}_{a}+rac{2\Lambda}{(D-1)(D-2)}\,\bar{g}_{\mu\nu}J^{\mu\nu}_{a}pprox 0\,.$$

Extension of the cubic vertex of a single PM spin-2 field to several ones.
Other possibilities were a priori possible for several fields.

•
$$f_{ab,c} = f_{(ab),c}$$
 not trivial $\longrightarrow \#$ deformation parameters $= \frac{N^2(N+1)}{2}$

Second-order deformation

Consistency of the deformed gauge symmetry :

Only possible solution is to impose the quadratic constraints

$$f_{ae,b} f^{e}_{c,d} := k^{ef} f_{ea,b} f_{fc,d} = 0$$
,

which imply

$$\delta_2 = 0$$
.

Unfortunately, those constraints have no solution when $k_{ab} = \delta_{ab} \Rightarrow$ Possible deformations only when negative relative signs between kinetic terms are allowed, as in conformal gravity.

Second-order deformation

Consistency of the deformed gauge symmetry :

Only possible solution is to impose the quadratic constraints

$$f_{ae,b} f^e_{c,d} := k^{ef} f_{ea,b} f_{fc,d} = 0$$
,

which imply

$$\delta_2 = 0$$
 .

Unfortunately, those constraints have no solution when $k_{ab} = \delta_{ab} \Rightarrow$ Possible deformations only when negative relative signs between kinetic terms are allowed, as in conformal gravity.

Consistency of the deformed action :

One possible solution is to impose the quadratic constraints

$$f_{ab,e} f^{e}_{c,d} := k^{ef} f_{ab,e} f_{fc,d} = 0.$$

In this way

$$S_2 = 0$$
.

13 / 15

Second-order deformation

Consistency of the deformed gauge symmetry :

Only possible solution is to impose the quadratic constraints

$$f_{ae,b} f^e_{c,d} := k^{ef} f_{ea,b} f_{fc,d} = 0$$
,

which imply

$$\delta_2 = 0$$
 .

Unfortunately, those constraints have no solution when $k_{ab} = \delta_{ab} \Rightarrow$ Possible deformations only when negative relative signs between kinetic terms are allowed, as in conformal gravity.

Consistency of the deformed action :

One possible solution is to impose the quadratic constraints

$$f_{ab,e} f^{e}_{c,d} := k^{ef} f_{ab,e} f_{fc,d} = 0.$$

In this way

$$S_2 = 0$$
.

Consistency at all orders :

The theory that stops at the cubic level $S=S_0+S_1$ is fully consistent under the gauge symmetry $\delta=\delta_0+\delta_1$.

Motivations Def	formation procedure	Interacting theory of PM spin-2 fields	Conclusion

Plan

1 Motivations

2 Deformation procedure

3 Fully non-linear theory of PM spin-2 fields

4 Conclusions et perspectives

Conclusions and perspectives

- Enhancement of the known no-go results to multiple PM spin-2 fields and with less assumptions.
- First interacting theory for PM fields mathematically consistent.
- Physical problem because of the relative signs between kinetic terms in the action.
- Related to conformal multi-gravity theories.
 [Boulanger, Henneaux, van Nieuwenhuizen (2002)]

Conclusions and perspectives

- Enhancement of the known no-go results to multiple PM spin-2 fields and with less assumptions.
- First interacting theory for PM fields mathematically consistent.
- Physical problem because of the relative signs between kinetic terms in the action.
- Related to conformal multi-gravity theories.
 [Boulanger, Henneaux, van Nieuwenhuizen (2002)]
- Possibility that doing the analysis on more general backgrounds [Bernard, Deffayet, Hinterbichler, von Strauss (2018)] or coupling to gravity might cure unitarity issue [Gabadadze, Gruzinov (2003)].
- Coupling to other fields (massless spin-2 fields, spin-1 fields or matter fields).

Conclusions and perspectives

- Enhancement of the known no-go results to multiple PM spin-2 fields and with less assumptions.
- First interacting theory for PM fields mathematically consistent.
- Physical problem because of the relative signs between kinetic terms in the action.
- Related to conformal multi-gravity theories.
 [Boulanger, Henneaux, van Nieuwenhuizen (2002)]
- Possibility that doing the analysis on more general backgrounds [Bernard, Deffayet, Hinterbichler, von Strauss (2018)] or coupling to gravity might cure unitarity issue [Gabadadze, Gruzinov (2003)].
- Coupling to other fields (massless spin-2 fields, spin-1 fields or matter fields).

Thank you for your attention!