Exotics and BSM in ATLAS and CMS

Li Yuan Beihang University On Behalf of ATLAS and CMS Collaborations

> Corfu2019, Greece September 6, 2019

Outline

- * Exotica searches
 - Heavy Bosons
 - **Diboson Resonance**
 - Vector Like Quarks
 - Long-lived Particles
- Conclusion *

8 TeV

13 TeV

1.2

13 TeV

200 fb

250 fb

200 fb

200 fb

1.5

0.9

Introduction

- Discovery of a scalar boson consistent with SM Higgs
 - Is it SM Higgs or something else ?
 - new window for physics beyond SM

• Exotica searches

- cover wide range of final states
- numerous models (extension of SM):
 - hierarchy problem
 - neutrino mass
 - dark matter

• Successful Operation of LHC Run 2 (13TeV)

- both ATLAS and CMS: ~140fb⁻¹ data for physics
- Ideal place for exotica searches

Heavy Boson Search

— Leptons final state

$Z' \rightarrow l^+ l^-$

- Generally, all new particles that can decay to dilepton called Z'
- Many BSM theories predict $Z' \rightarrow l^+ l^-$
 - extension of SM in Grand Unification (e.g Z'_{ψ})
 - some SUSY models predict new spin-0 resonance
 - sequential SM predict Z'_{SSM}

m,, [GeV]

Good modelling for all data up to 3TeV.

Limit reach 5TeV for Z'_{SSM} and 4.5 TeV for Z'_{\psi} by all Run 2 data.

$Z' \rightarrow l^+ l^-$

- Generally, all new particles that can decay to dilepton called Z'
- Many BSM theories predict $Z' \rightarrow l^+ l^-$
 - extension of SM in Grand Unification (e.g Z'_{ψ})
 - some SUSY models predict new spin-0 resonance

Prescaled muon trigger (27GeV) applied for $m_{\mu+\mu-} < 120$ GeV online.

Limits similar as ATLAS: 5.15TeV for Z'_{SSM} and 4.56 TeV for Z' $_{\psi}$

di-muon low mass

- Search for resonance in $m_{\mu+\mu-}$ range of [45, 75] & [110, 200] GeV with full reco data (139 fb⁻¹)
 - **p**_T > 20(10) GeV for 2 OS muons
- Search for bumps in $m_{\mu+\mu-}$ range of [11.5, 45] GeV with scouting data (~ 100 fb⁻¹)
 - reduced trigger information, only muon related data is partially recorded.

The most stringent limits for dark photon in the low $m_{\mu+\mu-}$ region.

 $W' \rightarrow lv$

- Search for heavy boson with lepton+MET signature.
- Look for excess on the transverse mass distribution.
- Dominant backgrounds coming from: W+jets, Top, QCD, Z, multi-bosons

Assuming W' boson with the same coupling as the SM W boson, W' masses below 6 TeV are excluded at 95% CL in SSM.

Heavy Boson Search

— Dijet final State

Di-jet resonance

- Probe numerous BSM models: String, Axigluons/Colorons, Color-octet scalar, W'/Z' bosons, RS ...
- Search for bumps on the smoothly falling di-jet invariant mass spectrum.

No significant excess observed.

Mass limit of q* up to 6.7 TeV with full Run 2 data.

Di-jet resonance

- Probe numerous BSM models: String, Axigluons/Colorons, Color-octet scalar, W'/Z' bosons, RS ...
- Search for bumps on the smoothly falling di-jet invariant mass spectrum.

Excellent modelling of data!

Mass limits up to 7.9 TeV for different models.

Di-bjet Resonance

- Test on BSM models: b*, DM Z'(bb), KK G(bb), SSM Z'(bb)
- Use b-tagging, categories based on the # of b-tagged jets: ≥ 1 b-tag, 2 b-tags
- First use new Deep Learning for B-tagging algorithm
 - Significantly improve the sensitivity (a factor of 1~3.7)

Low Mass Dijet Resonance

- High Mass: ~1.5 8 TeV
- Medium Mass: ~ 0.4 2 TeV
- Low Mass: ~0.2 1 TeV
- Very Low Mass: ~ 10 200 GeV

Boosted Dijet + ISR photon

Non-Resonant bkg estimated from fit.

Dedicated b-trigger or jet trigger Dijet + ISR (trigger!)

Standard trigger (jet trigger or Large H_T)

Boosted Dijet + ISR (trigger!)

di-jet Resonance Summary plot

Diboson Resonance

- Rich program of diboson resonance search
 - Spin 0: $S/H \rightarrow WW/ZZ$: extended Higgs sectors, scalar singlet
 - Spin 1: V' → VH/VV: Heavy Vector Triplet
 - Spin 2: $G^* \rightarrow VV$: Extra dimensions
- Unable to cover all the final states in this talk. Only select a recent analysis.

"Dijet" —— WW/WZ/ZZ Fully Hadronic decay

- Focus on the potential resonances with mass above 1.2 TeV, W/Z boson expected to be collimated into a fat jet
 - Novel method: three-dimensional maximum likelihood fit of two jets masses and the dijet invariant mass: improve sensitivity by ~30% w.r.t previous methods.

No excess above the standard model background!

Exclude spin-1 W' and Z' with masses lower than 3.8 TeV and 3.5 TeV respectively.

"Dijet" —— WW/WZ/ZZ Fully Hadronic decay

VV(JJ)

- Several improvements w.r.t Run 1 or 2016 analysis:
- Similar analysis performed in ATLAS using the Full Run 2 data
 - include track info in the Calorimeter based jets
 - include Jet mass and more powerful Jet substructure variables in the boosted boson finding

No obvious hint of bump above the falling SM background!

Exclude HVT W'/Z' with masses up to 3.8 TeV.

Exclude Bulk RS Graviton with masses up to 1.8 TeV.

Vector-Like Quarks Search

Vector-Like Quarks

290000

(XT

13 TeV

 $\sigma_{max}\left(fb\right)$

0

 $\overline{t} / \overline{b}$

QQ Ybj Tbi

Bībj Tītj

Хītj

0000

0

- Extra family of spin 1/2 quarks
 - symmetric vector-like coupling to W/Z
 - Mass from direct mass term
 - Can solve hierarchy problem
- Pair production from strong interaction
 - Model independent
- Single production from electroweak
 - Depends mixing with SM quarks

• Decays to boson+heavy quark

Pair-Produced VLQ

Singly Produced VLQ

- Vector-like T (+2/3) quarks can belong to any weakisospin multiplet, while vector-like Y(-4/3) can not be singlets, only consider (B, Y) doublet or (T, B, Y) triplet in this analysis
- Singly production (strong interaction) probe the VLQ coupling with SM quarks as a function of VLQ mass
- Dominant backgrounds coming from: W+jets, Top, QCD, Z, multi-bosons

Limits for Exotics Searches Up to 2019 May

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ \sqrt{s} = 8, 13 TeV

	Model	ℓ, γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1] Limit	v		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ multi-chann \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j - 2j $\ge 2j$ $\ge 3j$ - el 2J $\ge 1b, \ge 1Ji$ $\ge 2b, \ge 3$	Yes - - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	M _O M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass G _{KK} mass B _{KK} mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.8 TeV	$\begin{array}{l} n=2\\ n=3\;\text{HLZ}\;\text{NLO}\\ n=6\\ n=6,\;M_D=3\;\text{TeV},\;\text{rot}\;\text{BH}\\ n=6,\;M_D=3\;\text{TeV},\;\text{rot}\;\text{BH}\\ k/\overline{M}_{\rm Pl}=0.1\\ k/\overline{M}_{\rm Pl}=1.0\\ k/\overline{M}_{\rm Pl}=1.0\\ \Gamma/m=15\%\\ \text{Tier}\;(1,1),\;\mathcal{B}(A^{(1,1)}\to tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \text{ model } B \\ \text{HVT } V' \to WH/ZH \text{ model } B \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	2 e, µ 2 τ - 1 e, µ 1 τ, µ 1 τ 0 e, µ multi-chann 2 µ	- 2b ≥ 1 b, ≥ 1J, - 2 J el el 1 J	- 2j Yes Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W _R mass W _R mass	5.1 TeV 2.42 TeV 2.1 TeV 3.0 TeV 6.0 TeV 3.7 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
G	Cl qqqq Cl ℓℓqq Cl tttt	– 2 e,µ ≥1 e,µ	2 j 	– – Yes	37.0 36.1 36.1	Λ Λ Λ	2.57 TeV	21.8 TeV η ⁻ _{LL} 40.0 TeV η ⁻ _{LL} C _{4t} = 4π	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac DM $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM)	0 e,μ M) 0 e,μ 0 e,μ 0-1 e,μ	1 - 4 j 1 - 4 j 1 J, ≤ 1 j 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	mmed TOD GeV mp	1.55 TeV 1.67 TeV 3.4 TeV	$\begin{array}{l} g_q {=} 0.25, g_q {=} 1.0, m(\chi) = 1 \; {\rm GeV} \\ g {=} 1.0, m(\chi) = 1 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \; {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
70	Scalar LQ 1 st gen Scalar LQ 2 ^{sd} gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1 LQ mass 1 LQ mass 1.03 Tel LQ mass 970 GeV	.4 TeV 1.56 TeV 7	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^o \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^o \rightarrow t\tau) = 0 \end{array}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-chann multi-chann $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el ≥ 1 b, ≥ 1 j ≥ 1 b, ≥ 1 ≥ 1 b, ≥ 1 ≥ 4 j	Yes j Yes j Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.3 B mass 1.3 T _{5/3} mass 1.3 Y mass 1.2 B mass 1.21 Q mass 690 GeV	7 TeV 4 TeV 1.64 TeV 1.85 TeV TeV	$\begin{array}{l} & {\rm SU(2)\ doublet} \\ & {\rm SU(2)\ doublet} \\ & {\mathcal B}(T_{5/3} \rightarrow Wt) = 1,\ c(T_{5/3}Wt) = 1 \\ & {\mathcal B}(Y \rightarrow Wb) = 1,\ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass f* mass y* mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u° and d° , $\Lambda = m(q^{\circ})$ only u° and d° , $\Lambda = m(q^{\circ})$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell r$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$ \sqrt{s}	1 e, μ 2 μ 2,3,4 e, μ (S 3 e, μ, τ - - = 13 TeV tial data	≥ 2 j 2 j S) - - - - - full d	Yes 3 TeV ata	79.8 36.1 36.1 20.3 36.1 34.4	N ^e mass 560 GeV N _R mass 870 GeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV multi-charged particle mass 1.22 monopole mass 1.0 ⁻¹	3.2 TeV TeV 2.37 TeV 1	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2 Mass scale [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Limits for Exotics Searches based on 2016 Data

Overview of CMS EXO results

			CMS			36 fb ⁻¹ (13 TeV)			
	S5M Z'(<i>tt</i>)	М.,	1803.06292 (21)	4.5					
e Bosons	55M Z'(qq)	Mz	1805.00843 (2j)	2.7					
	LFV Z', BR($e\mu$) = 10%	$M_{Z'}$	1802.01122 (eµ)	4.4					
	SSM W ⁽ (tv)	M_{tr}	$1803.11133 (t + E_T^{mins})$	5	2				
5	55M W'(qq)	M_{tr}	1805.00843 (2 j)	3.3					
S.	S5M W'(τν)	Mar	$1807.11421 (r + E_{T}^{max})$	4					
See.	LR SM $W_n(M_n)$, $M_{N_n} = 0.5M_{W_n}$	M_{H_0}	1803.11116 (2 <i>l</i> + 2 <i>j</i>)	44					
Ť	LKSM $W_R(TN_R), M_{N_R} = 0.5M_{N_R}$	M _{ille}	1811.00806 (2 T + 2j)	3.5	61				
	Axigluon, Coloron, com = 1	Mc	1800.00843 (2)		0.1				
2	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 1$	MLO	1811.01197 (2e+ 2 j)	1.44					
	scalar LQ (pair prod.), coupling to 1^{st} gen. fermions, $\beta = 0.5$	MLQ	1811.01197 (2e+ 2j; e + 2j + E ^{miss})	1.27					
in l	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 1$	MLO	1808.05082 (2µ+2j)	1.53					
ğ	scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta = 0.5$	MLQ	1808.05082 ($2\mu + 2j; \mu + 2j + E_T^{minn}$)	1.29					
Ē	scalar LQ (pair prod.), coupling to 3^{ct} gen. fermions, $\beta = 1$	M_{LQ}	1811.00806 (2 x + 2j) 1.0	2					
	scalar LQ (single prod.), coup. to 3^{ra} gen. ferm., $\beta = 1, \lambda = 1$	M_{LQ}	1805.03472 (2 τ + b) 0.74						
	excited light quark (gg), $\Lambda = m_a^*$	M.	1805.00843 (2i)		6				
2 4	excited light quark $(q\gamma)$, $f_S = f = f' = 1$, $\Lambda = m_q^*$	м	1711.04652 (y + j)		5.5				
ite Lite	excited b quark, $f_s = f = f' = 1$, $\Lambda = m_q^*$	M.	1711.04652 (y + j)	1.8	_				
n n n	excited electron, $f_5 = f = f' = 1$, $\Lambda = m_o^*$	M.	1811.03052 (y + 2e)	3.9					
	excited muon, $f_5 = f = f' = 1$, $\Lambda = m_{\mu}^*$	M _a .	1811.03052 (γ + 2 μ)	3.8					
5	quark compositeness (að) n = 1	A+	1803 08030 (20)			2.8			
Contact	quark compositeness (II), num = 1	11/98. A+	1812 10443 (24)			20			
	quark compositeness $(a\bar{a})$, $n_{1,0,0} = -1$	A-	1803.08030 (2i)			17.5			
	quark compositeness (ll), $\eta_{WRR} = -1$	A	1812.10443 (21)			31			
-		* 11/101							
	ADD (jj) HLZ, $n_{ED} = 3$	Ms	1803.08030 (2 j)		1	2			
	ADD $(\gamma\gamma, tt)$ HLZ, $n_{ED} = 3$	Ms	1812.10443 (2y , 2 <i>l</i>)		9.1				
	ADD G_{NX} emission, $n = 2$	мь	$1712.02345 (\ge 1j + E_T^{min})$		9.9				
Suc	ADD QBH (jj), $n_{ED} = 6$	Moerri	1803.08030 (2 j)		8.2				
nsic.	ADD QBH $(e\mu)$, $n_{ED} = 6$	Моен	1802.01122 (eµ)		5.0				
Ē	RS $G_{xx}(q\bar{q}, gg), k/M_{Pl} = 0.1$	MGex	1805.00843 (2 j)	18					
ā	$RS G_{\text{loc}}(R), R/M_{\text{Pl}} = 0.1$	MGex	1803.06292 (27)	425					
xtra	RS OBH (ii) $n_{res} = 1$	MGex	1803.08030 (24)	41	5.0				
ω.	RS OBH (au) = 1	Moen	1902 01122 (au)	36	3.9				
	pop-rotating BH, $M_0 = 4 \text{ TeV}$, $n_{eo} = 6$	MOBH	1805.06013 (> 7i(t, v))	20	97				
	split-UED, µ≥4 TeV	1/R	$1803.11133 (l + E_{\tau}^{+cos})$	2.9					
Dark Matter	(axial-)vector mediator ($\chi\chi$), $g_a = 0.25$, $g_{DM} = 1$, $m_x = 1$ GeV	$M_{\rm red}$	1712.02345 (≥ 1j + E _r ^{min})	1.8					
	(axial-)vector mediator (qq), $g_q = 0.25$, $g_{DM} = 1$, $m_g = 1$ GeV	Mred	1805.00843 (2 j)	2.6					
	scalar mediator (+ t/tt), $g_q = 1$, $g_{DM} = 1$, $m_x = 1$ GeV	Mrsed	1901.01553 (0, $1l + \ge 3j + E_T^{max}$) 0.29						
	pseudoscalar mediator (+t/tt), $g_n = 1$, $g_{DM} = 1$, $m_x = 1$ GeV	Mred	1901.01553 (0, $1l + \ge 3j + E_T^{min}$) 0.3						
	scalar mediator (fermion portal), $\lambda_u = 1, m_x = 1 \text{ GeV}$	M.,	1712.02345 (≥ 1j + E _T ^{men})	1.4					
	complex sc. med. (dark QCD), $m_{n_{\rm DE}} = 5$ GeV, $c\tau_{x_{\rm DE}} = 25$ mm	$M_{N_{CR}}$	1810.10069 (4 j)	154					
*	Type III Seesaw, $B_{\sigma} = B_{\mu} = B_{\tau}$	Magna	1708.07962 (≥ 3ℓ) 0.84						
8	string resonance	M	1805.00843 (2 j)		7.7				
_			0.1	1.0	10 0				
	mass scale [TeV]								

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Long-lived Particle Search

Long-Lived Particles

- BSM particles may have lifetime that are long compared to SM particles, referred as Long-Lived particles (LLP), will decay far from interaction point.
- Search for LLP requires for customised techniques to identify displaced vertices.

Displaced Jet + MET

Displaced Photon

- Also test on benchmark model (GMSB)
- Requiring one or two photon with displaced vertex and three or more jets in the events.
- diphoton trigger for 2016 data, dedicated single photon trigger (designed for displaced photons) used in 2017 data.

No sign observed for displaced Photon.

Significantly extend the limits in the 2D plane of cτ vs mass of neutralino.

Search for Heavy Neutral Lepton

- Heavy neutrino: can explain neutrino mass, matterantimatter asymmetry, DM
- Search with both prompt and displaced signatures
- Signals include: $e^{\pm}e^{\mp}\mu^{\pm}$ or $\mu^{\pm}\mu^{\mp}e^{\pm}$ with small MET
- First displaced search featured with a prompt muon accompanies by a displaced vertex from two OS leptons

Limits for Long-Lived Particles

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

29

Limits for Long-Lived Particles

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary $\int \mathcal{L} dt = (18.4 - 36.1) \text{ fb}^{-1} \sqrt{s} = 8, 13 \text{ TeV}$

Status: July 2019

Conclusion

- Very Active field in the Exotics or other BSM searches
 - probing various models beyond SM
 - developing new techniques to improve analysis sensitivity
 - combination of various channels
- Early analyses with full Run 2 data performed
 - dilepton, dijet, lepton + neutrino, displaced jet + MET ...
 - No sign for new physics found yet!
- Lots of analyses are on-going, stay-tuned for more exciting results!
- Surprise(s) may be hidden somewhere!

