An exact symmetry in λ -deformed σ -models

Konstantinos Siampos, Theoretical Physics Department, CERN

ongoing work with G. Georgiou, K. Sfetsos and E. Sagrioti

Recent Developments in Strings and Gravity, Corfu, 13 September 2019

INTRODUCTION AND MOTIVATION

Exact β-functions and non-perturbative symmetries

1. In a renormalizable field theory, its quantum behaviour is encoded within the RG flows

$$\beta^{\lambda} = \frac{d\lambda}{d\ln\mu^2}$$

which are usually determined perturbatively.

- 2. Can we obtain the all-loop β -function?
- 3. Any non-perturbative symmetries?
- 4. New fixed points towards the IR?

We study the above in the non-Abelian Thirring model

- The non-Abelian Thirring model
- The effective action
- The one and two loop β -function
- Conclusion and Outlook

Consider the WZW action Witten (1983):

$$S_{\mathrm{WZW},k}(g) = -\frac{k}{2\pi} \int \mathrm{d}^2 \sigma \operatorname{Tr} \left(g^{-1} \partial_+ g \, g^{-1} \partial_- g \right) + \frac{k}{12\pi} \int_B \operatorname{Tr} \left(g^{-1} \mathrm{d} g \right)^3 \,,$$

invariant under the left-right current algebra symmetry: $g \mapsto \Omega^{-1}(\sigma_+) g \,\Omega(\sigma_-)$.

The non-abelian Thirring model is defined through

$$S = S_{\mathrm{WZW},k}(g) + k \, rac{\lambda_{ab}}{\pi} \, \int \mathrm{d}^2 \sigma J^a_+ \, J^b_-$$

The currents and the adjoint action are defined through

$$J_{+}^{a} = -i \operatorname{Tr}(t_{a} \,\partial_{+} g \,g^{-1}) \,, \quad J_{-}^{a} = -i \operatorname{Tr}(t_{a} \,g^{-1} \,\partial_{-} g) \,, \quad D_{ab} = \operatorname{Tr}(t_{a} g t_{b} g^{-1}) \,,$$

where $D_{ac}D_{bc} = \delta_{ab}$, $[t_a, t_b] = if_{abc}t_c$, $\operatorname{Tr}(t_at_b) = \delta_{ab}$ and $f_{acd}f_{bcd} = c_G \delta_{ab}$.

NON-ABELIAN THIRRING MODEL

Symmetries of the non-abelian Thirring model:

$$S = S_{\mathrm{WZW},k}(g) + k \, \frac{\lambda_{ab}}{\pi} \, \int \, \mathrm{d}^2 \sigma \, J^a_+ \, J^b_-$$

- 1. The left-right current algebra symmetry is broken for a generic matrix λ_{ab}
- 2. It is invariant under the generalized parity symmetry:

$$\lambda \mapsto \lambda^T$$
, $g \mapsto g^{-1}$, $\sigma^{\pm} \mapsto \sigma^{\mp}$

3. The operator driving the perturbation is marginally relevant Kutasov (1989)

$$eta^{\lambda} = -rac{c_G \,\lambda^2}{2k \,(1+\lambda)^2} + \mathcal{O}\left(rac{1}{k^2}
ight) \,, \quad \lambda_{ab} = \lambda \,\delta_{ab}$$

4. The corresponding "effective action" is invariant under the inversion of the coupling Kutasov (1989)

$$\lambda \mapsto \lambda^{-1}, \quad k \mapsto -k - c_G$$

How about an effective action?

$\ensuremath{\mathsf{PLAN}}$ of the talk

THE EFFECTIVE ACTION

AN EXAMPLE

CONCLUSION

THE EFFECTIVE ACTION

By a gauging procedure we can construct the following action Sfetsos (2013)

$$S_{k,\lambda}(g) = S_{WZW,k}(g) + \frac{k}{\pi} \int d^2 \sigma J^a_+ \left(\lambda^{-1} - D^T\right)^{-1}_{ab} J^b_-$$

Interpolating between a WZW at $\lambda_{ab} = 0$ and the non-Abelian T-dual of the PCM at $\lambda_{ab} \rightarrow \delta_{ab}$.

Properties

1. For $\lambda_{ab} \ll \delta_{ab}$ we get the non-Abelian Thirring model

$$S = S_{WZW,k}(g) + k \frac{\lambda_{ab}}{\pi} \int d^2 \sigma J^a_+ J^b_-$$

- 2. Invariance under the generalized parity symmetry: $g \mapsto g^{-1}$, $\sigma^{\pm} \mapsto \sigma^{\mp}$
- 3. Explicit weak-strong duality: $S_{-k,\lambda^{-1}}(g^{-1}) = S_{k,\lambda}(g)$
- 4. Interesting limits around $\lambda_{ab} = \pm \delta_{ab}$ non-Abelian T-dual of PCM and pseudo-chiral model

ONE LOOP

Consider a 1+1-dimensional non-linear σ -model with action

$$S = \frac{1}{2\pi\alpha'} \int d^2\sigma E_{\mu\nu} \,\partial_+ X^{\mu} \partial_- X^{\nu} \,, \quad E_{\mu\nu} = G_{\mu\nu} + B_{\mu\nu}$$

The one-loop β -functions for $G_{\mu\nu}$ and $B_{\mu\nu}$ read: Ecker–Honerkamp 71, Friedan 80, Braaten–Curtright–Zachos 85

$$\frac{\mathrm{d} E_{\mu\nu}}{\mathrm{d} \ln \mu^2} = R^-_{\mu\nu} + \nabla^+_{\nu} \xi_{\mu} \,,$$

with and the last term corresponds to field redefinitions (diffeomorphisms).

Generalities

- The Ricci tensor and the covariant derivative include torsion terms, i.e. H = dB
- The σ-model is renormalizable within the zoo of metrics and 2-forms
- ▶ Not given that the RG flows will retain the form at hand of $G_{\mu\nu}$ and $B_{\mu\nu}$

$\ensuremath{\mathsf{PLAN}}$ of the talk

THE EFFECTIVE ACTION

AN EXAMPLE

CONCLUSION

AN EXAMPLE

Consider the effective action for $g \in SU(2)$ case and $\lambda_{ab} = \text{diag}(\lambda, \lambda, 1)$

$$\mathrm{d}s^2 = k \frac{1-\lambda}{1+\lambda} (\mathrm{d}\omega^2 + \cot^2 \omega \mathrm{d}\varphi^2) + 4k \frac{\lambda}{1-\lambda^2} (\cos \varphi \mathrm{d}\omega + \sin \varphi \cot \omega \mathrm{d}\varphi)^2 \,, \quad 0 \leqslant \lambda \leqslant 1$$

describing the λ -deformed su(2)/u(1) coset CFT Sfetsos (2013)

The RG flow at one-loop in 1/k expansion reads Itsios-Sfetsos-KS (2014)

$$\beta^{\lambda} = -\frac{\lambda}{k} + \mathcal{O}\left(\frac{1}{k^2}\right), \quad \xi_{\mu} = \partial_{\mu}\Phi, \quad \Phi = -2\ln\sin\omega$$

where k does not run with the energy scale.

Properties of the β -function:

- 1. It is linear on λ , the operator driving the perturbation is relevant with $\Delta = 2 2/k$
- 2. RG flows: UV (coset CFT) $\lambda = 0$ towards the IR (strongly coupled) $\lambda \rightarrow 1^{-1}$
- 3. It respects the weak-strong duality

$$\lambda \to \lambda^{-1}, \quad k \to -k, \quad k \gg 1$$

How about beyond one-loop order?

TWO LOOP

Consider again the 1+1-dimensional non-linear σ -model with action

$$S = \frac{1}{2\pi\alpha'} \int d^2\sigma E_{\mu\nu} \,\partial_+ X^\mu \partial_- X^\nu \,, \quad E_{\mu\nu} = G_{\mu\nu} + B_{\mu\nu}$$

The two-loop β -functions for $G_{\mu\nu}$ and $B_{\mu\nu}$ read: Ecker–Honerkamp 71, Friedan 80, Braaten–Curtright–Zachos 85, Metsaev–Tseytlin 87, Hull–Townsend 87, Osborn 90

$$\frac{\mathrm{d}E_{\mu\nu}}{\mathrm{d}\ln\mu^2} = R^-_{\mu\nu} + R^-_{\mu\kappa\lambda\rho} \left(R^{-\kappa\lambda\rho}{}_{\nu} - \frac{1}{2} R^{-\lambda\rho\kappa}{}_{\nu} \right) + \frac{1}{2} (H^2)^{\kappa\lambda} R^-_{\kappa\mu\nu\lambda} + \nabla^+_{\nu} \xi_{\mu\nu}$$

Comments:

- 1. At first glance as a two-loop result it could be scheme dependent.
- However, this is the only scheme which gives vanishing β-function for WZW models. Metsaev–Tseytlin 87

Consider again the λ -deformed $SU(2)_k/U(1)_k$ coset CFT

$$\mathrm{d} s^2 = k \frac{1-\lambda}{1+\lambda} (\mathrm{d} \omega^2 + \cot^2 \omega \mathrm{d} \varphi_1^2) + 4k \frac{\lambda}{1-\lambda^2} (\cos \varphi \mathrm{d} \omega + \sin \varphi \cot \omega \mathrm{d} \varphi)^2 \,, \quad 0 \leqslant \lambda \leqslant 1$$

Working out the two-loop RG flows we find that the model is NOT renormalizable.

More accurately:

- 1. The metric does not retain its form under two-loop RG flows.
- 2. One needs to add counterterms?
- 3. Doing so, *k* is running under the energy scale and needs to be redefined Hoare, Levine, Tseytlin (2019)

Puzzling... can we take a detour of the problem? Use another (equivalent) effective action?

AN EFFECTIVE ACTION

An equivalent yet simpler effective action

$$S_{k,\lambda} = S_{WZW,k}(g_1) + S_{WZW,k}(g_2) + k \frac{\lambda_{ab}}{\pi} \int d^2 \sigma J_{1+}^a J_{2-}^b$$

Georgiou, Sfetsos (2016)

Properties:

- 1. Interesting limits around $\lambda_{ab} = \pm \delta_{ab}$ PCM and pseudo-chiral model Nappi (1980)
- 2. It is canonically equivalent to the λ -deformed action Georgiou, Sfetsos, Siampos (2017)

$$S_{k,\lambda}(g) = S_{WZW,k}(g) + \frac{k}{\pi} \int d^2 \sigma J^a_+ \left(\lambda^{-1} - D^T\right)^{-1}_{ab} J^b_-$$

- Identical β-function and (current, composite current, etc) anomalous dimensions. Georgiou, Sagkrioti, Sfetsos, Siampos (2017)
- Same Zamolodchikov metric for the composite operator driving the perturbation. Sagkrioti, Sfetsos, Siampos (2018)
- 5. Weak-strong duality: $S_{-k-c_G,\lambda^{-1}} = S_{k,\lambda}$ Kutasov (1989)

BACK TO THE EXAMPLE

Consider $g_{1,2} \in SU(2)$ and $\lambda_{ab} = \text{diag}(\lambda, \lambda, 1)$.

This case corresponds to a parafermionic deformation of the coset CFT $\frac{SU(2)_k \times SU(2)_k}{U(1)_k}$ Guadagnini, Martellini, Mintchev (1987)

$$S_{\text{coset}} = S_{\text{CFT}} + \frac{k\lambda}{\pi} \int d^2 \sigma \mathcal{O} , \quad \mathcal{O} = \frac{1}{4} \left(\Psi \bar{\Psi} + \Psi^{\dagger} \bar{\Psi}^{\dagger} \right)$$

where the metric and the two-form read

$$\mathrm{d}\ell^2 = \frac{k}{4\pi} \left((\mathrm{d}\psi + \cos\vartheta_1 \mathrm{d}\phi_1 + \cos\vartheta_2 \mathrm{d}\phi_2)^2 + \mathrm{d}\vartheta_1^2 + \sin^2\vartheta_1 \mathrm{d}\phi_1^2 + \mathrm{d}\vartheta_2^2 + \sin^2\vartheta_2 \mathrm{d}\phi_2^2 \right)$$

and

$$B = \frac{k}{4\pi} \left(\mathrm{d}\psi + \cos\vartheta_1 \mathrm{d}\varphi_1 \right) \wedge \left(\mathrm{d}\psi + \cos\vartheta_2 \mathrm{d}\varphi_2 \right)$$

Zayas-Tseytlin (2000)

In addition, $(\Psi, \bar{\Psi})$ are the parafermion operators

$$\Psi = (\partial_+ \vartheta_1 + i \sin \vartheta_1 \partial_+ \varphi_1) e^{-i(\psi/2 + \bar{\psi})}, \quad \bar{\Psi} = (\partial_- \vartheta_2 + i \sin \vartheta_2 \partial_- \varphi_2) e^{-i(\psi/2 - \bar{\psi})}$$

and their complex conjugates Ψ^{\dagger} and $\bar{\Psi}^{\dagger}$ respectively.

Here $\bar{\Psi}$ represents a non-local function of (ϑ_i, φ_i) , which dresses the operators to ensure conservation $\vartheta_-\Psi = 0 = \vartheta_+\bar{\Psi}$

Properties:

1. Its two-loop RG flow reads

$$\beta^{\lambda} = -\frac{\lambda}{k} - \frac{4}{k^2} \frac{\lambda^3}{1 - \lambda^2} + \mathcal{O}\left(\frac{1}{k^3}\right) \leqslant 0$$

and k is not running with the energy scale.

2. The β -function is covariant under the symmetry

$$\lambda \mapsto \lambda^{-1}$$
, $k \mapsto -k - c_G$

to order $1/k^2$.

3. Using CFT input, the non-perturbative symmetry and well-defined limits around $\lambda = \pm 1$

$$g(\lambda;k) = |\mathbf{x}_{12}|^{2(2+\gamma^{(\mathcal{O})})} \langle \mathcal{O}(\mathbf{x}_1,\bar{\mathbf{x}}_1)\mathcal{O}(\mathbf{x}_2,\bar{\mathbf{x}}_2) \rangle_{\lambda} = \frac{1}{(1-\lambda^2)^2} \left(1 + \frac{1}{k} \frac{\mathcal{P}(\lambda)}{1-\lambda^2} \right)^{2k} \left(1 +$$

4. Anomalous dimension of the parafermion bilinear

$$\gamma^{(\mathcal{O})} = 2\partial_{\lambda}\beta(\lambda;k) + \beta(\lambda;k)\partial_{\lambda}\ln g(\lambda;k) = -\frac{2}{k}\frac{1+\lambda^2}{1-\lambda^2} - \frac{8}{k^2}\frac{\lambda^2(3+\lambda^2)}{(1-\lambda^2)^2}$$

at the UV CFT point $\lambda = 0$ we find $\Delta = 2 + \gamma^{(\mathcal{O})} = 2 - 2/k$

BACK TO THE EXAMPLE

5. Using the *c*-theorem

$$\frac{\mathrm{d}C}{\mathrm{d}\ln\mu^2} = \beta^{\lambda}\partial_{\lambda}C = 24g(\lambda;k)\beta^{\lambda}\beta^{\lambda} \ge 0$$

we find the C-function

$$C(\lambda) = 5 - \frac{12}{k} \frac{1}{1 - \lambda^2} + \frac{24}{k^2} \frac{1 - 2\lambda^2}{(1 - \lambda^2)^2} + \mathcal{O}\left(\frac{1}{k^3}\right)$$

with $C(0) = c_{\text{UV}} = 2 \times \frac{2k \text{dim}G}{2k + c_G} - 1 = 5 - \frac{12}{k} + \frac{24}{k^2} + \mathcal{O}\left(\frac{1}{k^3}\right)$

6. Analogously we can also work out the C-function for the λ -deformed $SU(2)_k/U(1)_k$

$$C = 2 - \frac{6}{k} \frac{1 + \lambda^2}{1 - \lambda^2} + \frac{12}{k^2} \frac{1 - 2\lambda^2 - \lambda^4}{(1 - \lambda^2)^2} ,$$

with $C(0) = c_{\text{UV}} = \frac{2k \text{dim}G}{2k + c_G} - 1 = 2 - \frac{6}{k} + \frac{12}{k^2} + \mathcal{O}\left(\frac{1}{k^3}\right)$

$\ensuremath{\mathsf{PLAN}}$ of the talk

THE EFFECTIVE ACTION

AN EXAMPLE

CONCLUSION

CONCLUSION

We studied a relevant λ -deformation of the coset CFT $\frac{SU(2)_k \times SU(2)_k}{U(1)_k}$, namely

$$S_{k,\lambda} = S_{\mathrm{WZW},k}(g_1) + S_{\mathrm{WZW},k}(g_2) + k \frac{\lambda_{ab}}{\pi} \int \mathrm{d}^2 \sigma J_{1+}^a J_{2-}^b, \quad g_{1,2} \in SU(2), \quad \lambda_{ab} = \mathrm{diag}(\lambda,\lambda,1)$$

1. Using gravitational techniques, we find its two-loop β -function

$$\beta^{\lambda} = -rac{\lambda}{k} - rac{4}{k^2}rac{\lambda^3}{1-\lambda^2} + \mathcal{O}\left(rac{1}{k^3}
ight) \leqslant 0$$

which is exact in λ and to order $1/k^2$

2. The β -function is invariant under the (exact) symmetry

$$\lambda \mapsto \lambda^{-1}, \qquad k \mapsto -k - c_G$$

to order $1/k^2$.

- 3. We worked out the Zamolodchikov metric and the anomalous dimension of the composite operator driving the perturbation.
- 4. We evaluated its C-function which satisfies Zamolodchikov's c-theorem.
- 5. This deformation shares the same quantum properties as the λ -deformed $SU(2)_k/U(1)_k$

OTHER DEFORMATIONS

Similarly, we may also consider the isotropic λ -deformed case

$$S_{k,\lambda} = S_{WZW,k}(g_1) + S_{WZW,k}(g_2) + k \frac{\lambda_{ab}}{\pi} \int d^2 \sigma J_{1+}^a J_{2-}^b, \quad g_{1,2} \in G, \quad \lambda_{ab} = \lambda \delta_{ab}$$

interpolating between a UV $G_k \times G_k$ at $\lambda = 0$ towards a PCM (strongly coupled) $\lambda \to 1^-$

1. Using gravitational techniques, we find its two-loop β -function

$$\beta^{\lambda} = -\frac{c_G}{2k}\frac{\lambda^2}{(1+\lambda)^2} + \frac{c_G^2}{2k^2}\frac{\lambda^4(1-2\lambda)}{(1-\lambda)(1+\lambda)^5}$$

2. It is invariant under the symmetry

$$\lambda \to \frac{1}{\lambda} \left(1 - \frac{c_G}{k} \; \frac{1 - \lambda}{1 + \lambda} \right), \quad k \to -k - c_G$$

etc

Other extensions involve different levels $k_{1,2}$ for the WZWs, non-trivial IR fixed points

$$\mathrm{UV}_{\lambda=0}: G_{k_1} \times G_{k_2} \implies \mathrm{IR}_{\lambda=\lambda_0}: G_{k_2-k_1} \times G_{k_1}, \quad \lambda_0 = \sqrt{\frac{k_1}{k_2}} \leqslant 1$$

The corresponding symmetry in this case

$$\lambda \to \frac{1}{\lambda} \left(1 - \frac{c_G}{k} f(\lambda, \lambda_0) \right), \quad k_1 \to -k_2 - c_G, \quad k_2 \to -k_1 - c_G$$

PARAFERMIONS IN $SU(2)_k/U(1)_k$

The λ -deformed $SU(2)_k/U(1)_k$

$$\mathrm{d}s^2 = k \frac{1-\lambda}{1+\lambda} (\mathrm{d}\omega^2 + \cot^2 \omega \mathrm{d}\varphi_1^2) + 4k \frac{\lambda}{1-\lambda^2} (\cos \varphi \mathrm{d}\omega + \sin \varphi \cot \omega \mathrm{d}\varphi)^2, \quad 0 \leqslant \lambda \leqslant 1$$

It can be understood as a parafermionic perturbation of the coset CFT

$$S = S_{\rm CFT} + \frac{k\lambda}{\pi} \int d^2\sigma \left(\Psi\bar{\Psi} + \Psi^{\dagger}\bar{\Psi}^{\dagger}\right)$$

where

$$S_{\rm CFT} = \frac{k}{\pi} \int d^2 \sigma \left(\partial_+ \omega \partial_- \omega + \cot^2 \omega \partial_+ \varphi \partial_- \varphi \right)$$

and $(\Psi, \bar{\Psi})$ are the parafermion operators

$$\Psi = (\partial_+ \omega + i \cot \omega \, \partial_+ \varphi) \, \mathrm{e}^{-i(\varphi + \bar{\varphi})} \,, \quad \bar{\Psi} = (\partial_- \omega + i \cot \omega \, \partial_- \varphi) \, \mathrm{e}^{-i(\varphi - \bar{\varphi})}$$

with Ψ^{\dagger} and $\bar{\Psi}^{\dagger}$ their complex conjugates respectively.

Here $\bar{\phi}$ represents a non-local function of (ω, ϕ) , which dresses the operators to ensure conservation $\partial_-\Psi = 0 = \partial_+\bar{\Psi}$