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INTRODUCTION AND MOTIVATION

Exact β-functions and non-perturbative symmetries

1. In a renormalizable field theory, its quantum behaviour is encoded within the RG flows

βλ =
dλ

d lnµ2

which are usually determined perturbatively.

2. Can we obtain the all-loop β-function?

3. Any non-perturbative symmetries?

4. New fixed points towards the IR?

We study the above in the non-Abelian Thirring model



FOCAL POINTS

– The non-Abelian Thirring model

– The effective action

– The one and two loop β-function

– Conclusion and Outlook



NON-ABELIAN THIRRING MODEL

Consider the WZW action Witten (1983):

SWZW,k(g) = −
k

2π

∫
d2σTr

(
g−1∂+g g−1∂−g

)
+

k
12π

∫
B

Tr
(

g−1dg
)3
,

invariant under the left-right current algebra symmetry: g 7→ Ω−1(σ+) gΩ(σ−).

The non-abelian Thirring model is defined through

S = SWZW,k(g) + k
λab

π

∫
d2σ Ja

+ Jb
−

The currents and the adjoint action are defined through

Ja
+ = −i Tr(ta ∂+g g−1) , Ja

− = −i Tr(ta g−1 ∂−g) , Dab = Tr(tagtbg−1) ,

where DacDbc = δab, [ta, tb] = i fabctc, Tr(tatb) = δab and facd fbcd = cG δab .



NON-ABELIAN THIRRING MODEL

Symmetries of the non-abelian Thirring model:

S = SWZW,k(g) + k
λab

π

∫
d2σ Ja

+ Jb
−

1. The left-right current algebra symmetry is broken for a generic matrix λab

2. It is invariant under the generalized parity symmetry:

λ 7→ λT , g 7→ g−1 , σ± 7→ σ∓

3. The operator driving the perturbation is marginally relevant Kutasov (1989)

βλ = −
cG λ

2

2k (1 + λ)2
+O

(
1
k2

)
, λab = λ δab

4. The corresponding ”effective action” is invariant under the inversion of the coupling
Kutasov (1989)

λ 7→ λ−1 , k 7→ −k − cG

How about an effective action?



PLAN OF THE TALK

THE EFFECTIVE ACTION

AN EXAMPLE

CONCLUSION



THE EFFECTIVE ACTION

By a gauging procedure we can construct the following action Sfetsos (2013)

Sk,λ(g) = SWZW,k(g) +
k
π

∫
d2σ Ja

+

(
λ−1 − DT

)−1

ab
Jb
−

Interpolating between a WZW at λab = 0 and the non-Abelian T-dual of the PCM at λab → δab.

Properties

1. For λab � δab we get the non-Abelian Thirring model

S = SWZW,k(g) + k
λab

π

∫
d2σ Ja

+ Jb
−

2. Invariance under the generalized parity symmetry: g 7→ g−1 , σ± 7→ σ∓

3. Explicit weak-strong duality: S−k,λ−1 (g−1) = Sk,λ(g)

4. Interesting limits around λab = ±δab – non-Abelian T-dual of PCM and pseudo-chiral
model



ONE LOOP

Consider a 1+1-dimensional non-linear σ-model with action

S =
1

2πα ′

∫
d2σEµν ∂+Xµ∂−Xν , Eµν = Gµν + Bµν

The one-loop β-functions for Gµν and Bµν read:
Ecker–Honerkamp 71, Friedan 80, Braaten–Curtright–Zachos 85

d Eµν
d lnµ2

= R−
µν +∇+

ν ξµ ,

with and the last term corresponds to field redefinitions (diffeomorphisms).

Generalities

I The Ricci tensor and the covariant derivative include torsion terms, i.e. H = dB

I The σ-model is renormalizable within the zoo of metrics and 2-forms

I Not given that the RG flows will retain the form at hand of Gµν and Bµν
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AN EXAMPLE

Consider the effective action for g ∈ SU(2) case and λab = diag(λ, λ, 1)

ds2 = k
1 − λ

1 + λ
(dω2 + cot2 ωdϕ2) + 4k

λ

1 − λ2
(cosϕdω + sinϕ cotωdϕ)2 , 0 6 λ 6 1

describing the λ-deformed su(2)/u(1) coset CFT Sfetsos (2013)

The RG flow at one-loop in 1/k expansion reads Itsios–Sfetsos–KS (2014)

βλ = −
λ

k
+O

(
1
k2

)
, ξµ = ∂µΦ , Φ = −2 ln sinω

where k does not run with the energy scale.

Properties of the β-function:

1. It is linear on λ, the operator driving the perturbation is relevant with ∆ = 2 − 2/k

2. RG flows: UV (coset CFT) λ = 0 towards the IR (strongly coupled) λ→ 1−

3. It respects the weak-strong duality

λ→ λ−1 , k → −k , k� 1

How about beyond one-loop order?



TWO LOOP

Consider again the 1+1-dimensional non-linear σ-model with action

S =
1

2πα ′

∫
d2σEµν ∂+Xµ∂−Xν , Eµν = Gµν + Bµν

The two-loop β-functions for Gµν and Bµν read:
Ecker–Honerkamp 71, Friedan 80, Braaten–Curtright–Zachos 85, Metsaev–Tseytlin 87,
Hull–Townsend 87, Osborn 90

d Eµν
d lnµ2

= R−
µν + R−

µκλρ

(
R−κλρ

ν −
1
2

R−λρκ
ν

)
+

1
2
(H2)κλR−

κµνλ +∇+
ν ξµ

Comments:

1. At first glance as a two-loop result it could be scheme dependent.

2. However, this is the only scheme which gives vanishing β-function for WZW models.
Metsaev–Tseytlin 87



BACK TO THE EXAMPLE

Consider again the λ-deformed SU(2)k/U(1)k coset CFT

ds2 = k
1 − λ

1 + λ
(dω2 + cot2 ωdϕ2

1) + 4k
λ

1 − λ2
(cosϕdω + sinϕ cotωdϕ)2 , 0 6 λ 6 1

Working out the two-loop RG flows we find that the model is NOT renormalizable.

More accurately:

1. The metric does not retain its form under two-loop RG flows.

2. One needs to add counterterms?

3. Doing so, k is running under the energy scale and needs to be redefined
Hoare, Levine, Tseytlin (2019)

Puzzling... can we take a detour of the problem? Use another (equivalent) effective action?



AN EFFECTIVE ACTION

An equivalent yet simpler effective action

Sk,λ = SWZW,k(g1) + SWZW,k(g2) + k
λab

π

∫
d2σ Ja

1+ Jb
2−

Georgiou, Sfetsos (2016)

Properties:

1. Interesting limits around λab = ±δab – PCM and pseudo-chiral model Nappi (1980)

2. It is canonically equivalent to the λ-deformed action Georgiou, Sfetsos, Siampos (2017)

Sk,λ(g) = SWZW,k(g) +
k
π

∫
d2σ Ja

+

(
λ−1 − DT

)−1

ab
Jb
−

3. Identical β-function and (current, composite current, etc) anomalous dimensions.
Georgiou, Sagkrioti, Sfetsos, Siampos (2017)

4. Same Zamolodchikov metric for the composite operator driving the perturbation.
Sagkrioti, Sfetsos, Siampos (2018)

5. Weak-strong duality: S−k−cG,λ
−1 = Sk,λ Kutasov (1989)



BACK TO THE EXAMPLE

Consider g1,2 ∈ SU(2) and λab = diag(λ, λ, 1).

This case corresponds to a parafermionic deformation of the coset CFT SU(2)k×SU(2)k
U(1)k

Guadagnini, Martellini, Mintchev (1987)

Scoset = SCFT +
kλ
π

∫
d2σO , O =

1
4

(
ΨΨ̄ + Ψ†Ψ̄†

)
where the metric and the two-form read

d`2 =
k

4π

(
(dψ + cos ϑ1dϕ1 + cos ϑ2dϕ2)

2 + dϑ2
1 + sin2 ϑ1dϕ2

1 + dϑ2
2 + sin2 ϑ2dϕ2

2

)
and

B =
k

4π
(dψ + cos ϑ1dϕ1) ∧ (dψ + cos ϑ2dϕ2)

Zayas–Tseytlin (2000)
In addition, (Ψ, Ψ̄) are the parafermion operators

Ψ = (∂+ϑ1 + i sin ϑ1 ∂+ϕ1) e−i(ψ/2+ψ̄) , Ψ̄ = (∂−ϑ2 + i sin ϑ2 ∂−ϕ2) e−i(ψ/2−ψ̄)

and their complex conjugates Ψ† and Ψ̄† respectively.

Here ψ̄ represents a non-local function of (ϑi, ϕi), which dresses the operators to ensure
conservation ∂−Ψ = 0 = ∂+Ψ̄



BACK TO THE EXAMPLE

Properties:

1. Its two-loop RG flow reads

βλ = −
λ

k
−

4
k2

λ3

1 − λ2
+O

(
1
k3

)
6 0

and k is not running with the energy scale.

2. The β-function is covariant under the symmetry

λ 7→ λ−1 , k 7→ −k − cG

to order 1/k2.



BACK TO THE EXAMPLE

3. Using CFT input, the non-perturbative symmetry and well-defined limits around λ = ±1

g(λ; k) = |x12|
2(2+γ(O))〈O(x1, x̄1)O(x2, x̄2)〉λ =

1
(1 − λ2)2

(
1 +

H
HHH

1
k

P(λ)
1 − λ2

)

4. Anomalous dimension of the parafermion bilinear

γ(O) = 2∂λβ(λ; k) + β(λ; k)∂λ ln g(λ; k) = −
2
k

1 + λ2

1 − λ2
−

8
k2

λ2(3 + λ2)

(1 − λ2)2

at the UV CFT point λ = 0 we find ∆ = 2 + γ(O) = 2 − 2/k



BACK TO THE EXAMPLE

5. Using the c-theorem

dC
d lnµ2

= βλ∂λC = 24g(λ; k)βλβλ > 0

we find the C-function

C(λ) = 5 −
12
k

1
1 − λ2

+
24
k2

1 − 2λ2

(1 − λ2)2
+O

(
1
k3

)
with C(0) = cUV = 2× 2kdimG

2k+cG
− 1 = 5 − 12

k + 24
k2 +O

(
1
k3

)
6. Analogously we can also work out the C-function for the λ-deformed SU(2)k/U(1)k

C = 2 −
6
k

1 + λ2

1 − λ2
+

12
k2

1 − 2λ2 − λ4

(1 − λ2)2
,

with C(0) = cUV = 2kdimG
2k+cG

− 1 = 2 − 6
k + 12

k2 +O
(

1
k3

)
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CONCLUSION

We studied a relevant λ-deformation of the coset CFT SU(2)k×SU(2)k
U(1)k

, namely

Sk,λ = SWZW,k(g1)+SWZW,k(g2)+k
λab

π

∫
d2σ Ja

1+ Jb
2− , g1,2 ∈ SU(2) , λab = diag(λ, λ, 1)

1. Using gravitational techniques, we find its two-loop β-function

βλ = −
λ

k
−

4
k2

λ3

1 − λ2
+O

(
1
k3

)
6 0

which is exact in λ and to order 1/k2

2. The β-function is invariant under the (exact) symmetry

λ 7→ λ−1 , k 7→ −k − cG

to order 1/k2.

3. We worked out the Zamolodchikov metric and the anomalous dimension of the composite
operator driving the perturbation.

4. We evaluated its C-function which satisfies Zamolodchikov’s c-theorem.

5. This deformation shares the same quantum properties as the λ-deformed SU(2)k/U(1)k

Other deformations?



OTHER DEFORMATIONS

Similarly, we may also consider the isotropic λ-deformed case

Sk,λ = SWZW,k(g1) + SWZW,k(g2) + k
λab

π

∫
d2σ Ja

1+ Jb
2− , g1,2 ∈ G , λab = λδab

interpolating between a UV Gk × Gk at λ = 0 towards a PCM (strongly coupled) λ→ 1−

1. Using gravitational techniques, we find its two-loop β-function

βλ = −
cG

2k
λ2

(1 + λ)2
+

c2
G

2k2

λ4(1 − 2λ)
(1 − λ)(1 + λ)5

2. It is invariant under the symmetry

λ→ 1
λ

(
1 −

cG

k
1 − λ

1 + λ

)
, k → −k − cG

etc

Other extensions involve different levels k1,2 for the WZWs, non-trivial IR fixed points

UVλ=0 : Gk1 × Gk2 =⇒ IRλ=λ0 : Gk2−k1 × Gk1 , λ0 =

√
k1

k2
6 1

The corresponding symmetry in this case

λ→ 1
λ

(
1 −

cG

k
f (λ, λ0)

)
, k1 → −k2 − cG, k2 → −k1 − cG



PARAFERMIONS IN SU(2)k/U(1)k

The λ-deformed SU(2)k/U(1)k

ds2 = k
1 − λ

1 + λ
(dω2 + cot2 ωdϕ2

1) + 4k
λ

1 − λ2
(cosϕdω + sinϕ cotωdϕ)2 , 0 6 λ 6 1

It can be understood as a parafermionic perturbation of the coset CFT

S = SCFT +
kλ
π

∫
d2σ

(
ΨΨ̄ + Ψ†Ψ̄†

)
where

SCFT =
k
π

∫
d2σ

(
∂+ω∂−ω + cot2 ω∂+ϕ∂−ϕ

)
and (Ψ, Ψ̄) are the parafermion operators

Ψ = (∂+ω + i cotω∂+ϕ) e−i(ϕ+ϕ̄) , Ψ̄ = (∂−ω + i cotω∂−ϕ) e−i(ϕ−ϕ̄)

with Ψ† and Ψ̄† their complex conjugates respectively.

Here ϕ̄ represents a non-local function of (ω,ϕ), which dresses the operators to ensure
conservation ∂−Ψ = 0 = ∂+Ψ̄
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