Random tensors and the SYK model

Thomas Krajewski

Centre de Physique Théorique

Aix-Marseille University

thomas.krajewski@cpt.univ-mrs.fr based on

https://arxiv.org/abs/1812.03008

Quantum Geometry, Field Theory and Gravity Corfu Summer Institute September 2019

The Sachdev-Ye-Kitaev (SYK) model

Quantum mechanical model (1 + 0 dimensions) with N Majorana fermions $\psi_i(t)$ with random degree q (even) interaction

$$H = i^{q/2} J_{i_1 \dots i_q} \psi_{i_1} \cdots \psi_{i_q}, \qquad \{\psi_i, \psi_j\} = \delta_{ij}$$

▶ Random coupling $J_{i_1...i_q}$ → quenched disorder (average extensive/connected quantities) with Gaussian distribution

$$\langle J_{i_1...i_q} J_{j_1...j_q} \rangle = \sum_{\text{permutations } \pi} \epsilon(\pi) \frac{\sigma^2}{N^{q-1}} \, \delta_{i_1 j_{\pi(1)}} \cdots \delta_{i_q j_{\pi(q)}}$$

Generalisation to a model with flavours (Gross, Rosenhaus)

$$H = \mathbf{i}^{q/2} J_{\underbrace{i_{1,1} \dots i_{1,q_{1}}}_{\text{flavour 1}} \dots \underbrace{i_{f,1} \dots i_{1,q_{f}}}_{\text{flavour f}} \prod_{\substack{a=1,\dots,f\\\text{flavours}}} \psi_{i_{a,1}}^{a} \dots \psi_{i_{a,q_{a}}}^{a}$$

Model in condensed matter (Sachdev, Ye, Georges, Parcollet) and AdS₂/CFT₁ at large *N* (Kitaev, Maldacena, Stanford, Polchinski, Rosenhaus, Gross, ...). For an introduction, see lecture by V. Rosenhaus https://arxiv.org/abs/1807.03334

Lagrangian formulation and Feynman rules

Path integral formulation with Grassmann variables

$$L = \int dt \left\{ \psi_i \partial_t \psi_i - i^{q/2} J_{i_1 \dots i_q} \psi_{i_1} \cdots \psi_{i_q} \right\}$$

Expand for a fixed realisation of the disorder, then average

► Free propagator

$$i - j \rightarrow G_0(t, t') = \langle T\psi_i(t)\psi_j(t') \rangle = \frac{\delta_{ij}}{2} \operatorname{sgn}(t - t')$$

▶ Interaction vertex (for q = 4)

Sum over internal indices

Large N limit

Quenched disorder : evaluate connected graphs at fixed J and then average over J :

$$\langle J_{i_1...i_q} \ J_{j_1...j_q} \rangle = \sum_{\text{permutations } \pi} \epsilon(\pi) \frac{\sigma^2}{N^{q-1}} \ \delta_{i_1 j_{\pi(1)}} \cdots \delta_{i_q j_{\pi(q)}}$$

$$\rightarrow \frac{N^3}{N^3} = 1$$

$$\rightarrow \frac{N^3 \times N^3}{N^3 \times N^3} = 1$$

$$\rightarrow \frac{N \times N^3}{N^3 \times N^3} = \frac{1}{N^2}$$

In the large N limit "melonic" graphs contribute : vertices should come by pairs related by q-1 dressed edges

Similar results for the 4 point function summing ladder (geometric series): expression in terms of hypergeometric function (nearly conformal)

Schwinger-Dyson equations

Graphical recursive construction at large N (only melonic graphs)

$$G(t, t') = G_0(t, t') + \int du dv \ G_0(t, u) G^{q-1}(u, v) G(v, t')$$

$$G = G_0 + G_0 \star G^{q-1} \star G$$

At large N in the IR $(N\gg J|t-t'|\gg 1)$, assume $G\ll G_0$

$$G_*(t,t') \propto rac{\mathsf{sgn}(t-t')}{|t-t'|^{2\Delta}}$$

with Δ anomalous dimension of ψ in the IR (trivial in the UV)

$$0 = 0 + 2 - (q - 1) \times 2\Delta - 2\Delta \quad \Rightarrow \quad \Delta = \frac{1}{q}$$

Effective action for bilocal fields

- Quenched disorder : introduce replicas $\log(Z) = \lim_{n \to 0} \frac{Z^n 1}{n}$ $\psi_i(t) \to \psi_i^r(t)$ with $r = 1, \dots, n$
- New variables O(N) invariant bilocal variables $G^{rr'}(t,t')=\frac{1}{N}\sum_i \psi_i^r(t)\psi_i^{r'}(t')$ with $\Sigma^{rr'}(t,t')$ Lagrange multiplier
- lacktriangle Perform Gaussian integrals over J and ψ
- Assume replicas diagonal solutions $G^{rr'} = G\delta^{rr'}$, $\Sigma^{rr'} = \Sigma\delta^{rr'}$ Non diagonal solution are also possible (Arafeva, ...)

$$oxed{\log \mathcal{Z}_J = \int [DG][D\Sigma] \exp \mathit{NS}_{\mathsf{eff}}[G,\Sigma]}$$

with O(N) invariant effective action for bilocals ($\star = convolution$)

$$S_{ ext{eff}}[G,\Sigma] = rac{1}{2}\log\det\left(\partial - \Sigma
ight)_\star + rac{1}{2}\iint dt dt' \Sigma(t,t') G(t,t') + \sigma^2 G^q(t,t')$$

Large N limit and saddle point approximation

Path integral with effective action $\int [DG][D\Sigma] \exp NS_{\text{eff}}[G, \Sigma]$

$$S_{ ext{eff}}[G,\Sigma] = rac{1}{2}\log\det\left(\partial - \Sigma
ight)_\star + rac{1}{2}\iint dt dt' \Sigma(t,t') G(t,t') + \sigma^2 G^q(t,t')$$

 $\mathsf{Saddle}\ \mathsf{point} \to \mathsf{Schwinger}\text{-}\mathsf{Dyson}\ \mathsf{equation}$

$$G(t,t') = \left[\delta(t-t')\partial_t - \Sigma(t,t')\right]_{\star}^{-1}, \qquad \Sigma(t,t') = J\left[G(t,t')\right]^{q-1}$$

Eliminating $\Sigma(t,t')$ with $G_0(t,t')=\left[\delta(t-t')\partial_t\right]_\star^{-1}$ free propagator

$$G(t, t') = G_0(t, t') + \int du dv \ G_0(t, u) G^{q-1}(u, v) G(v, t')$$

 $G = G_0 + G_0 \star G^{q-1} \star G$

In the IR, we may simply drop $\delta(t-t')\partial_t$

$$\delta(t-t') = \int du \, G^{q-1}(t,u) G(u,t') \Leftrightarrow -1 = G^{q-1} \star G$$

Reparametrisation invariance

$$S_{\mathsf{eff}}[G,\Sigma] = rac{1}{2} \log \det \left(\partial_t - \Sigma
ight)_\star + \iint dt dt' \Sigma(t,t') G(t,t') + J G^q(t,t')$$

In the IR (drop ∂_t), $S_{\rm eff}$ invariant under reparametrisation $t \to f(t)$ with $\Delta = \frac{1}{q}$ anomalous dimension

$$\psi(t)
ightarrow \left| rac{df}{dt}
ight|^{\Delta} \psi(f(t))$$
 $G(t, t')
ightarrow \left| rac{df}{dt}
ight|^{\Delta} \left| rac{df}{dt'}
ight|^{\Delta} G(f(t), f(t'))$
 $\Sigma(t, t')
ightarrow \left| rac{df}{dt}
ight|^{1-\Delta} \left| rac{df}{dt'}
ight|^{1-\Delta} \Sigma(f(t), f(t'))$

$$G_*(t,t') \propto rac{ extsf{sgn}(t-t')}{|t-t'|^{2\Delta}} ext{ only } \mathsf{SL}_2(\mathbb{R}) ext{ invariant } t o f(t) = rac{at+b}{ct+d}$$

Spontaneous (and explicit by ∂_t) breaking of reparametrisation invariance \rightarrow Schwarzian action for pseudo Goldstone modes (Kitaev, Witten, Standford)

Non Gaussian averages and random tensors

Non Gaussian disorder $(V_N(J) \text{ perturbation}) o J_{i_1 \cdots a}$ random tensor

$$\langle \ldots \rangle_J = rac{\int dJ \, \ldots \, \exp - \left\{ rac{N^{q-1}}{2\sigma^2} J^2 + V_N(J)
ight\}}{\int dJ \exp - \left\{ rac{N^{q-1}}{2\sigma^2} J^2 + V_N(J)
ight\}}$$

Average of interaction term expressed as

$$\left\langle \exp\left\{J_{i_1...i_q}\sum_r\int dt\psi_{i_1}^r(t)\cdots\psi_{i_q}^r(t)\right\}\right\rangle = \exp\left\{\frac{N^{q-1}}{2\sigma^2}K^2 - V_N'(K)\right\}$$

with normalised background effective action $V'_N(K)$ for K

$$K_{i_1...i_q} = \sum_r \int dt \, \psi_{i_1}^r(t) \cdots \psi_{i_q}^r(t)$$
 $V_N'(K) = -\log \int dJ \exp{-\left\{\frac{N^{q-1}}{2\sigma^2}J^2 + V_N(K+J)\right\}}$

A (very) short overview of random tensors

- ▶ Generalisation of random matrices $M_{ij} \rightarrow T_{ijk...}$ with U(N) or O(N) invariant interactions
- Generating function for higher dimensional random geometries

$$\int_{\text{rank } D \text{ tensors}} dT \exp{-S_N(T)} = \sum_{\substack{D\text{-valent Feynman graphs} \\ \Leftrightarrow D\text{-dimensional triangulations}}} W(\text{triangulation})$$

- Perturbative expansion of non symmetric (coloured) complex T, T models (Gurau, Rivasseau, Bonzom, Riello, Tanasa,) and some real models (Carrozza, Tanasa) dominated by melonic Feynman graphs with well defined large N limit.
- ▶ Reformulation of the SYK model without quenched disorder (Witten, Gurau, Klebanov, Tarnopolski, ...) : $\psi_{ijk...}(t)$ fundamental degrees of freedom instead of $\psi_i(t)$ (here the coupling is the random tensor instead)

Invariant interactions

U(N) or O(N) invariant interactions constructed using graphs : tensors at vertices and indices contracted along the edges

▶ Dipole ←

$$(T\cdots T)_{\Gamma} = T_{ijk}T_{ijk}$$

➤ Quartic melon

$$(T\cdots T)_{\Gamma}=T_{ijk}T_{ijl}T_{mnk}T_{mnj}$$

► Tetrahedron

$$(T \cdots T)_{\Gamma} = T_{ijk} T_{klm} T_{mjn} T_{nli}$$

For non symmetric complex models: black and white vertices (T,\overline{T}) and label 1, 2, ..., D edges at each vertex (place of index)

Existence of a large N limit

Find suitable exponents δ_{Γ} in such a way that

$$V_N'(T') = -\log \int dT \exp -\left\{ rac{N^{q-1}}{2\sigma^2} T^2 + V_N(T'+T)
ight\}$$

with potentials expanded over graphs

$$V_N(T) = \sum_{\Gamma} N^{\delta_{\Gamma}} \lambda_{\Gamma} N^{\delta_{\Gamma}} (T \cdots T)_{\Gamma}, \quad V_N'(T') = \sum_{\Gamma} \lambda_{\Gamma}' N^{\delta_{\Gamma}} (T \cdots T)_{\Gamma}$$

such that all $\lim_{N\to+\infty} \lambda'_{\Gamma}(\lambda_{\Gamma})$ exists). Positive answer for

- ▶ Complex non symmetric tensors (Gurau, Rivasseau) with $\delta_{\Gamma} = q 1 \#$ {connected components of Γ }
- Real and complex non symmetric tensors with tetrahedral interaction (Carrozza, Tanasa)
- ► Real antisymmetric and symmetric traceless tensors with tetrahedral interaction (Benedetti, Carrozza, Gurau)

Large N limit from a Polchinski like equation

Effective action for a complex non symmetric rank q tensor

$$V_N'(T', \bar{T}') = -\log \int dT d\bar{T} \exp -\left\{\frac{N^{q-1}}{2\sigma^2}T\bar{T} + V_N(T'+T, \bar{T}'+\bar{T})\right\}$$

obeys a Polchinski like equation (fast modes integration in QFT)

$$\frac{\partial V_{N}'}{\partial \sigma^{2}} = \frac{1}{N^{q-1}} \sum_{1 \leq i_{1}, \dots, i_{q} \leq N} \left(\frac{\partial^{2} V_{N}'}{\partial T_{i_{1}, \dots, i_{q}} \partial \overline{T}_{i_{1}, \dots, i_{q}}} - \frac{\partial V_{N}'}{\partial T_{i_{1}, \dots, i_{q}}} \frac{\partial V_{N}'}{\partial \overline{T}_{i_{1}, \dots, i_{q}}} \right)$$

$$\frac{\partial}{\partial \sigma^2} \qquad = -\frac{1}{2} \qquad +\frac{1}{2} \qquad$$

- ▶ Derivation with respect to T and \bar{T} removes a pair of vertices
- ► Corresponding free lines are reattached by index contraction
- ▶ Leading contribution when creation of connected components

Gaussian universality for bilocal fields

Inserting the bilocal field $G(t,t')=\frac{1}{N}\sum_i \psi_i^r(t)\psi_i(t')$, the scaling is $N^{\delta_{\Gamma}-1-\nu(q-1)+e}=N^{\delta_{\Gamma}-1-\nu(q/2-1)}$ (2e = qv for q-valent graphs)

$$egin{aligned} S_{ ext{eff}}'(G,\Sigma) &= S_{ ext{eff}}(G,\Sigma) \ &+ \sum_{\Gamma} \mathcal{N}^{\delta_{\Gamma}-1-
u(q/2-1)} \lambda_{\Gamma}' \int \prod_{
u} dt_{
u} \prod_{e=
u
u'} G(t_{
u},t_{
u'}) \end{aligned}$$

- ▶ Gaussian universality : for q > 2, for all know scalings leading to a large N limit, only the dipole contributes at leading order, with a modified covariance
- ▶ For q = 2 (matrix model), all single trace interactions survive
- Corrections are invariant under reparametrisation
- Similar to previous results on p-spin glasses (Bonzom, Gurau, Smerlak)

Details for a complex coloured model

Model with q complex field \rightarrow random coupling = complex non symmetric tensor (simplest combinatorics)

$$H = i^{\frac{q}{2}} \sum_{i_1, \dots, i_q} \bar{J}_{i_1, \dots, i_q} \psi^1_{i_1} \cdots \psi^q_{i_q} + i^{\frac{q}{2}} \sum_{i_1, \dots, i_q} J_{i_1, \dots, i_q} \bar{\psi}^1_{i_1} \cdots \bar{\psi}^q_{i_q}$$

Example of a quartic melonic interaction,

The modified covariance is computed as

$$(\sigma')^2 = \frac{-1 + \sqrt{1 + 4\lambda\sigma^4}}{\sigma^2}$$

Leading order non Gaussian correction to the effective action

$$\propto rac{1}{N^2} \int dt_1 dt_2 dt_3 dt_4 G^3(t_1, t_2) G(t_1, t_3) G(t_2, t_4) G^3(t_3, t_4)$$

Short summary

- SYK : quantum mechanical models with N Majorana fermions and quenched disorder
- ► Solvable in the large N limit with nearly conformal invariance in the IR (only "melonic" graphs survive)

- ▶ Random tensors : higher dimensional generalisations of random matrices $M_{ij} \rightarrow T_{ijk...}$ with large N limit dominated by melonic graphs
- Disorder : coupling constant considered as a random tensor

$$\left\langle \exp \int J_{i_1...i_q} \psi_{i_1} \cdots \psi_{i_q} \right\rangle_{\mathcal{J}}$$

 Gaussian universality: average over non Gaussian disorder equivalent to a Gaussian one

