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11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (11.5)
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In the PDG parametrisation, UPMNS is described by three mixing angles ✓`ij and three

phases �`, ↵21 and ↵31. With cij = cos ✓`ij and sij = sin ✓`ij ,

UPMNS =

0
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⇥ diag(1, ei↵21/2, ei↵31/2).

(1.23)

If neutrinos are Dirac particles, the phases ↵21 and ↵31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`
23
U `
13
R`

12
P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared di↵erences �m2

ij = m2

i � m2

j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to �m2

21
> 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of �m2

31
is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ⇠ 0.2 meV. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
P

mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0⌫2�) decay.

Specifically, the 0⌫2� decay rate is proportional to the square of the e↵ective Majorana

mass |m�� | = |
P

i U
2

eimi|. Future experiments may be able to place upper bounds on

|m�� | which is in tension with oscillation data for an inverted hierarchy (or conversely,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles ✓`ij , Dirac charge-parity (CP ) phase �` and neutrino mass-squared

di↵erences�m2

ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask



The 6 parameters measurable in neutrino 
oscillations (assuming 3 active neutrinos):

✴The atmospheric mass squared difference 
✴The solar mass squared difference 
✴The atmospheric angle 
✴The solar angle 
✴The reactor angle 
✴The CP violating phase 
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Atmospheric Neutrino Oscillations (1998)

Atmospheric neutrino oscillations show characteristic  L/E  variation
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Atmospheric νµ  disappear, large θ23 (1998)         SK

Solar νe disappear, large θ12 (2002)            SK, SNO

Solar νe are converted to νµ+ντ (2002)      SNO

Reactor anti-νe disappear/reappear (2004) Kamland

Accelerator νµ disappear (2006)                MINOS

Accelerator νµ converted to ντ  (2010)       OPERA

Accelerator νµ converted to νe , θ13 hint (2011) T2K

Reactor anti-νe disapp θ13 meas.(2012) DB, Reno,DC

Brief History of Neutrino Physics post 1998



T13: Three on-going experiments 
 Experiment Power 

(GW) 
Baseline(m) 
Near/Far 

Detector(t) 
Near/Far 

Overburden 
(MWE) 
Near/Far 

Designed 
Sensitivity 
(90%CL) 

Daya Bay 17.4 470/576/1650 40//40/80 250/265/860 ~ 0.008 
Double 
Chooz 

8.5 400/1050 8.2/8.2 120/300 ~ 0.03 

Reno 16.5 409/1444 16/16 120/450 ~ 0.02 

Far 
Detect

or 

Near 
Detector 

Daya Bay Double Chooz Reno 

2014/8/22 20 

Layout of Daya Bay Experiment 

• Near-Far relative mea. to cancel correlated syst. err. 
– 2 near + 1 far  

• Multiple modules per site to reduce uncorrelated syst. err. and 
cross check each other (1/sqrt(N)) 
– 2 at each near site and 4 at far site  

• Multiple muon veto detectors at each site to reach highest 
possible eff. for reducing syst. err. due to backgrounds 
– 4 layer of RPC + 2 layer of Cerenkov detector 

 
 

Redundancy ! 
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Comprision with other detectors 
 

2014/8/22 24 

PMT Coverage pe yield MO   Acc. Bkg.  'B/B 
Daya Bay 192    8" ~6% 163 pe/MeV 50 cm 1.4%/4.0% 1.0%/1.4% 

RENO 354   10" ~15% 230 pe/MeV 70 cm 0.56%/0.93% 1.4%/4.4% 

Double 
Chooz 

390   10" ~16% 200 pe/MeV 105 cm 0.6% 0.8% 

RENO Daya Bay Double Chooz 
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Electron Neutrino Oscillations
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I. INTRODUCTION

Recent experiments have resulted in significant advances
in our understanding of neutrinos. Although neutrinos were
considered massless within the Standard Model, abundant ev-
idence of lepton flavor violation by neutrinos strongly implies
small but non-zero masses. A long-standing disparity between
measurement and models of the solar ⌫e flux was corroborated
by successive radiochemical [1–3] and water-Cherenkov [4,
5] experiments. Variation of the ratio of atmospheric
⌫µ to ⌫e provided initial evidence for distance-dependent
neutrino disappearance [6]. Subsequent observation of
the disappearance of ⌫µ produced in particle accelerators
confirmed atmospheric ⌫ measurements [7]. A comparison of
the solar ⌫e to the total solar ⌫ flux showed that the apparent
disappearance was a consequence of the conversion of ⌫e’s to
other neutrino flavors [8, 9]. Disappearance of ⌫e’s emitted
by nuclear reactors demonstrated a distinct dependence on the
ratio of propagation distance to antineutrino energy, L/E⌫ ,
cementing neutrino flavor oscillation as the explanation for
the observed flavor violation [10].

The rich phenomena of neutrino flavor oscillation arise
from two remarkable characteristics of neutrinos: small
differences between the masses of the three neutrino states,
m1 6= m2 6= m3, and an inequivalence between neutrino
flavor and mass eigenstates. Produced in a flavor eigenstate
by the weak interaction, a neutrino state evolves as a coherent
superposition of mass eigenstates. Interference between the
phases of each mass component results in the oscillation of
the neutrino flavor. The flavor oscillates with phases given
by �m

2
jiL/4E⌫ , where L is the propagation distance, E⌫ is

the neutrino energy, and �m
2
ji = m

2
j �m

2
i is the difference

of the squared masses. The amplitude of flavor oscillation
is determined by the amount of mixing between the flavor
and mass eigenstates. Using the unitary Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, UPMNS, a neutrino with
flavor ↵ can be expressed as a combination of mass states,
|⌫↵i =

P
i U

⇤
↵i |⌫ii. In the three-flavor model, UPMNS

is commonly parameterized using three mixing angles, ✓12,
✓23, ✓13, and an off-diagonal CP-violating phase �CP. With
sensitivity to the small neutrino mass separations, oscillation
experiments have provided strong evidence for three distinct
neutrino mass states ⌫i with masses m1, m2, and m3.
Evidence for matter-enhanced resonant flavor conversion of
solar neutrinos has shown that �m

2
21 cos(2✓21) > 0. Whether

m3 is much lighter or heavier than m1 and m2, also referred
to as the neutrino mass hierarchy, is currently unknown and
is the focus of a broad experimental program [11]. Direct
measurements of decay kinematics and indirect cosmological
observations are currently consistent with massless neutrinos,
implying that the absolute masses are less than ⇠1 eV.
Neutrino mass qualitatively alters the Standard Model, for
example by inhibiting renormalization or by requiring a new
global symmetry [12, 13].

The Daya Bay Reactor Neutrino Experiment set out to
answer the question: Does the ⌫3 mass eigenstate mix
with the electron neutrino state ⌫e? This is equivalent
to asking whether the parameter ✓13 is non-zero. Solar

and reactor experiments have established significant mixing
between the ⌫e and ⌫1,2 states, given by sin2(2✓12) =
0.846±0.021 [14]. Atmospheric and accelerator experiments
yielded nearly maximal mixing of the ⌫µ and ⌫2,3 states, with
sin2(2✓23) = 0.999+0.001

�0.018 [14]. Previous searches found no
evidence of ⌫e disappearance at ⇠1 km from reactors, limiting
sin2 2✓13  0.17 at the 90% C.L. [15, 16]. Measurement
of ✓13 provides a key parameter of a new Standard Model
which incorporates massive neutrinos, and may allow a deeper
insight into the flavor and mass structure of nature. A non-zero
value for ✓13 also makes it possible for future experiments
to determine the neutrino mass hierarchy and to search for
neutrino CP-violation [11].

Nuclear reactors produce an intense and pure flux of
⌫e’s, which is useful for experimental searches for ✓13.
Approximately 2 ⇥ 1020 ⌫e’s per second are emitted per
gigawatt of thermal power, with a steeply-falling energy
spectrum showing minuscule flux above 10 MeV. Section V
gives further details of ⌫e emission by nuclear reactors.
Reactor ⌫e are most commonly detected via inverse beta
decay (IBD),

⌫e + p ! e
+ + n. (1)

Convolving the energy spectrum with the IBD cross-
section [17] results in an expected spectrum which rises with
neutrino energy from the 1.8 MeV interaction threshold, peaks
at ⇠4 MeV, and falls to a very low rate above 8 MeV. Charge-
current interactions of ⌫µ or ⌫⌧ at these energies are forbidden
by energy conservation, hence oscillation is observed as a
reduction, or disappearance, of the expected ⌫e signal. In
the three-flavor model of neutrino oscillation, the survival
probability of detecting an ⌫e of energy E⌫ at a distance L

from the production source can be expressed as

Psur =1� cos4 ✓13 sin
2 2✓12 sin

2 �21

� sin2 2✓13(cos
2
✓12 sin

2 �31 + sin2 ✓12 sin
2 �32),

(2)

where �ji ' 1.267�m
2
ji(eV

2)L(m)/E⌫(MeV). The
KamLAND experiment measured the first term, demonstrat-
ing large-amplitude disappearance of reactor ⌫e with an
oscillation length of ⇠60 km. Atmospheric and accelerator
⌫ measurements of

���m
2
32

�� predict an oscillation length
of ⇠1.6 km for the latter terms. At this distance, the
two oscillation phases �31 and �32 are indistinguishable.
Therefore, the expression can be approximated using a single
effective ⌫e disappearance phase �ee,

Psur ' 1� cos4 ✓13 sin
2 2✓12 sin

2 �21

� sin2 2✓13 sin
2 �ee,

(3)

which is independent of the neutrino mass hierarchy. Here
the definition of �m

2
ee is empirical; it is the mass-squared

difference obtained by modeling the observed reactor ⌫e

disappearance using Eq. 3. The mass-squared differences
obtained by modeling an observation using either Eq. 2
or Eq. 3 are expected to follow the relation �m

2
ee '

P (⌫̄e ! ⌫̄e;E,L) =

P (⌫̄e ! ⌫̄e;E,L) = �ij =
�m2

ijL

4E
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Muon Neutrino Oscillations

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by

P1 =
4

(1� rA)2
sin2 ✓23 sin

2 ✓13 sin
2

✓
(1� rA)�L

2

◆
, (2.2)

P 3
2
= 8Jr

✏

rA(1� rA)
cos

✓
� +

�L

2

◆
sin

✓
rA�L

2

◆
sin

✓
(1� rA)�L

2

◆
, (2.3)

where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
and� = �m2

31
/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background

– 5 –
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2 Oscillation phenomenology at DUNE and T2HK

The fundamental parameters which describe the oscillation phenomenon are the angles

and Dirac phase of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix as well

as two independent mass-squared splittings e.g. �m2
21

and �m2
31
. The PMNS matrix is

the mapping between the bases of mass and flavour states (denoted with latin and greek

indices, respectively), which can be written as

⌫↵ = U⇤
↵i⌫i,

where U will be expressed by the conventional factorization [37]:

UPMNS = U23U13U12P,

=

0

B@
1 0 0

0 c23 s23
0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�

0 1 0

�s13ei� 0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA

0

B@
ei↵1 0 0

0 ei↵2 0

0 0 1

1

CA ,

=

0

B@
c12c13 s12c13 s13e�i�
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where P is a diagonal matrix containing two Majorana phases ↵1 and ↵2 which play no role

in oscillation physics. The mixing angles ✓12, ✓13 and ✓23 are often referred to as the solar,

reactor and atmospheric mixing angles respectively; all of these angles are now known to

be non-zero [38]. The remaining parameter in U is the phase �, which is currently poorly

constrained by data. This parameter dictates the size of CP violating e↵ects in vacuum

during oscillation. All such e↵ects will be proportional to the Jarlskog invariant of UPMNS,

J =
1

8
sin � sin (2✓23) sin (2✓13) sin (2✓12) cos ✓13.

For the theory to manifest CP violating e↵ects, J must be non-zero. Given our knowledge

of the mixing angles, the exclusion of � /2 {0,⇡} would be su�cient to establish fundamental

leptonic CP violation.

Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the mass squared splitings, by the precision measurement of both the

appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well as their

CP conjugates. In the following section, we will discuss the key aims of the long-baseline

program and the important design features of these experiments which lead to their sen-

sitivities. To facilitate this discussion, we introduce an approximation of the appearance

channel following Ref. [39], which is derived by performing a perturbative expansion in the

small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption that sin2 ✓13 = O(✏)1. The

expression for the oscillation probability is decomposed into terms of increasing power of

✏,

P (⌫µ ! ⌫e;E,L) ⌘ P1 + P 3
2
+O

�
✏2
�
, (2.1)

1
For alternative schemes of approximation, see Ref. [40–43].
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where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by
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/2E.

Using the same scheme, the disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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where P is a diagonal matrix containing two Majorana phases ↵1 and ↵2 which play no role
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reactor and atmospheric mixing angles respectively; all of these angles are now known to
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during oscillation. All such e↵ects will be proportional to the Jarlskog invariant of UPMNS,

J =
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For the theory to manifest CP violating e↵ects, J must be non-zero. Given our knowledge

of the mixing angles, the exclusion of � /2 {0,⇡} would be su�cient to establish fundamental

leptonic CP violation.

Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the mass squared splitings, by the precision measurement of both the

appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well as their

CP conjugates. In the following section, we will discuss the key aims of the long-baseline

program and the important design features of these experiments which lead to their sen-

sitivities. To facilitate this discussion, we introduce an approximation of the appearance

channel following Ref. [39], which is derived by performing a perturbative expansion in the

small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption that sin2 ✓13 = O(✏)1. The

expression for the oscillation probability is decomposed into terms of increasing power of
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review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,
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. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
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. In the presence of a background medium, CP violating e↵ects are
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where P is a diagonal matrix containing two Majorana phases ↵1 and ↵2 which play no role

in oscillation physics. The mixing angles ✓12, ✓13 and ✓23 are often referred to as the solar,

reactor and atmospheric mixing angles respectively; all of these angles are now known to

be non-zero [38]. The remaining parameter in U is the phase �, which is currently poorly

constrained by data. This parameter dictates the size of CP violating e↵ects in vacuum

during oscillation. All such e↵ects will be proportional to the Jarlskog invariant of UPMNS,

J =
1

8
sin � sin (2✓23) sin (2✓13) sin (2✓12) cos ✓13.

For the theory to manifest CP violating e↵ects, J must be non-zero. Given our knowledge

of the mixing angles, the exclusion of � /2 {0,⇡} would be su�cient to establish fundamental

leptonic CP violation.

Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the mass squared splitings, by the precision measurement of both the

appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well as their

CP conjugates. In the following section, we will discuss the key aims of the long-baseline

program and the important design features of these experiments which lead to their sen-

sitivities. To facilitate this discussion, we introduce an approximation of the appearance

channel following Ref. [39], which is derived by performing a perturbative expansion in the

small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption that sin2 ✓13 = O(✏)1. The

expression for the oscillation probability is decomposed into terms of increasing power of
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Using the same scheme, the disappearance channel can be written at leading order as
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For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [44]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baseline from the interplay with matter. Changing from Normal Ordering (NO, �m2
31

> 0)

to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and rA ! �rA.

However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains invariant under

this mapping. This invariance is broken once a matter term is included (rA 6= 0), and

the oscillation probability acquires a measurable enhancement or suppression dependent

on the sign of �m2
32
. The size of this enhancement increases with baseline length, and

this e↵ect is expected to be very relevant for any oscillation channel at a long-baseline

experiment. However, the determination of the mass ordering is further facilitated by the

contrasting behaviour of neutrinos and antineutrinos. Due to the dependence on rA, for NO

larger values of the matter density cause an enhancement in the probability for ⌫µ ! ⌫e
oscillation at the first maximum, whilst suppressing the probability for ⌫µ ! ⌫e. This

behaviour is reversed for IO, and by observing the relative magnitudes of the oscillation

probabilities at the first maximum, long-baseline oscillation experiments can exploit this

e↵ect to determine the mass ordering.

To detect CPV in neutrino oscillation an experiment requires sensitivity to �. Un-

fortunately, the leading order appearance probability is independent of the CP phase � in

vacuum. CP asymmetries between neutrino and antineutrino channels first appear with the

subdominant term P 3
2
. In the presence of a background medium, CP violating e↵ects are

instead introduced at leading order; however, these o↵er no sensitivity to the fundamen-

tal CP violating parameter �, arising instead from the CP asymmetry of the background
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Long-baseline experiments such as DUNE and T2HK aim to improve our knowledge

of U , as well as the atmospheric mass-squared splitting, by the precision measurement of

both the appearance ⌫µ ! ⌫e and disappearance oscillation channels ⌫µ ! ⌫µ, as well

as their CP conjugates. In the following section, we will discuss the key aims of the

long-baseline program and the important design features of these experiments which lead

to their sensitivities. To facilitate this discussion, we introduce an approximation of the

appearance channel probability following Ref. [47], which is derived by performing a per-

turbative expansion in the small parameter ✏ ⌘ �m2
21
/�m2

31
⇡ 0.03 under the assumption

that sin2 ✓13 = O(✏)1. The expression for the oscillation probability is decomposed into

terms of increasing power of ✏,

P (⌫µ ! ⌫e;E,L) ⌘ P1 + P 3
2
+O

�
✏2
�
, (2.1)

where E is the neutrino energy, L the oscillation baseline, and the ordered terms Pn = O(✏n)

are given by
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where Jr = cos ✓12 sin ✓12 cos ✓23 sin ✓23 sin ✓13, rA = 2
p
2GFNeE/�m2

31
, with Ne denoting

the electron density in the medium, and � = �m2
31
/2E. Using the same scheme, the

disappearance channel can be written at leading order as

P (⌫µ ! ⌫µ;E,L) = 1� sin2(2✓23) sin
2

✓
�L

2

◆
+O(✏). (2.4)

For both channels, equivalent expressions for antineutrino probabilities can be obtained by

the mapping rA ! �rA and � ! ��.

2.1 Mass ordering, CPV and the octant of ✓23

The sensitivity of long-baseline experiments to the questions of the neutrino mass ordering,

the existence of CPV and the octant of ✓23, are by now well studied topics (for a recent

review see e.g. Ref. [52]). To help us clarify the role of the designs of DUNE and T2HK,

as well as their possible modifications, we will briefly recap how experiments on these

scales derive their sensitivities using the approximate formulae expressed by Eqs. (2.2),

(2.3) and (2.4).

The dependence on the sign of �m2
31
, and therefore the mass ordering, arises at long-

baselines from the interplay with matter, where forward elastic scattering can significantly

enhance or suppress the oscillation probability. This is governed by the parameter rA in

Eq. (2.1) and goes to zero in the absence of matter. Changing from Normal Ordering (NO,

�m2
31

> 0) to Inverted Ordering (IO, �m2
31

< 0) requires the replacements � ! �� and

rA ! �rA. However, in vacuum (rA = 0) the leading-order term in Eq. (2.1) remains

1
For alternative schemes of approximation, see Ref. [48–51].
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Figure 1. Left: ⌫µ (⌫µ) flux component in ⌫-mode (⌫̄-mode) shown as solid (dashed) lines for
2-horn reference, 3-horn optimised, and nuPIL beam designs. Right: the fluxes for ⌫-mode shown
as a function of L/E. In both panels, the shaded region shows the envelope of the oscillation
probability as � is varied over its full range. The black lines in the right panel show the probability
for � 2 {0, ⇡

2 ,⇡,
3⇡
2 }.

3.1 DUNE

The DUNE experiment consists of a new neutrino source, known as Long Baseline Neutrino

Facility (LBNF), a near detector based at Fermilab and a large LArTPC detector located

in SURF a distance of 1300 km away. Several variants of the LBNF beam have been

developed. In this work, we study three neutrino fluxes: a 2-horn reference beam design

[17], a 3-horn optimised beam design [54], and the neutrinos from a PIon beam Line (nuPIL)

[30–32]. We show all three fluxes used in our simulations in Fig. 1.

The reference beam uses a front-end design based on NuMI, which uses 2 magnetic

horns, but with a thickened target to withstand the higher power beams of LBNF. In

our simulation, we take the proton energy to be 80 GeV, the beam power 1.07 MW, and

assume 1.47 ⇥ 1021 protons on target (POT) per year. Thanks to constant development

work by the DUNE collaboration, an optimised beam has also been designed. This 3-

horn design is based on the reference design, but has a stronger focus on producing lower

energy events, leading to a substantial increase in flux between 0.5 GeV and 4 GeV. This

leads to a greater number of expected events from around the second oscillation maximum,

which is well-known to be particularly sensitive to the phase �. For this design, the proton

energy is assumed to be 62.5 GeV and the POT per year is taken as 1.83⇥ 1021. We also

consider the nuPIL design, which is currently being studied by a working group of the

DUNE collaboration as a potential alternative design. nuPIL foresees the collection and

sign selection of pions from proton collision with a target which are then directed though

a beam line and ultimately decay to produce neutrinos. This selection and manipulation

of the secondary beam forces unwanted parent particles out of the beam resulting in a

particularly clean flux. The proton energy for this design is assumed to be 80 GeV, and

the corresponding POT per year is 1.47⇥1021. Compared to the other two designs, nuPIL

o↵ers a lower intrinsic contamination from other flavours and CP states while maintaining

low systematic uncertainties. We note that nuPIL also expects a smaller total flux, although
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Figure 2. Left: T2HK’s flux plotted against neutrino energy for ⌫-mode (solid) and ⌫-mode
(dashed). Right: the T2HKK fluxes plotted against energy for ⌫ and ⌫ modes. The shaded region
shows the envelope of the probability found by varying the true value of �. Due to T2HKK’s longer
baseline but comparable energy range to T2HK, the fluxes on the right sample a very di↵erent part
of the probability.

The J-PARC neutrino beam will be upgraded from that used for the T2K experiment

to provide a beam power of 1.3 [56, 57]. The beam is produced from 30GeV protons

colliding with a graphite target. Charged pions produced in these collisions are focused

through magnetic horns into a decay volume, where the majority of the neutrinos in the

beam are the ⌫µ (⌫µ) produced from the ⇡+ (⇡�) decay. The polarity of the 320 kA horn

current can be reversed to focus pions of positive or negative charge in order to produce a

beam of neutrinos or antineutrinos respectively. A small contamination (less than 1% of

the neutrino flux) of ⌫e or ⌫e in the beam and ⌫µ (⌫µ) in the ⌫µ (⌫µ) beam result from

the decay of the µ+ (µ�) produced in the pion decay, however the majority of the µ± are

stopped after reaching the end of the decay volume before decaying.

The baseline design for the Hyper-Kamiokande detector consists of two water tanks

each with a total (fiducial) mass of 258 kt (187 kt) [58]. Each tank is surrounded by ap-

proximately 40,000 inward facing 50 cm diameter photosensors corresponding to a 40%

photocoverage, equivalent to that currently used at Super-Kamiokande. The tanks would

be built and commissioned in a staged process with the second tank starting to take data

six years after the first. The detectors use the water Čerenkov ring-imaging technique as

used at Super-Kamiokande, capable of detecting the charged leptons produced in neutrino

interactions on nuclei in water. The flavour (but not charge) of the outgoing charged lepton

(and hence incoming neutrino) can be determined with very high accuracy, and the energy

and direction of the charged lepton can be measured to give the neutrino energy.

We have developed an up-to-date GLoBES implementation of T2HK, incorporating

the collaboration’s latest estimates for detector performance2. Our simulation is based on

the GLoBES implementation of T2HK [59] with comprehensive modifications to match

the latest experimental design. The beam power and fiducial mass have been updated to

1.3 and 187 kt per tank. For our studies we have used the staged design with one tank

2
We thank the Hyper-Kamiokande proto-collaboration for kindly providing us with this information.
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Figure 11: The attainable 1� precision on sin2 ✓23 and � for DUNE, T2HK, and their

combination. In each case, the contours enclose the assumed true values for ✓23 and �,

marked with a point. This plot assumes the “fixed run time” configurations in Table 1 and

the true oscillation parameters, apart from ✓23, specified in Table 2.

number varies with �, and so the e↵ective run time has been modified for each value of

� to keep the observed events constant. In the left-hand panel of Fig. 13, we have fixed

the number of appearance events to be 5411 for each configuration, which is the average

number of events expected for the combination of DUNE and T2HK running for 20 years

cumulative run time. We see that events at DUNE are more valuable than events at

T2HK around maximally CP violating values; however, around CP conserving values, the

opposite is true and T2HK has more valuable events. We quantitatively assess this e↵ect in

the right-hand panel of Fig. 13. This plot compares the performance of DUNE and T2HK

with a fixed 5411 events, with the same experiments assuming double the number of events.

The figure shows that for DUNE to consistently outperform T2HK, it needs at least twice

as many events. The same is true to T2HK: it can only lead to better performance for all

values of � once its has more than twice the exposure.

Our second normalization scheme is designed to include the e↵ect of the probability

from the comparison with fixed event rates. The number of appearance channel events, S,

is to a good approximation proportional to the oscillation probability,

S / P (⌫µ ! ⌫e; hEi),

where hEi denotes the average energy of the flux, and we introduce a quantity N denoting

– 28 –
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TABLE I: Latest measurements and global-fit results of neutrino parameters.

Parameters Neutrino Oscillation Experiments a Global-fit Results b

∆m2
21 KamLAND (νe → νe)

21 [7.60+0.19
−0.18] · 10

−5 eV2

∆m2
31

T2K (νµ → νµ)
22 +[2.48+0.05

−0.07] · 10
−3 eV2 (NH)

MINOS (νµ → νµ, νµ → νµ)
23 −[2.38+0.05

−0.06] · 10
−3 eV2 (IH)

θ12

solar neutrinos (νe → νe)

34.63◦+1.02◦

−0.98◦Borexino24, SNO25,26,

Super-Kamionkande I-IV27

θ13
Daya Bay (νe → νe)

28 8.80◦+0.37◦

−0.39◦ (NH)

RENO (νe → νe)
29 8.91◦+0.35◦

−0.36◦ (IH)

θ23

atmospheric neutrinos
48.9◦+1.6◦

−7.4◦ (NH)
(νµ → νµ, νµ → νµ) 49.2◦+1.5◦

−2.5◦ (IH)
Super-Kamiokande I-IV30

δ –
241◦+115◦

−68◦ (NH)

266◦+62◦

−57◦ (IH)

aThe experiment that dominate the accuracy of neutrino parameter determination are shown.
bThe best-fit values and 1σ uncertainties are taken from Ref. 31.

{θ12, θ13, θ23} are vanishing. Note that we will use ∆m2
31 instead of ∆m2

32.

Thanks to a number of elegant experiments in the past two decades3, the phenomenon

of neutrino flavor oscillations has now been firmly established. The latest global analysis of

data from all existing past and present neutrino oscillation experiments provides our best

knowledge on neutrino mixing parameters, as shown in Table I. Note that ∆m2
31 has been

used in Ref. 31 to fit the oscillation data in both cases of normal neutrino mass hierarchy

(NH, i.e., m1 < m2 < m3) and inverted neutrino mass hierarchy (IH, i.e., m3 < m1 < m2),

only the results from Ref. 31 are listed in this table in order to get a ballpark feeling of the

values of the neutrino parameters. Two other independent global-fit analyses in Refs. 32 and

33 yield different best-fit values. However, the 3σ confidence intervals of neutrino parameters

from all three groups are indeed consistent.
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Open questions for 
neutrino mixing

CP Violation
Complex mixing of these 4 

elements  causes
! "# → "% ≠ ! "̅# → "̅%

Key parameter: ()*

Mass Ordering (Hierarchy)

Normal (NO) Inverted (IO)

!"#$% & ≃
()
(*
(+

(, (& (-

�3

• Neutrino flavours are a mix of mass eigenstates: |!"> = UPMNS |!i> 
• Main Open Questions to be answered: what is the value of #CP? 

what is the mass ordering? what is the value of $23?

OPEN QUESTIONS

Octant degeneracy

Lower ("#$ < 45°) Upper ("#$ > 45°)

Phill Litchfield



CKM vs Tri-bimaximal Mixing
Phill Litchfield

!"#$% & =	?

Tri

Bi
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CKM Matrix Tri-bimaximal Mixing



Tri-Bimaximal Mixing

sin ✓23 =
1p
2
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sin ✓13 = 0
<latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit>

sin ✓12 =
1p
3

<latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit>

Allowed at 
3 sigma 

Allowed at 
3 sigma

Excluded 
at many sigma

P.F.Harrison, D.H.Perkins and W.G.Scott, hep-ph/0202074
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<latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit>
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<latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls=">AAACxHicdVFNT9wwEHXSL0g/WNojF6urInroKllQ4QitVPUIUheQ1quV451kLRwn2BOklRV+JDfUP1Pvbg4lwEiWnt+beR7PpJWSFuP4PghfvHz1+s3GZvT23fsPW73tj+e2rI2AkShVaS5TbkFJDSOUqOCyMsCLVMFFevVzqV/cgLGy1H9wUcGk4LmWmRQcPTXt/WUKMtyjLIVcaseN4YvGCSGaiNlrg45lhgs3bNx+09Bdur4mjVurKzKmjEXfOsp3rzyT3yWHnvQOTxjs0q7tcwYRAz1r24+Ykfkcv057/XgQr4I+BkkL+qSN02nvjs1KURegUShu7TiJK5x4V5RCgfetLVRcXPEcxh5qXoCduNUSGvrFMzOalcYfjXTF/l/heGHtokh9ZsFxbrvaknxKG9eYHU2c1FWNoMX6oaxWFEu63CidSQMC1cIDLoz0vVIx535A6Pce+SEk3S8/BufDQRIPkrOD/vGPdhwbZId8JnskIYfkmPwmp2RERHAS5EEVXIe/QhXasF6nhkFb84k8iPD2H5YM3Zw=</latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit><latexit sha1_base64="PuG3b60Z1qipAvl6QSpIFELP5Ls="></latexit>

sin ✓23 =
1p
2

<latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit>

sin ✓13 = 0
<latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit>

sin ✓12 =
1p
3

<latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit>

Allowed at 
3 sigma 

Allowed at 
3 sigma

Excluded 
at many sigma

s223 >
1

2
<latexit sha1_base64="0wRSVIH01A52fVnAli04/7IHRKc=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgq6k6MZlBfuANobJdNIOnTyYmQg1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3Hj/hTCrL+jZKS8srq2vl9crG5tb2jrm715JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3Q98dsPVEgWR3dqnFA3xIOIBYxgpSXPPJD3jpc5p/llLxCYZHaeOblnVq2aNQVaJHZBqlCg4ZlfvX5M0pBGinAsZde2EuVmWChGOM0rvVTSBJMRHtCuphEOqXSz6fU5OtZKHwWx0BUpNFV/T2Q4lHIc+rozxGoo572J+J/XTVVw4WYsSlJFIzJbFKQcqRhNokB9JihRfKwJJoLpWxEZYp2C0oFVdAj2/MuLpOXUbKtm355V61dFHGU4hCM4ARvOoQ430IAmEHiEZ3iFN+PJeDHejY9Za8koZvbhD4zPH7PTlLs=</latexit><latexit sha1_base64="0wRSVIH01A52fVnAli04/7IHRKc=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgq6k6MZlBfuANobJdNIOnTyYmQg1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3Hj/hTCrL+jZKS8srq2vl9crG5tb2jrm715JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3Q98dsPVEgWR3dqnFA3xIOIBYxgpSXPPJD3jpc5p/llLxCYZHaeOblnVq2aNQVaJHZBqlCg4ZlfvX5M0pBGinAsZde2EuVmWChGOM0rvVTSBJMRHtCuphEOqXSz6fU5OtZKHwWx0BUpNFV/T2Q4lHIc+rozxGoo572J+J/XTVVw4WYsSlJFIzJbFKQcqRhNokB9JihRfKwJJoLpWxEZYp2C0oFVdAj2/MuLpOXUbKtm355V61dFHGU4hCM4ARvOoQ430IAmEHiEZ3iFN+PJeDHejY9Za8koZvbhD4zPH7PTlLs=</latexit><latexit sha1_base64="0wRSVIH01A52fVnAli04/7IHRKc=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgq6k6MZlBfuANobJdNIOnTyYmQg1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3Hj/hTCrL+jZKS8srq2vl9crG5tb2jrm715JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3Q98dsPVEgWR3dqnFA3xIOIBYxgpSXPPJD3jpc5p/llLxCYZHaeOblnVq2aNQVaJHZBqlCg4ZlfvX5M0pBGinAsZde2EuVmWChGOM0rvVTSBJMRHtCuphEOqXSz6fU5OtZKHwWx0BUpNFV/T2Q4lHIc+rozxGoo572J+J/XTVVw4WYsSlJFIzJbFKQcqRhNokB9JihRfKwJJoLpWxEZYp2C0oFVdAj2/MuLpOXUbKtm355V61dFHGU4hCM4ARvOoQ430IAmEHiEZ3iFN+PJeDHejY9Za8koZvbhD4zPH7PTlLs=</latexit><latexit sha1_base64="0wRSVIH01A52fVnAli04/7IHRKc=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgq6k6MZlBfuANobJdNIOnTyYmQg1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3Hj/hTCrL+jZKS8srq2vl9crG5tb2jrm715JxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3Q98dsPVEgWR3dqnFA3xIOIBYxgpSXPPJD3jpc5p/llLxCYZHaeOblnVq2aNQVaJHZBqlCg4ZlfvX5M0pBGinAsZde2EuVmWChGOM0rvVTSBJMRHtCuphEOqXSz6fU5OtZKHwWx0BUpNFV/T2Q4lHIc+rozxGoo572J+J/XTVVw4WYsSlJFIzJbFKQcqRhNokB9JihRfKwJJoLpWxEZYp2C0oFVdAj2/MuLpOXUbKtm355V61dFHGU4hCM4ARvOoQ430IAmEHiEZ3iFN+PJeDHejY9Za8koZvbhD4zPH7PTlLs=</latexit>

s212 <
1

3
<latexit sha1_base64="QjFhZzu1HEeKw4yffWgcK+P38wk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgi5cFN24rGAf0MYymU7aoZNJmJkINQR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/5kxp1/22CkvLK6trxfXSxubW9o69u9dUUSIJbZCIR7LtY0U5E7Shmea0HUuKQ5/Tlj+6nvitByoVi8SdHsfUC/FAsIARrI3Usw/UfbWXomp22Q0kJinK0tOsZ5fdijuFs0hQTsqQo96zv7r9iCQhFZpwrFQHubH2Uiw1I5xmpW6iaIzJCA9ox1CBQ6q8dHp95hwbpe8EkTQltDNVf0+kOFRqHPqmM8R6qOa9ifif10l0cOGlTMSJpoLMFgUJd3TkTKJw+kxSovnYEEwkM7c6ZIhNCtoEVjIhoPmXF0mzWkFuBd2elWtXeRxFOIQjOAEE51CDG6hDAwg8wjO8wpv1ZL1Y79bHrLVg5TP78AfW5w+vF5S4</latexit><latexit sha1_base64="QjFhZzu1HEeKw4yffWgcK+P38wk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgi5cFN24rGAf0MYymU7aoZNJmJkINQR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/5kxp1/22CkvLK6trxfXSxubW9o69u9dUUSIJbZCIR7LtY0U5E7Shmea0HUuKQ5/Tlj+6nvitByoVi8SdHsfUC/FAsIARrI3Usw/UfbWXomp22Q0kJinK0tOsZ5fdijuFs0hQTsqQo96zv7r9iCQhFZpwrFQHubH2Uiw1I5xmpW6iaIzJCA9ox1CBQ6q8dHp95hwbpe8EkTQltDNVf0+kOFRqHPqmM8R6qOa9ifif10l0cOGlTMSJpoLMFgUJd3TkTKJw+kxSovnYEEwkM7c6ZIhNCtoEVjIhoPmXF0mzWkFuBd2elWtXeRxFOIQjOAEE51CDG6hDAwg8wjO8wpv1ZL1Y79bHrLVg5TP78AfW5w+vF5S4</latexit><latexit sha1_base64="QjFhZzu1HEeKw4yffWgcK+P38wk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgi5cFN24rGAf0MYymU7aoZNJmJkINQR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/5kxp1/22CkvLK6trxfXSxubW9o69u9dUUSIJbZCIR7LtY0U5E7Shmea0HUuKQ5/Tlj+6nvitByoVi8SdHsfUC/FAsIARrI3Usw/UfbWXomp22Q0kJinK0tOsZ5fdijuFs0hQTsqQo96zv7r9iCQhFZpwrFQHubH2Uiw1I5xmpW6iaIzJCA9ox1CBQ6q8dHp95hwbpe8EkTQltDNVf0+kOFRqHPqmM8R6qOa9ifif10l0cOGlTMSJpoLMFgUJd3TkTKJw+kxSovnYEEwkM7c6ZIhNCtoEVjIhoPmXF0mzWkFuBd2elWtXeRxFOIQjOAEE51CDG6hDAwg8wjO8wpv1ZL1Y79bHrLVg5TP78AfW5w+vF5S4</latexit><latexit sha1_base64="QjFhZzu1HEeKw4yffWgcK+P38wk=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgi5cFN24rGAf0MYymU7aoZNJmJkINQR/xY0LRdz6H+78G6dtFtp64MLhnHu59x4/5kxp1/22CkvLK6trxfXSxubW9o69u9dUUSIJbZCIR7LtY0U5E7Shmea0HUuKQ5/Tlj+6nvitByoVi8SdHsfUC/FAsIARrI3Usw/UfbWXomp22Q0kJinK0tOsZ5fdijuFs0hQTsqQo96zv7r9iCQhFZpwrFQHubH2Uiw1I5xmpW6iaIzJCA9ox1CBQ6q8dHp95hwbpe8EkTQltDNVf0+kOFRqHPqmM8R6qOa9ifif10l0cOGlTMSJpoLMFgUJd3TkTKJw+kxSovnYEEwkM7c6ZIhNCtoEVjIhoPmXF0mzWkFuBd2elWtXeRxFOIQjOAEE51CDG6hDAwg8wjO8wpv1ZL1Y79bHrLVg5TP78AfW5w+vF5S4</latexit>

Best Fit Preferences:
s213 = 0.02241± 0.00065

<latexit sha1_base64="db6X2DOr3QZ5dT1uCt5Wp12EjYE=">AAACBHicbZC7TsMwFIYdrqXcAoxdLCokpsoJ5bIgVbAwFolepDZEjuu0Vh0nsh2kKurAwquwMIAQKw/Bxtvgthmg5ZcsffrPOTo+f5BwpjRC39bS8srq2npho7i5tb2za+/tN1WcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDK8n9dYDlYrF4k6PEupFuC9YyAjWxvLtkrp3/cw5GV+iCnLdqtNNImgQobNT3y5PyQgugpNDGeSq+/ZXtxeTNKJCE46V6jgo0V6GpWaE03GxmyqaYDLEfdoxKHBElZdNjxjDI+P0YBhL84SGU/f3RIYjpUZRYDojrAdqvjYx/6t1Uh1eeBkTSaqpILNFYcqhjuEkEdhjkhLNRwYwkcz8FZIBlphok1vRhODMn7wITbfioIpzWy3XrvI4CqAEDsExcMA5qIEbUAcNQMAjeAav4M16sl6sd+tj1rpk5TMH4I+szx9yy5S9</latexit><latexit sha1_base64="db6X2DOr3QZ5dT1uCt5Wp12EjYE=">AAACBHicbZC7TsMwFIYdrqXcAoxdLCokpsoJ5bIgVbAwFolepDZEjuu0Vh0nsh2kKurAwquwMIAQKw/Bxtvgthmg5ZcsffrPOTo+f5BwpjRC39bS8srq2npho7i5tb2za+/tN1WcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDK8n9dYDlYrF4k6PEupFuC9YyAjWxvLtkrp3/cw5GV+iCnLdqtNNImgQobNT3y5PyQgugpNDGeSq+/ZXtxeTNKJCE46V6jgo0V6GpWaE03GxmyqaYDLEfdoxKHBElZdNjxjDI+P0YBhL84SGU/f3RIYjpUZRYDojrAdqvjYx/6t1Uh1eeBkTSaqpILNFYcqhjuEkEdhjkhLNRwYwkcz8FZIBlphok1vRhODMn7wITbfioIpzWy3XrvI4CqAEDsExcMA5qIEbUAcNQMAjeAav4M16sl6sd+tj1rpk5TMH4I+szx9yy5S9</latexit><latexit sha1_base64="db6X2DOr3QZ5dT1uCt5Wp12EjYE=">AAACBHicbZC7TsMwFIYdrqXcAoxdLCokpsoJ5bIgVbAwFolepDZEjuu0Vh0nsh2kKurAwquwMIAQKw/Bxtvgthmg5ZcsffrPOTo+f5BwpjRC39bS8srq2npho7i5tb2za+/tN1WcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDK8n9dYDlYrF4k6PEupFuC9YyAjWxvLtkrp3/cw5GV+iCnLdqtNNImgQobNT3y5PyQgugpNDGeSq+/ZXtxeTNKJCE46V6jgo0V6GpWaE03GxmyqaYDLEfdoxKHBElZdNjxjDI+P0YBhL84SGU/f3RIYjpUZRYDojrAdqvjYx/6t1Uh1eeBkTSaqpILNFYcqhjuEkEdhjkhLNRwYwkcz8FZIBlphok1vRhODMn7wITbfioIpzWy3XrvI4CqAEDsExcMA5qIEbUAcNQMAjeAav4M16sl6sd+tj1rpk5TMH4I+szx9yy5S9</latexit><latexit sha1_base64="db6X2DOr3QZ5dT1uCt5Wp12EjYE=">AAACBHicbZC7TsMwFIYdrqXcAoxdLCokpsoJ5bIgVbAwFolepDZEjuu0Vh0nsh2kKurAwquwMIAQKw/Bxtvgthmg5ZcsffrPOTo+f5BwpjRC39bS8srq2npho7i5tb2za+/tN1WcSkIbJOaxbAdYUc4EbWimOW0nkuIo4LQVDK8n9dYDlYrF4k6PEupFuC9YyAjWxvLtkrp3/cw5GV+iCnLdqtNNImgQobNT3y5PyQgugpNDGeSq+/ZXtxeTNKJCE46V6jgo0V6GpWaE03GxmyqaYDLEfdoxKHBElZdNjxjDI+P0YBhL84SGU/f3RIYjpUZRYDojrAdqvjYx/6t1Uh1eeBkTSaqpILNFYcqhjuEkEdhjkhLNRwYwkcz8FZIBlphok1vRhODMn7wITbfioIpzWy3XrvI4CqAEDsExcMA5qIEbUAcNQMAjeAav4M16sl6sd+tj1rpk5TMH4I+szx9yy5S9</latexit>

NuFIT 4.1 (2019)
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Normal Ordering (best fit) Inverted Ordering (��2
= 6.2)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.310+0.013

�0.012 0.275 ! 0.350 0.310+0.013
�0.012 0.275 ! 0.350

✓12/
�

33.82+0.78
�0.76 31.61 ! 36.27 33.82+0.78

�0.76 31.61 ! 36.27

sin
2 ✓23 0.558+0.020

�0.033 0.427 ! 0.609 0.563+0.019
�0.026 0.430 ! 0.612

✓23/
�

48.3+1.1
�1.9 40.8 ! 51.3 48.6+1.1

�1.5 41.0 ! 51.5

sin
2 ✓13 0.02241+0.00066

�0.00065 0.02046 ! 0.02440 0.02261+0.00067
�0.00064 0.02066 ! 0.02461

✓13/
�

8.61+0.13
�0.13 8.22 ! 8.99 8.65+0.13

�0.12 8.26 ! 9.02

�CP/
�

222
+38
�28 141 ! 370 285

+24
�26 205 ! 354

�m2
21

10�5 eV
2 7.39+0.21

�0.20 6.79 ! 8.01 7.39+0.21
�0.20 6.79 ! 8.01

�m2
3`

10�3 eV
2 +2.523+0.032

�0.030 +2.432 ! +2.618 �2.509+0.032
�0.030 �2.603 ! �2.416
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Normal Ordering (best fit) Inverted Ordering (��2
= 10.4)

bfp ±1� 3� range bfp ±1� 3� range

sin
2 ✓12 0.310+0.013

�0.012 0.275 ! 0.350 0.310+0.013
�0.012 0.275 ! 0.350

✓12/
�

33.82+0.78
�0.76 31.61 ! 36.27 33.82+0.78

�0.75 31.61 ! 36.27

sin
2 ✓23 0.563+0.018

�0.024 0.433 ! 0.609 0.565+0.017
�0.022 0.436 ! 0.610

✓23/
�

48.6+1.0
�1.4 41.1 ! 51.3 48.8+1.0

�1.2 41.4 ! 51.3

sin
2 ✓13 0.02237+0.00066

�0.00065 0.02044 ! 0.02435 0.02259+0.00065
�0.00065 0.02064 ! 0.02457

✓13/
�

8.60+0.13
�0.13 8.22 ! 8.98 8.64+0.12

�0.13 8.26 ! 9.02

�CP/
�

221
+39
�28 144 ! 357 282

+23
�25 205 ! 348

�m2
21

10�5 eV
2 7.39+0.21

�0.20 6.79 ! 8.01 7.39+0.21
�0.20 6.79 ! 8.01

�m2
3`

10�3 eV
2 +2.528+0.029

�0.031 +2.436 ! +2.618 �2.510+0.030
�0.031 �2.601 ! �2.419

Tri

Bi

P.F.Harrison, D.H.Perkins and W.G.Scott, hep-ph/0202074



Tri-Bimaximal-Reactor

sin ✓23 =
1p
2

<latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit>
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sin θ13 =
λ

2

Thus, apparently following the adage “many a little makes a mickle”, one is led to a
2σ indication for a non-zero value of θ13. This corresponds to a value for θ13 in the 1σ
range (in degrees),

θ13 = 8o ± 2o. (6)

In any case it is certainly theoretically plausible that θ13 could take a value in the above
range [7], so it is interesting to consider this possibility, and we emphasize this more
general motivation.

It is well known that the solar and atmospheric data are consistent with so-called
tri-bimaximal (TB) mixing [8],
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⎠
P, (7)

corresponding to the mixing angles, 1

θ12 = 35.26o, θ23 = 45o, θ13 = 0o. (8)

The ansatz of TB mixing matrix is interesting due to its symmetry properties which seem
to call for a possibly discrete non-Abelian family symmetry in nature [9]. There has been
a considerable amount of theoretical work in this direction [10, 11, 12, 13, 14, 15]. The
presence of a non-zero reactor angle as in Eq.6 would be clearly inconsistent with the TB
prediction for the zero reactor angle in Eq.8 and so the TB ansatz would be excluded,
even though the predictions for the solar and atmospheric angles remain acceptable.

In this paper we shall explore the possibility of extending the TB mixing matrix to
allow for a non-zero reactor angle θ13, while at the same time preserving the predictions
for the tri-maximal solar angle and the maximal atmospheric angle given by Eq.8, namely
θ12 = 35.26o and θ23 = 45o. In order to maintain these predictions requires,

|Ue2|2

|Ue1|2
=

1

2
,

|Uµ3|2

|Uτ3|2
= 1. (9)

To leading order in Ue3 the conditions in Eq.9 correspond approximately to,

|Ue2|2 ≈ 1/3, |Uµ3|2 ≈ 1/2. (10)

We refer to the above proposal as as tri-bimaximal-reactor (TBR) mixing, to emphasize
that tri-maximal solar mixing and maximal atmospheric mixing are both preserved while

1Note that different versions of the TB mixing matrix appear in the literature with the minus signs
appearing in different places corresponding to differing choices of charged lepton and Majorana phases.
We prefer the convention shown which emerges from the PDG parametrization when the angles are set
equal to those shown in Eq.8

2

2 Tri-bimaximal-Cabibbo Mixing

The recent data is consistent with the remarkable relationship,

s13 =
sin θC√

2
=

λ√
2
, (4)

where λ = 0.2253 ± 0.0007 [1] is the Wolfenstein parameter. This relationship is an
example of “Cabibbo Haze” [10], the general hypothesis that the Cabibbo angle is an
expansion parameter for lepton as well as quark mixing. It was proposed earlier in the
context of “Quark-Lepton Complementarity” (QLC) in which θ12 + θC = 45o [11]. For
related approaches see [12]. Our approach in section 3 relies on maximal atmospheric
mixing but the solar angle is determined by “Sum Rules” [13], which differ from the QLC
relation. These examples illustrate that the value of the solar angle is independent of
the relation in Eq.4. On the other hand, phenomenology is consistent with a trimaximal
solar angle as in Eq.3, and furthermore the approach in section 4 suggests a trimaximal
solar angle. It is therefore natural to combine Eq.4 with TB mixing, as discussed below.

In terms of the combination measured by the reactor neutrino experiments, Eq.4
implies,

sin2 2θ13 ≈ 2λ2(1−
λ2

2
) ≈ 0.099, (5)

in excellent agreement with the recent Daya Bay and RENO results above. Furthermore
the above ansatz implies a reactor angle of

θ13 ≈
θC√
2
≈ 9.2o, (6)

where θC ≈ 13o is the Cabibbo angle.
Apart from the reactor angle, the measured and fitted atmospheric and solar angles

are in good agreement with the ansatz of Tri-bimaximal (TB) mixing [14]. We are
therefore led to combine the relation in Eq.4 with TB mixing to yield tri-bimaximal-
Cabibbo (TBC) mixing:

s13 =
λ√
2
, s12 =

1√
3
, s23 =

1√
2
. (7)

In terms of the TB deviations parameters defined in [15], this corresponds to r = λ with
s = a = 0. Using the second order expansion in [15], Eq.7 then leads to the following
approximate form of the mixing matrix,
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corresponding to the mixing angles,

θ13 ≈ 9.2o, θ12 = 35.26o, θ23 = 45o. (9)
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s13 =
se

12
p

2
, (27)

|U⌧1| = |s23s12 � s13c23c12e
i�
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1
p

6
, (28)

|U⌧2| = | � c12s23 � s12s13c23e
i�
| =

1
p

3
, (29)

|U⌧3| = c13c23 =
1

p
2
. (30)

The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
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13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:
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This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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• Reactor angle 
generated 

• Third row unchanged 
implies sum rules

Sum rules first derived and studied in: SFK hep-ph/0506297; S.Antusch, SFK hep-ph/0508044; 
S.Antusch, P.Huber, S.F.K and T.Schwetz, hep-ph/0702286; S.Antusch, S.F.K., M.Malinsky,0711.4727 
More recent detailed phenomenological analyses: 
D.Marzocca, S.T.Petcov, A.Romanino and M.C.Sevilla,1302.0423; S.T.Petcov 1405.6006; 
P.Ballett, S.F.King, C.Luhn, S.Pascoli and M.A.Schmidt, 1410.7573
I.Girardi, S.T.Petcov and A.V.Titov,1410.8056,1504.00658,1504.02402,1605.04172,…
For asymmetric texture without sum rule see: M.H.Rahat, P.Ramond, B.Xu, 1805.10684
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],
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The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
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This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.

15

3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],

UPMNS =

0

@
ce

12 se

12e
�i�

e
12 0

�se

12e
i�

e
12 ce

12 0
0 0 1

1

A

0

B@

q
2
3

1p
3

0

�
1p
6

1p
3

1p
2

1p
6

�
1p
3

1p
2

1

CA =

0

B@
· · · · · ·

s
e
12p
2
e�i�

e
12

· · · · · ·
c
e
12p
2

1p
6

�
1p
3

1p
2

1

CA (26)

Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],
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The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
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This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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After some algebra, Eq.31 leads to [59],

cos � =
t23s2

12 + s2
13c

2
12/t23 �

1
3(t23 + s2

13/t23)

sin 2✓12s13
. (32)

To leading order in ✓13, Eq.32 returns the sum rule in Eq.24, from which we find cos � ⇡ 0 if ✓12 ⇡ 35o,
consistent with � ⇠ �⇡/2. This can also be understood directly from Eq.32 where we see that for
s2
12 = 1/3 the leading terms t23s2

12 and 1
3t23 cancel in the numerator, giving cos � = s13/(2

p
2t23) ⇡ 0.05

to be compared to cos � ⇡ 0 in the linear approximation. In general the error induced by using the
linear sum rule instead of the exact one has been shown to be �(cos �) . 0.1 [59] for the TB sum rule.

Recently there has been much activity in exploring the phenomenology of various such solar mixing

sum rules, arising from charged lepton corrections to simple neutrino mixing, not just TB neutrino
mixing, but other simple neutrino mixing, including BM and GR mixing, allowing more general charged
lepton corrections, renormalisation group running and so on [60].

It is important to distinguish solar mixing sum rules discussed here from atmospheric mixing sum

rules discussed previously. The physics is di↵erent: here we consider charged lepton corrections to TB
neutrino mixing, while previously we considered two forms of the physical trimaximal lepton mixing
matrix.

4 Minimality: The Type I Seesaw Mechanism

4.1 The type I seesaw mechanism with one RH neutrino

The LH Majorana masses are given by,

L
LL

⌫
= �

1

2
m⌫⌫L⌫c

L
+ H.c. (33)

where ⌫c

L
is a RH antineutrino field, which is the CP conjugate of the LH neutrino field ⌫L. Majorana

masses are possible below the electroweak symmetry (EW) breaking scale since the neutrino has zero
electric charge. Majorana neutrino masses violate lepton number conservation, and are forbidden above
the EW breaking scale. The type I seesaw mechanism assumes that Majorana neutrino mass terms are
zero to begin with, but are generated e↵ectively by RH neutrinos [5].

If we introduce one RH neutrino field ⌫R, 7 then there are two possible additional neutrino mass
terms. First there are Majorana masses,

L
R

⌫
= �

1

2
MR⌫c

R
⌫R + H.c. (34)

Secondly, there are Dirac masses,
L

D

⌫
= �mD⌫L⌫R + H.c.. (35)

Dirac mass terms arise from Yukawa couplings to a Higgs doublet, Hu,

L
Yuk = �HuY

⌫L⌫R + H.c. (36)

7A single RH neutrino is su�cient to account for atmospheric neutrino oscillations if it couples approximately equally
to ⌫µ and ⌫⌧ as discussed in [23].
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c23c13 =
1p
2
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Tri-maximal Mixing

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
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1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,
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Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,
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With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡
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� � 1p
3
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1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,
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(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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(c ) Following the hint, one finds,
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Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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Best fit

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798 

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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|U⌧2| = |� c12s23 � s12s13c23e
i�| =

r
1

3
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Not best fit



Family Symmetry   

A5T7 S4

A4

⌃(168) �(96) SO(3)

�(27)

SU(3)
Traditionally used for TB 

mixing, but these days can 
explain charged lepton 

corrections, TM1, TM2,… 



3 Plato’s Fire

The patterns of Eqs. (5) and (6) should be simultaneously maintained by some symmetry, but

it looks impossible. However, there is in fact a solution, and it is based on the non-Abelian

discrete symmetry A4 [9, 10]. What is A4 and why is it special?

Around the year 390 BCE, the Greek mathematician Theaetetus proved that there are

five and only five perfect geometric solids. The Greeks already knew that there are four basic

elements: fire, air, water, and earth. Plato could not resist matching them to the five perfect

geometric solids and for that to work, he invented the fifth element, i.e. quintessence, which

is supposed to hold the cosmos together. His assignments are shown in Table 1.

Table 1: Properties of Perfect Geometric Solids

solid faces vertices Plato Group

tetrahedron 4 4 fire A4

octahedron 8 6 air S4

icosahedron 20 12 water A5

hexahedron 6 8 earth S4

dodecahedron 12 20 ? A5

The group theory of these solids was established in the early 19th century. Since a

cube (hexahedron) can be imbedded perfectly inside an octahedron and the latter inside

the former, they have the same symmetry group. The same holds for the icosahedron and

dodecahedron. The tetrahedron (Plato’s “fire”) is special because it is self-dual. It has

the symmetry group A4, i.e. the finite group of the even permutation of 4 objects. The

reason that it is special for the neutrino mass matrix is because it has 3 inequivalent one-

dimensional irreducible representations and 1 three-dimensional irreducible representation

exactly. Its character table is given below.

6

Platonic Solids

Plato’s fire
A4 can explain                
Tri-bimaximal 

Mixing 
E.Ma and G.Rajasekaran,
hep-ph/0106291;
K.S.Babu, E.Ma, J.W.F.Valle,
hep-ph/0206292;
G.Altarelli and F.Feruglio,
hep-ph/0504165,hep-ph/0512103



A4 and S4 Group Theory

that there exists only one more irreducible representation, namely the doublet 2. Its

matrix representation is presented, together with the other irreducible representations in

the following table.

S4 A4 S T U

1,1′ 1 1 1 ±1

2

(
1′′

1′

) (
1 0

0 1

) (
ω 0

0 ω2

) (
0 1

1 0

)

3,3′ 3 1
3

⎛

⎜⎝
−1 2 2

2 −1 2

2 2 −1

⎞

⎟⎠

⎛

⎜⎝
1 0 0

0 ω2 0

0 0 ω

⎞

⎟⎠ ∓

⎛

⎜⎝
1 0 0

0 0 1

0 1 0

⎞

⎟⎠

The same table also shows the representations of the S4 subgroup A4, generated by S and

T only. Dropping the U generator, it is clear that both triplets of S4 coincide with the

single A4 triplet. Likewise, the two S4 singlets correspond to the trivial singlet of A4. The

S4 doublet, on the other hand, becomes reducible once the U generator is removed. Hence,

it decomposes into two separate non-trivial irreducible representations of A4, 1′′ and 1′.

The non-trivial S4 product rules in the T -diagonal basis are listed below, where we use

the number of primes within the expression

α(′) ⊗ β(′) → γ(′) , (C.2)

to classify the results. We denote this number by n, e.g. in 3⊗ 3′ → 3′ we get n = 2.

1(′) ⊗ 1(′) → 1(′)

⎧
⎪⎨

⎪⎩
n = even

1 ⊗ 1 → 1

1′ ⊗ 1′ → 1

1 ⊗ 1′ → 1′

⎫
⎪⎬

⎪⎭
αβ ,

1(′) ⊗ 2 → 2

{
n = even

n = odd

1 ⊗ 2 → 2

1′ ⊗ 2 → 2

}

α

(
β1

(−1)nβ2

)

,

1(′) ⊗ 3(′) → 3(′)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
n = even

1 ⊗ 3 → 3

1′ ⊗ 3′ → 3

1 ⊗ 3′ → 3′

1′ ⊗ 3 → 3′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
α

⎛

⎜⎝
β1
β2
β3

⎞

⎟⎠ ,

2 ⊗ 2 → 1(′)

{
n = even

n = odd

2⊗ 2 → 1

2⊗ 2 → 1′

}

α1β2 + (−1)nα2β1 ,

2 ⊗ 2 → 2

{
n = even 2⊗ 2 → 2

} (
α2β2
α1β1

)

,
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atmi ⇠ 30
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0

@
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1

�1

1

A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30

⇠

0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,
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A , preserves SU breaks T, U, (68)
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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and the two important SU preserving alignments for 30 flavons,
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A , preserves SU breaks T, U, (68)
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Tri-bimaximal mixing from S4

3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],

UPMNS =

0
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12 se

12e
�i�

e
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e
12 ce

12 0
0 0 1

1
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3
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3

0

�
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6

1p
3

1p
2

1p
6

�
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1p
2

1
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0

B@
· · · · · ·

s
e
12p
2
e�i�

e
12

· · · · · ·
c
e
12p
2

1p
6

�
1p
3

1p
2

1

CA (26)

Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s13 =
se

12
p

2
, (27)

|U⌧1| = |s23s12 � s13c23c12e
i�
| =

1
p

6
, (28)

|U⌧2| = | � c12s23 � s12s13c23e
i�
| =

1
p

3
, (29)

|U⌧3| = c13c23 =
1

p
2
. (30)

The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0
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2
3

1p
3
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� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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and the two important SU preserving alignments for 30 flavons,
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A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30

⇠

0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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preserve SU

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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Loop Models of Neutrino Mass

Figure 1: Tree-level and radiative seesaw mechanisms.

exists no such study in the literature with the focus put on the neutrino sector in radiative
models, and we aim to start this enterprise by a study devoted to the RGEs of the Ma-

model. Naturally, this could be extended to other radiative models for neutrino masses,
such as the Zee-Babu model [25, 26] or the Aoki-Kanemura-Seto model [27, 28]. In par-

ticular the interplay between the scalar and the lepton sectors has the potential to reveal
interesting new effects, as we will already see in this study.

However, we want to stress that several studies are already available which investigate

e.g. limiting cases of our framework or subsets (or generalizations of subsets) of certain
sectors of the Ma-model. A particular example for such a case would be the investigations

of the RGEs of a general Two Higgs Doublet Model (THDM). Whenever applicable in
this paper, we will refer to the corresponding works treating these related frameworks.

This paper is organized as follows: In Sec. 2, we review Ma’s scotogenic model and
discuss the different effective theories arising when subsequently integrating out the heavy
neutrino fields. Next, in Sec. 3, we discuss in detail the matching conditions at the

boundaries between the respective theories, which in our case have to be consistently
imposed at 1-loop level. Our main results, the explicit RGEs at 1-loop level are presented

in Sec. 4. After that, we present a numerical exemplifying study (in a slightly simplified
framework) in Sec. 5, in order to illustrate how to use our results. We finally conclude in

Sec. 6.

2 Ma’s scotogenic model

The so-called scotogenic model has been discussed by Ma [24], and in the following we will
therefore call it Ma-model for simplicity. In this section, we will first review this model,

and then discuss some of its low-energy limits, which we will also use in our calculations
later on.

2

2

ρ++

W− W−

H0/A0

H+
1,2 H+

1,2

νa νb

ℓ+
a ℓ+

b

FIG. 1: The Cocktail Diagram

tests (EWPT) and collider searches, and we comment on
possible consequences for neutrinoless double beta de-
cay (0νββ). We then briefly discuss future detection
prospects, before concluding.

II. A MODEL FOR NEUTRINO MASSES.

In addition to the SM fields, the model includes two
SU(2)L singlet scalars (singly and doubly charged) S+

and ρ++, and a scalar doublet Φ2. We introduce a Z2

symmetry under which the Φ2 and S+ fields are odd,
whereas ρ++ and the SM fields are even. The Z2 sym-
metry should be unbroken after EW symmetry breaking,
so that the lightest Z2-odd state remains stable and can
provide a dark matter particle candidate. Given the sym-
metry and particle content of the model, the lagrangian
will include the following relevant terms leading to lepton
number violation

− ∆L =
λ5
2

(

Φ†
1Φ2

)2

+ κ1 ΦT
2 iσ2Φ1 S

− + κ2 ρ
++S−S−

+ξs ΦT
2 iσ2Φ1 S

+ ρ−− + Cab lcRa
lRb

ρ++ + h.c.. (1)

The SM scalar doublet Φ1 and the inert scalar doublet
Φ2 can in the unitary gauge be written as

Φ1 =
1√
2

(

0
h

)

+

(

0
v

)

, Φ2 =
1√
2

(

Λ+

H0 + i A0

)

, (2)

where v ≃ 174 GeV is the vacuum expectation value of
Φ1. After EW symmetry breaking, and for κ1 ≠ 0, the
charged states Λ+ and S+ will mix (the mixing angle
being β), giving rise to two charged mass eigenstates

H+
1 = sβ S

+ + cβ Λ+, H+
2 = cβ S

+ − sβ Λ+, (3)

with sβ , cβ = sinβ, cosβ respectively.
The lagrangian in Eq. (1) breaks lepton number explic-

itly by two units [9], which generates a Majorana mass

for the left-handed neutrinos. The Z2 symmetry pre-
cisely forbids all terms that would have generated neu-
trino masses at either 1 or 2-loop order, and therefore
the leading contributions to neutrino masses appear at 3-
loops through the ‘Cocktail Diagram’ shown in Figure 1.
In the basis where the charged current interactions are

flavour-diagonal, the charged leptons e, µ, τ being then
mass eigenstates, and after summing up the contributions
from the six different finite 3-loop diagrams in Figure 1
(coming from H+

1,2, A0 and H0 running in the loop), the
Majorana neutrino mass matrix reads:

mν
ab ≃ Cab xa xb s22β

Iν

(16 π2)3
A , (4)

where s2β = sin(2β), xa = ma/v for a = e, µ, τ , and

A =
(∆m2

+)
2 ∆m2

0

µ0 µ+

(κ2 + ξsv)

m2
ρ v2

. (5)

The factor Iν is a dimensionless O(1) number emerging
from the 3-loop integral after all generic factors have been
factorized out. Its exact value depends on the specific
mass spectrum, and we have estimated its value using
the numerical code SecDec [10]. The reduced masses are
µ−1
0 = m−1

H0
+m−1

A0
and µ−1

+ = m−1
H1

+m−1
H2

.
The dependence of mν

ab on the mass differences ∆m2
0 =

m2
A0

−m2
H0

and ∆m2
+ = m2

H2
−m2

H1
signals a GIM-like

mechanism at play in Eq. (4), which can be easily under-
stood noticing that ∆m2

0 ∝ λ5 and ∆m2
+ ∝ κ1. In the

limit λ5 → 0 the lagrangian in Eq. (1) conserves lepton
number and no Majorana neutrino mass can be gener-
ated, while in the limit κ1 → 0, the leading contribution
to mν

ab will appear at a higher loop order.

We now analyze the ability of the model to reproduce
the observed pattern of neutrino masses and mixings.
The standard parametrization for the neutrino mass ma-
trix in terms of three masses m1,2,3, three mixing angles
θ12, θ23, θ13 and three phases δ, α1, α2 reads

mν = UT mν
D U with mν

D = Diag (m1,m2,m3) (6)

U = Diag
(

eiα1/2, eiα2/2, 1
)

×
⎛

⎝

c13c12 −c23s12−s23c12s13eiδ s23s12−c23c12s13eiδ

c13s12 c23c12−s23s12s13eiδ −s23c12−c23s12s13eiδ

s13e−iδ s23c13 c23c13

⎞

⎠

with sij ≡ sin(θij) and cij ≡ cos(θij). A global fit to
neutrino oscillation data after the recent measurement
of θ13 (see for example [11]) gives ∆m2

21 ≡ m2
2 − m2

1 =
7.62+0.19

−0.19× 10−5eV2,
∣

∣∆m2
31

∣

∣ ≡
∣

∣m2
3 −m2

1

∣

∣ = 2.55+0.06
−0.09×

10−3eV2, s212 = 0.320+0.016
−0.017, s213 = 0.025+0.003

−0.003, and
s223 = 0.43+0.03

−0.03 (0.61+0.02
−0.04) if in the first (second) oc-

tant for θ23. Neutrino oscillations are not sensitive to
the Majorana phases α1 and α2 nor to the absolute neu-
trino mass scale, while the value of the CP phase δ is
beyond current experimental sensitivity. In the inverted

Scotogenic model Cocktail model 

x
W-W-

S++

la HlbLc
nLa HnLbLc

x

p p+k p+k+q p

k k+q
q

Figure 2: Two-loop diagram for the neutrino mass (left) and momentum-assignments for
its computation (right).

3 Neutrino mass

The vertex S–W–W leads to a neutrino mass at 2-loop level, as displayed in Fig. 2. This

diagram has been computed e.g. in Ref. [1], and it is intimately related to the Zee-Babu

integral [9, 10, 11, 12].

4 An incomplete to-do list

A fairly incomplete to-do list for the proposed study is the following:

• We should verify that the operator described in Sec. 2 is indeed the one with the

lowest mass dimension, and we should explicitly compute all resulting vertices and

the Feynman rule.

• We should explicitly compute the diagram displayed in Fig. 2 in R⇠ gauge and derive

the resulting constraints on the neutrino mass.

• We should investigate extensively the low energy neutrino phenomenology of the

setting, as well as the constraints resulting from non-observations of LFV processes.

(Could be very similar to the Zee-Babu model!)

• We should investigate the collider phenomenology resulting from the vertex dis-

played in Fig. 1, with a particular focus on the combined constraints resulting from

low-energy leptonic physics and high energy collider physics.

• ...
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Figure 2: The combined m�� limit range overlaid on the range of allowed m�� for a given
mass m0 of the lightest neutrino mass eigenstates in the normal and inverted mass hierar-
chies. Also shown is the range of m0 disfavoured by cosmology.

The compatibility of the combined limits with respect to the claimed observation of neu-
trinoless double-beta decay in the Heidelberg-Moscow experiment also varies significantly
depending on the NME calculations chosen.
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LL = − mLR1M−1

RRmT
LR2

I. INTRODUCTION

The origin of neutrino mass is one of the major unresolved problems of particle physics.
The smallness of Majorana neutrino mass may arise from an e�ective operator of the form
HHLiLj first proposed by Weinberg [1], where H is the Higgs doublet of the Standard Model
(SM) taken to have opposite hypercharge to that of the lepton doublets Li, where i = 1, 2, 3 is
a family index. The operator is non-renormalisable and has a coe�cient fij/� suppressed by
some mass scale �. In ultraviolet complete theories, the origin of the Weinberg operator may
arise from three types of tree-level seesaw mechanism: type I [2–5] involving the exchange
of right-handed neutrinos; type II [6–10] with scalar triplet exchange; and type III [11–18]
with fermion triplet exchange. In fact the type I seesaw mechanism may be implemented
in di�erent ways known as the inverse [19, 20] and linear [21] seesaw mechanisms which
involve more than three right-handed neutrinos. There are also various loop mechanisms for
achieving the Weinberg operator known as type IV, V, VI [22].

The Weinberg operator discussed above can be straightforwardly generalised to the case of
multi-Higgs doublet models [23], to the operators of the form HaHbLiLj, for Higgs doublets
Ha,b, where a, b = 1, · · · , N can be taken to have the same hypercharge, opposite to that
of Li. The question of which Weinberg operators arise will depend on the details of the
particular multi-Higgs doublet model, such as the symmetries controlling the Higgs and
fermion sectors, the seesaw origin of the Weinberg operators and so on 1.

In this paper we shall consider a new Weinberg operator for neutrino mass of the form
HuH̃dLiLj involving two di�erent Higgs doublets Hu, Hd with opposite hypercharge, where
the charge conjugated doublet H̃d = ≠i‡2H

ú
d , and H

ú
d is the complex conjugate of Hd. This

operator may be relevant in models where the usual Weinberg operator HuHuLiLj is not
generated by the seesaw mechanism but HuH̃dLiLj is. The reason for this depends on the
details of the underlying seesaw mechanism, for example, there may be some new symmetry
at work that acts on the Higgs doublets and the heavy states of mass � that prevents the
usual Weinberg operator from being generated but allows the new one. We shall introduce
a gauged U(1)Õ, broken near the TeV scale by a new SM singlet scalar „, under which the
two Higgs doublets are charged such that the usual Weinberg operator is forbidden but the
new one is allowed.

We also propose a version of the type I seesaw model, which allows HuH̃dLiLj, referred
to as type Ib to distinguish it from the usual type Ia seesaw mechanism which yields the
usual Weinberg operator HuHuLiLj. The minimal version of the type Ib seesaw mechanism
involves the addition of two right-handed neutrinos, written here as left-handed spinors ‹

c
, ‹c,

which carry opposite charges under the gauged U(1)Õ, which allows a pseudo-Dirac mass term
M‹

c
‹c between them, but prevents Majorana masses. The type Ib seesaw mechanism then

leads to the new Weinberg-type operator via their couplings to the Higgs doublets HuLi‹
c

and H̃dLi‹
c, which are allowed by U(1)Õ. Figure (1) shows the diagram that induces the

new Weinberg-type operator mediated by the right-handed neutrinos.
The above model does not allow renormalisable Yukawa couplings for the charged

fermions, since both Higgs doublets are charged under U(1)Õ, and so must be extended
somehow. In order to do this we identify the two right-handed neutrinos as originating from
1 We remark that the Weinberg operator may be generalised still further, see e.g. [24]. However in [24] the

authors do not explicitly mention the multi-Higgs doublet generalisation in [23] which is relevant here.
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4 real input parameters

3 neutrino masses (m1=0),  
3 mixing angles, 
1 Dirac CP phase, 
2 Majorana phases (1 zero) 
1 BAU parameter YB 
= 10 observables 
of which 7 are constrained

Describes:

6.4 Future Tests of the Littlest Seesaw

Given the constantly evolving nature of particle physics and the rapid technological ad-
vances being made in neutrino experiments, it is to be expected that the precision of
PMNS parameter measurements will improve considerably in the coming years. With
this in mind, it seems pertinent to discuss the range of values of each observable for
which this analysis method of the Littlest Seesaw model remains a relevant and viable
test of neutrino masses and properties.

Table 4 below shows 1 �, 2 � and 3 � ranges for each of the observables predicted by the
Littlest Seesaw model in our analysis of Case A2.

1 � range 2 � range 3 � range

✓12/
� 34.254 ! 34.350 34.236 ! 34.365 34.217 ! 34.383

✓13/
� 8.370 ! 8.803 8.300 ! 8.878 8.218 ! 8.959

✓23/
� 45.405 ! 45.834 45.343 ! 45.910 45.269 ! 45.996

�m12
2
/10�5eV2 7.030 ! 7.673 6.930 ! 7.805 6.788 ! 7.952

�m31
2
/10�3eV2 2.434 ! 2.561 2.407 ! 2.587 2.377 ! 2.616

�/
�

�88.284 ! �86.568 �88.546 ! �86.287 �88.864 ! �85.966

YB/10�10 0.839 ! 0.881 0.831 ! 0.889 0.822 ! 0.898

Table 4: Ranges of observables for Case A2.

The same ranges are shown for Case D2 in Table 5. It is interesting to note that for
Case D, the values of ✓23 favoured by the model are slightly lower than in Case A, as
are the predicted values of �.

1 � range 2 � range 3 � range

✓12/
� 34.291 ! 34.379 34.278 ! 34.391 34.264 ! 34.404

✓13/
� 8.384 ! 8.784 8.329 ! 8.838 8.268 ! 8.902

✓23/
� 44.044 ! 44.434 43.991 ! 44.484 43.925 ! 44.539

�m12
2
/10�5eV2 7.058 ! 7.615 6.966 ! 7.688 6.875 ! 7.787

�m31
2
/10�3eV2 2.435 ! 2.562 2.407 ! 2.590 2.373 ! 2.624

�/
�

�93.708 ! �92.180 �93.919 ! �91.964 �94.160 ! �91.730

YB/10�10 0.838 ! 0.881 0.827 ! 0.893 0.820 ! 0.899

Table 5: Case D2 ranges for observables
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Dirac texture zero 6.3 Perturbations around Best Fit Points

It is useful to show the best fit points we obtain with this analysis visually (see Table 2
for their numerical values). In this section, we vary our input parameters around these
benchmark points in both one and two dimensions, and we see that such perturbations
in parameter space yield variations around smooth, stable minima. Figure 4 shows
heat maps representing increases in �

2 as one moves away from the benchmark points, for
variations in a, b or Matm,Msol parameter space, respectively. Note the resulting shape
is never an exact circle, as the analysis is not sensitive to all parameters equally.

Figure 4: Perturbations around Case A2 benchmark point shown on the left, those for Case
D2 on the right. In each case, two parameters are varied at a time while the other two are

kept fixed. Di↵erently coloured circles represent approximate 1, 2 and 3 sigma deviations from

the best fit in each parameter, and the green cross marks the benchmark point.

We now vary each parameter individually around the best fit points given in Cases A2
and D2, whilst keeping the other three parameters fixed - Figure 5 shows such pertur-
bations. On the vertical axes, ��

2 is the deviation from minimum �
2; the stationary

point thus shows a vanishing ��
2 corresponding to the benchmark point itself.
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Best fit

Best fit

• Fit includes effects of RG corrections 
• Determines the RHN masses! Also predicts NO and m1=0 

From Type Ia with S4 (backup) 

From a neutrino mass matrix as given in Eqs. (8) and (9), one immediately obtains normal
ordering with m1 = 0. Furthermore, these scenarios only provide one physical Majorana
phase �. As discussed above, we choose to start in a flavour basis, where the right-
handed neutrino mass matrix MR and the charged-lepton mass matrix Ml are diagonal.
Consequently, the PMNS matrix is given by UPMNS = U

†
⌫L. We use the standard PDG

parametrisation for the mixing angles, and the CP-violating phase �. Within our LS
scenario, the standard PDG Majorana phase '1 vanishes and �'2/2 = �.

The low-energy phenomenology of Case A has been studied in detail both numeri-
cally [28, 32] and analytically [35], where it has been found that the best fit to experi-
mental data of neutrino oscillations is obtained for n = 3 for a particular choice of phase
⌘ ⇡ 2⇡/3, while for Case B the preferred choice is for n = 3 and ⌘ ⇡ �2⇡/3 [28,36]. Due
to the degeneracy of Cases A, C and Cases B, D at tree level, the preferred choice for
n and ⌘ carries over, respectively.

The prediction for the baryon number asymmetry in our Universe via leptogenesis within
Case A has been studied [34], where it was shown that Case C for positive BAU
predicts the CP-violating phase to be � ⇡ 90o which is disfavoured by current global fits
to neutrino oscillation data. It is straightforward to show that Case B is disfavoured
for a similar reason. Therefore, taking into account the positive sign of the BAU, and
the present experimentally favoured prediction of � ⇡ �90o, one is left with two cases
of interest, namely Case A with ⌘ = 2⇡/3 and Case D with ⌘ = �2⇡/3, respectively,
where n = 3 for both cases.

These successful cases, which define the two cases of the LS model as discussed in the
Introduction, are summarised below:

Case A : �
A
⌫ =

0

@
0 be

i⇡/3

a 3bei⇡/3

a be
i⇡/3

1

A with MR = diag(Matm,Msol) (11)

Case D : �D
⌫ =

0

@
be

�i⇡/3 0
be

�i⇡/3
a

3be�i⇡/3
a

1

A with MR = diag(Msol,Matm) (12)

where in both cases the columns are ordered so that the lighter right-handed neutrino of
mass M1 is in the first column and the heavier right-handed neutrino of mass M2 is in
the second column, with M1 < M2. In both cases a normal hierarchy is predicted with
m1 = 0 and the physical atmospheric neutrino mass m3 is dominantly controlled by the
combination ma = a

2
v
2
/Matm, while the solar neutrino mass m2 is dominantly controlled

by the combination mb = b
2
v
2
/Msol, which is the reason for the notation of the RHN

masses used above. These two cases of the LS model will form the focus of the numerical
studies in this paper.

5

MR =

✓
Matm 0
0 Msol

◆
Yν =



these forms are more than simple ansatze, since they may be enforced by discrete
non-Abelian family symmetry, as discussed in section 4. For example, TM2 mixing
can be realised by A4 or S4 symmetry [14], while TM1 mixing can be realised by S4

symmetry [15]. A general group theory analysis of semi-direct symmetries was given
in [16].

TM1 implies three equivalent relations:

tan ✓12 =
1p
2

q
1 � 3s2

13 or sin ✓12 =
1p
3

q
1 � 3s2

13

c13
or cos ✓12 =

s
2

3

1

c13
(6)

leading to a prediction ✓12 ⇡ 34�, in excellent agreement with current global fits,
assuming ✓13 ⇡ 8.5�. By contrast, the corresponding TM2 relations imply ✓12 ⇡ 36�

[13], which is on the edge of the three sigma region, and hence disfavoured by current
data. TM1 mixing also leads to an exact sum rule relation relation for cos � in terms
of the other lepton mixing angles [13],

cos � = �cot 2✓23(1 � 5s2
13)

2
p

2s13

q
1 � 3s2

13

, (7)

which, for approximately maximal atmospheric mixing, predicts cos � ⇡ 0, � ⇡ ±90�. ‡

Such atmospheric mixing sum rules may be tested in future experiments [17].
For example, the Littlest Seesaw (LS) model [18] leads to TM1 mixing, for two

cases of light Majorana neutrino mass matrix (in the diagonal charged lepton basis):

Case I : MI
⌫ = !ma

0

B@
0 0 0
0 1 1
0 1 1

1

CA + ms

0

B@
1 3 1
3 9 3
1 3 1

1

CA (8)

Case II : MII
⌫ = !

2ma

0

B@
0 0 0
0 1 1
0 1 1

1

CA + ms

0

B@
1 1 3
1 1 3
3 3 9

1

CA (9)

where ! = e
i2⇡/3. The LS is very predictive since there are only two free (real) input

parameters, where ma ⇡ 26 meV and ms ⇡ 2.6 meV gives the best fit to neutrino
masses with m1 = 0 and PMNS parameters including ✓23 ⇡ 45�, � ⇡ �90� (the latter
two predictions explained by an approximate mu-tau symmetry as discussed later).

‡Incidentally the reason why cos � (not sin �) is predicted is because such predictions follow from
|Uij | being predicted, where Uij = a + be

i�, where a, b are real functions of angles in Eq.1 (hence
|Uij |2 = a

2 + b
2 + 2ab cos �, which involves cos �).
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Special case ma/ms=11 gives Littlest mu-tau seesaw

The layout of the remainder of the paper is as follows. In section 2, we briefly review

the µ⌧ -LSS model and its prediction of oscillation parameters. In section 3, we consider

how these parameters are modified after including radiative corrections. The concrete

model is given in section 4, where all flavon vacuum alignments are realised explicitly.

Section 5 is devoted to conclusions. In the appendices, we list the basis of S4 used for

model building and discuss the vacuum degeneracy of flavons.

2 The µ⌧-LSS mass matrix

There are two cases of the LSS neutrino mass matrix [29] (after the seesaw mechanism

has been implemented) namely,

Case I: M⌫ = !ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 3 1

3 9 3

1 3 1

1

CA ,

Case II: M⌫ = !
2
ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (1)

where ! = e
i2⇡/3. As observed in [31], if ma,s satisfy the special ratio ma

ms
= 11 then this

results in maximal atmospheric mixing and CP violation, as can be checked explicitly

using the analytic formulas in Refs. [26, 29]. Inserting this ratio of masses, the neutrino

mass matrix takes one of the two forms

Case I: M⌫ = ms

0

B@
1 3 1

3 9 + 11! 3 + 11!

1 3 + 11! 1 + 11!

1

CA ,

Case II: M⌫ = ms

0

B@
1 1 3

1 1 + 11!2 3 + 11!2

3 3 + 11!2 9 + 11!2

1

CA . (2)

We refer to them as the µ⌧ -LSS mass matrices. With the µ⌧ conjugation [31],

⌫e ! ⌫
⇤
e
, ⌫µ ! ⌫

⇤
⌧
, ⌫⌧ ! ⌫

⇤
µ
, (3)

one transforms the mass matrix from one case to the other. Both cases predict the same

mixing angles (✓13, ✓12, ✓23), the same Dirac-type CP-violating phase (�)

✓13 = arcsin

✓
c�
p
6

◆
⇡ 7.807� ,

✓12 = arctan
⇣
c+

2

⌘
⇡ 34.50� ,

2

How can this be since 
it looks nothing like 
mu-tau symmetry ?

Fits neutrino 
data with      
ma/ms=10

Mν = mDM−1
R mT

D
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Seesaw formula (Mν)ijνc
iLνc

jL = (M*ν )ijνiLνjL



Mu-Tau Symmetry

maximal CP violation in the lepton sector.

The layout of the remainder of this paper is as follows. In section 2 we introduce and
define different types of µτ symmetry as applied to the PMNS matrix V , the neutrino
mass matrix Mν , and its hermitean square Hν ≡ M †

νMν . In section 3 we give basis
invariant conditions on Hν leading to maximal atmospheric mixing and maximal CP
violation. In section 4 we present a general form for Mν with µτ symmetry leading
to maximal atmospheric mixing and maximal CP violation. In section 5 we show how
the µτ conjugation operation can be useful for relating different neutrino mass matrices
which have the general form of µτ symmetry. In section 6 we apply the results to the
LSS mass matrix and show why this model has approximate µτ symmetry. In section 7
we discuss accidental implementations of µτ symmetry and give an example. Finally
section 8 concludes the paper. The Appendices contain some of the proofs of results in
the paper. Appendix A provides a proof that a µτ symmetric Hν implies and is implied
by µτ symmetric PMNS mixing. Appendix B makes the connection of the general form
of Mν with µτ symmetry with CP transformations.

2 Other types of µτ symmetry: µτ-U and µτ-R

Let us denote by µτ universal (µτ -U) mixing the PMNS matrix V characterized by the
following two conditions: (i) fully nonvanishing first row,

|Vej| ≠ 0 , j = 1, 2, 3, (1)

and (ii) equal moduli for the µ (second) and τ (third) rows [33, 34],

|Vµj | = |Vτj| , j = 1, 2, 3. (2)

In other words the modulus of the µτ -U PMNS matrix elements have the form

|V | =

⎛

⎝
|Ve1| |Ve2| |Ve3|
|Vµ1| |Vµ2| |Vµ3|
|Vµ1| |Vµ2| |Vµ3|

⎞

⎠ . (3)

One can show within the standard parametrization that conditions (1) and (2) are equiv-
alent to having nonzero θ13 together with maximal atmospheric angle and Dirac CP
phase:3

θ13 ≠ 0 , θ23 = 45◦, δCP = ±90◦ , (4)

which are consistent with current data. The condition (1) ensures the first inequality while
(2) ensures the rest. In fact, condition (1) implies that both θ13 and θ12 are nontrivial
(different from 0 or π/2). Notice that the Majorana phases in V are not constrained.

3Also denoted as cobimaximal mixing in Ref. [35].

2

Two rows have 
equal magnitudes

Basic Idea:
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Mu-tau reflection 
symmetry

P.F.Harrison and W.G.Scott, hep-ph/0210197

Generalisation of:

Harrison and Scott [33] showed that, allowing rephasing transformations from the left
and from the right,4 any µτ -U PMNS mixing matrix V can be cast in the form

V0 =

⎛

⎝
|Ve1| |Ve2| |Ve3|
Vµ1 Vµ2 Vµ3

V ∗
µ1 V ∗

µ2 V ∗
µ3

⎞

⎠ . (5)

Moreover, when all |Vej| are nonzero, i.e., condition (1) is valid, it is guaranteed that
not all of the phases in Vµi can be removed and V0 is essentially complex. This fact is
consistent with the presence of CP violation in (4). The form (5) can be easily checked by
imposing maximal angle and phase in (4) in the standard parametrization and applying
appropriate rephasing transformations; see Ref. [36] for the explicit form. In Ref. [33] a
different proof was originally supplied and the restriction (1) was not imposed.

Instead of characterizing the mixing matrix, it is often more interesting to characterize
the neutrino mass matrix Mν that is responsible for the mixing in the flavor basis where
the µτ -U PMNS matrix comes from the diagonalization of the neutrino mass matrix.
As condition (2) is insensitive to Majorana phases, it is useful to consider the hermitean
squareHν ≡ M †

νMν of the neutrino mass matrixMν for both Majorana or Dirac neutrinos.

We say a hermitean or symmetric 3× 3 matrix A is µτ -reflection (µτ -R) symmetric 5 if

PµτAPµτ = A∗ , (6)

where

Pµτ =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ (7)

represents µτ interchange. According to this definition, the hermitean square mass matrix
Hν = H†

ν is µτ -R symmetric [33] if it has the form

Hν =

⎛

⎝
A D D∗

D∗ B C∗

D C B

⎞

⎠ , (8)

with A,B real and positive while C,D should have irremovable phases (Im[C∗D2] ≠ 0).
It can readily be checked that, if the hermitean square mass matrix Hν is µτ -R symmetric
in the flavour basis (i.e. has the form in Eq. (8)), then this leads to a µτ -U PMNS matrix,
with the usual predictions of maximal atmospheric mixing and maximal CP violation. In
fact it can be proved that a µτ -U PMNS matrix implies and is implied by Hν being µτ -R
symmetric in the flavour basis (see Appendix A).

For Majorana neutrinos, the complex symmetric mass matrix Mν which leads to a µτ -R
symmetric hermitean square mass matrix Hν (and hence µτ -U PMNS matrix) may take

4The following rephasing freedom from the left still survives: Vµk → eiαVµk, Vτk → e−iαVτk.
5Also denoted as CPµτ in Ref. [40].
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maximal CP violation in the lepton sector.

The layout of the remainder of this paper is as follows. In section 2 we introduce and
define different types of µτ symmetry as applied to the PMNS matrix V , the neutrino
mass matrix Mν , and its hermitean square Hν ≡ M †

νMν . In section 3 we give basis
invariant conditions on Hν leading to maximal atmospheric mixing and maximal CP
violation. In section 4 we present a general form for Mν with µτ symmetry leading
to maximal atmospheric mixing and maximal CP violation. In section 5 we show how
the µτ conjugation operation can be useful for relating different neutrino mass matrices
which have the general form of µτ symmetry. In section 6 we apply the results to the
LSS mass matrix and show why this model has approximate µτ symmetry. In section 7
we discuss accidental implementations of µτ symmetry and give an example. Finally
section 8 concludes the paper. The Appendices contain some of the proofs of results in
the paper. Appendix A provides a proof that a µτ symmetric Hν implies and is implied
by µτ symmetric PMNS mixing. Appendix B makes the connection of the general form
of Mν with µτ symmetry with CP transformations.

2 Other types of µτ symmetry: µτ-U and µτ-R

Let us denote by µτ universal (µτ -U) mixing the PMNS matrix V characterized by the
following two conditions: (i) fully nonvanishing first row,

|Vej| ≠ 0 , j = 1, 2, 3, (1)

and (ii) equal moduli for the µ (second) and τ (third) rows [33, 34],

|Vµj | = |Vτj| , j = 1, 2, 3. (2)

In other words the modulus of the µτ -U PMNS matrix elements have the form

|V | =

⎛

⎝
|Ve1| |Ve2| |Ve3|
|Vµ1| |Vµ2| |Vµ3|
|Vµ1| |Vµ2| |Vµ3|

⎞

⎠ . (3)

One can show within the standard parametrization that conditions (1) and (2) are equiv-
alent to having nonzero θ13 together with maximal atmospheric angle and Dirac CP
phase:3

θ13 ≠ 0 , θ23 = 45◦, δCP = ±90◦ , (4)

which are consistent with current data. The condition (1) ensures the first inequality while
(2) ensures the rest. In fact, condition (1) implies that both θ13 and θ12 are nontrivial
(different from 0 or π/2). Notice that the Majorana phases in V are not constrained.

3Also denoted as cobimaximal mixing in Ref. [35].
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Mu-Tau Symmetry
Mu-tau reflection symmetric Majorana mass matrix:

The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2

⎛

⎝
1 −1 − 2i

√
3 1− 2i

√
3

−1 + 2i
√
3 19 17 + 4i

√
3

1 + 2i
√
3 17− 4i

√
3 19

⎞

⎠ , (39)

does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that

Hν → 11|ms|2
⎛

⎝
1

√
13

√
13√

13 19
√
337e−iγ

√
13

√
337eiγ 19

⎞

⎠ , (41)
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Harrison and Scott [33] showed that, allowing rephasing transformations from the left
and from the right,4 any µτ -U PMNS mixing matrix V can be cast in the form

V0 =

⎛

⎝
|Ve1| |Ve2| |Ve3|
Vµ1 Vµ2 Vµ3

V ∗
µ1 V ∗

µ2 V ∗
µ3

⎞

⎠ . (5)

Moreover, when all |Vej| are nonzero, i.e., condition (1) is valid, it is guaranteed that
not all of the phases in Vµi can be removed and V0 is essentially complex. This fact is
consistent with the presence of CP violation in (4). The form (5) can be easily checked by
imposing maximal angle and phase in (4) in the standard parametrization and applying
appropriate rephasing transformations; see Ref. [36] for the explicit form. In Ref. [33] a
different proof was originally supplied and the restriction (1) was not imposed.

Instead of characterizing the mixing matrix, it is often more interesting to characterize
the neutrino mass matrix Mν that is responsible for the mixing in the flavor basis where
the µτ -U PMNS matrix comes from the diagonalization of the neutrino mass matrix.
As condition (2) is insensitive to Majorana phases, it is useful to consider the hermitean
squareHν ≡ M †

νMν of the neutrino mass matrixMν for both Majorana or Dirac neutrinos.

We say a hermitean or symmetric 3× 3 matrix A is µτ -reflection (µτ -R) symmetric 5 if

PµτAPµτ = A∗ , (6)

where

Pµτ =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ (7)

represents µτ interchange. According to this definition, the hermitean square mass matrix
Hν = H†

ν is µτ -R symmetric [33] if it has the form

Hν =

⎛

⎝
A D D∗

D∗ B C∗

D C B

⎞

⎠ , (8)

with A,B real and positive while C,D should have irremovable phases (Im[C∗D2] ≠ 0).
It can readily be checked that, if the hermitean square mass matrix Hν is µτ -R symmetric
in the flavour basis (i.e. has the form in Eq. (8)), then this leads to a µτ -U PMNS matrix,
with the usual predictions of maximal atmospheric mixing and maximal CP violation. In
fact it can be proved that a µτ -U PMNS matrix implies and is implied by Hν being µτ -R
symmetric in the flavour basis (see Appendix A).

For Majorana neutrinos, the complex symmetric mass matrix Mν which leads to a µτ -R
symmetric hermitean square mass matrix Hν (and hence µτ -U PMNS matrix) may take

4The following rephasing freedom from the left still survives: Vµk → eiαVµk, Vτk → e−iαVτk.
5Also denoted as CPµτ in Ref. [40].
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Mu-Tau Symmetry
Mu-tau reflection symmetric Majorana mass matrix:

The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2

⎛

⎝
1 −1 − 2i

√
3 1− 2i

√
3

−1 + 2i
√
3 19 17 + 4i

√
3

1 + 2i
√
3 17− 4i

√
3 19

⎞

⎠ , (39)

does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that

Hν → 11|ms|2
⎛

⎝
1

√
13

√
13√

13 19
√
337e−iγ

√
13

√
337eiγ 19

⎞

⎠ , (41)
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Harrison and Scott [33] showed that, allowing rephasing transformations from the left
and from the right,4 any µτ -U PMNS mixing matrix V can be cast in the form

V0 =

⎛

⎝
|Ve1| |Ve2| |Ve3|
Vµ1 Vµ2 Vµ3

V ∗
µ1 V ∗

µ2 V ∗
µ3

⎞

⎠ . (5)

Moreover, when all |Vej| are nonzero, i.e., condition (1) is valid, it is guaranteed that
not all of the phases in Vµi can be removed and V0 is essentially complex. This fact is
consistent with the presence of CP violation in (4). The form (5) can be easily checked by
imposing maximal angle and phase in (4) in the standard parametrization and applying
appropriate rephasing transformations; see Ref. [36] for the explicit form. In Ref. [33] a
different proof was originally supplied and the restriction (1) was not imposed.

Instead of characterizing the mixing matrix, it is often more interesting to characterize
the neutrino mass matrix Mν that is responsible for the mixing in the flavor basis where
the µτ -U PMNS matrix comes from the diagonalization of the neutrino mass matrix.
As condition (2) is insensitive to Majorana phases, it is useful to consider the hermitean
squareHν ≡ M †

νMν of the neutrino mass matrixMν for both Majorana or Dirac neutrinos.

We say a hermitean or symmetric 3× 3 matrix A is µτ -reflection (µτ -R) symmetric 5 if

PµτAPµτ = A∗ , (6)

where

Pµτ =

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ (7)

represents µτ interchange. According to this definition, the hermitean square mass matrix
Hν = H†

ν is µτ -R symmetric [33] if it has the form

Hν =

⎛

⎝
A D D∗

D∗ B C∗

D C B

⎞

⎠ , (8)

with A,B real and positive while C,D should have irremovable phases (Im[C∗D2] ≠ 0).
It can readily be checked that, if the hermitean square mass matrix Hν is µτ -R symmetric
in the flavour basis (i.e. has the form in Eq. (8)), then this leads to a µτ -U PMNS matrix,
with the usual predictions of maximal atmospheric mixing and maximal CP violation. In
fact it can be proved that a µτ -U PMNS matrix implies and is implied by Hν being µτ -R
symmetric in the flavour basis (see Appendix A).

For Majorana neutrinos, the complex symmetric mass matrix Mν which leads to a µτ -R
symmetric hermitean square mass matrix Hν (and hence µτ -U PMNS matrix) may take

4The following rephasing freedom from the left still survives: Vµk → eiαVµk, Vτk → e−iαVτk.
5Also denoted as CPµτ in Ref. [40].
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the following special µτ -R symmetric form [34] 6

Mν =

⎛

⎝
a d d∗

d c b
d∗ b c∗

⎞

⎠ , (9)

with real a, b and Im[c∗d2] ̸= 0. It can readily be checked that the mass matrix of
the special µτ -R symmetric form in (9) leads to a µτ -R symmetric hermitean square
mass matrix Hν as in (8) when the hermitean square is taken (and hence a µτ -U PMNS
matrix). However it is not necessary for Mν to be µτ -R symmetric, in order to lead
to a µτ -R symmetric hermitean square mass matrix Hν .7 Unlike Ref. [33], we shortly
show that, while µτ -U PMNS mixing is equivalent to having a µτ -R symmetric Hν , it
is not equivalent to having a µτ -R symmetric Mν in the case of Majorana neutrinos. In
other words, (9) is not the most general form of neutrino mass matrix with µτ symmetry.
But, before giving that, we first discuss the basis invariant conditions on Hν with µτ
symmetry.

3 Rephasing invariants for Hν with µτ symmetry

We should remark that the discussion in the previous section was based on a phase
convention where (5) or (8) was valid. If µτ -U mixing follows accidentally (Refs. [38,39]
show one way), we do not expect Hν to be in the form (8) as the flavor basis is unique
only up to rephasing of the e, µ, τ flavors. Therefore, for the task of detecting µτ -U
mixing using Hν , it is more useful to formulate the following three rephasing invariant
conditions:

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
̸= 0 , (10a)

|(Hν)eµ| = |(Hν)eτ | , (Hν)µµ = (Hν)ττ . (10b)

See appendix A for more discussions. Establishing the equivalence between the conditions
in (10b) and the form (8) is straightforward in the basis where (eµ) and (eτ) entries of
Hν are real and positive after appropriate rephasing transformations. In contrast, the
first condition in (10a) is merely the requirement of CP violation as, generically,

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= (m2

1 −m2

2)(m
2

2 −m2

3)(m
2

3 −m2

1)J , (11)

where mi are neutrino mass eigenvalues and J is the usual Jarlskog invariant,

J = Im[Ve1V
∗
µ1Vµ2V

∗
e2] = c12s12c

2

13s13c23s23 sin(δ) . (12)

Note that (11) is Im[C∗D2] in the notation of (8) and the sign of (11) is given by the
sign of J for physical cases.

6This form resulting from a model was first proposed in Ref. [37].
7These points were alreay made in Refs. [38, 39] but here we extend their analysis.
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unequal
! = ei2⇡/3

The layout of the remainder of the paper is as follows. In section 2, we briefly review

the µ⌧ -LSS model and its prediction of oscillation parameters. In section 3, we consider

how these parameters are modified after including radiative corrections. The concrete

model is given in section 4, where all flavon vacuum alignments are realised explicitly.

Section 5 is devoted to conclusions. In the appendices, we list the basis of S4 used for

model building and discuss the vacuum degeneracy of flavons.

2 The µ⌧-LSS mass matrix

There are two cases of the LSS neutrino mass matrix [29] (after the seesaw mechanism

has been implemented) namely,

Case I: M⌫ = !ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 3 1

3 9 3

1 3 1

1

CA ,

Case II: M⌫ = !
2
ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (1)

where ! = e
i2⇡/3. As observed in [31], if ma,s satisfy the special ratio ma

ms
= 11 then this

results in maximal atmospheric mixing and CP violation, as can be checked explicitly

using the analytic formulas in Refs. [26, 29]. Inserting this ratio of masses, the neutrino

mass matrix takes one of the two forms

Case I: M⌫ = ms

0

B@
1 3 1

3 9 + 11! 3 + 11!

1 3 + 11! 1 + 11!

1

CA ,

Case II: M⌫ = ms

0

B@
1 1 3

1 1 + 11!2 3 + 11!2

3 3 + 11!2 9 + 11!2

1

CA . (2)

We refer to them as the µ⌧ -LSS mass matrices. With the µ⌧ conjugation [31],

⌫e ! ⌫
⇤
e
, ⌫µ ! ⌫

⇤
⌧
, ⌫⌧ ! ⌫

⇤
µ
, (3)

one transforms the mass matrix from one case to the other. Both cases predict the same

mixing angles (✓13, ✓12, ✓23), the same Dirac-type CP-violating phase (�)

✓13 = arcsin

✓
c�
p
6

◆
⇡ 7.807� ,

✓12 = arctan
⇣
c+

2

⌘
⇡ 34.50� ,

2



The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2

⎛

⎝
1 −1 − 2i

√
3 1− 2i

√
3

−1 + 2i
√
3 19 17 + 4i

√
3

1 + 2i
√
3 17− 4i

√
3 19

⎞

⎠ , (39)

does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that

Hν → 11|ms|2
⎛

⎝
1

√
13

√
13√

13 19
√
337e−iγ

√
13

√
337eiγ 19

⎞

⎠ , (41)
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The layout of the remainder of the paper is as follows. In section 2, we briefly review

the µ⌧ -LSS model and its prediction of oscillation parameters. In section 3, we consider

how these parameters are modified after including radiative corrections. The concrete

model is given in section 4, where all flavon vacuum alignments are realised explicitly.

Section 5 is devoted to conclusions. In the appendices, we list the basis of S4 used for

model building and discuss the vacuum degeneracy of flavons.

2 The µ⌧-LSS mass matrix

There are two cases of the LSS neutrino mass matrix [29] (after the seesaw mechanism

has been implemented) namely,

Case I: M⌫ = !ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 3 1

3 9 3

1 3 1

1

CA ,

Case II: M⌫ = !
2
ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (1)

where ! = e
i2⇡/3. As observed in [31], if ma,s satisfy the special ratio ma

ms
= 11 then this

results in maximal atmospheric mixing and CP violation, as can be checked explicitly

using the analytic formulas in Refs. [26, 29]. Inserting this ratio of masses, the neutrino

mass matrix takes one of the two forms

Case I: M⌫ = ms

0

B@
1 3 1

3 9 + 11! 3 + 11!

1 3 + 11! 1 + 11!

1

CA ,

Case II: M⌫ = ms

0

B@
1 1 3

1 1 + 11!2 3 + 11!2

3 3 + 11!2 9 + 11!2

1

CA . (2)

We refer to them as the µ⌧ -LSS mass matrices. With the µ⌧ conjugation [31],

⌫e ! ⌫
⇤
e
, ⌫µ ! ⌫

⇤
⌧
, ⌫⌧ ! ⌫

⇤
µ
, (3)

one transforms the mass matrix from one case to the other. Both cases predict the same

mixing angles (✓13, ✓12, ✓23), the same Dirac-type CP-violating phase (�)

✓13 = arcsin

✓
c�
p
6

◆
⇡ 7.807� ,

✓12 = arctan
⇣
c+

2

⌘
⇡ 34.50� ,

2



The best-fit values for ma,s in (33) are [30]

ma = 26.57meV , ms = 2.684meV . (35)

These values result in m1 = 0, m2 = 8.59meV , m3 = 49.8meV and

θ23 = 44.2◦ , δCP = −93.3◦ . (36)

The rest of the parameters are θ12 = 34.3◦, θ13 = 8.67◦. From µτ conjugation, all the
predictions for (34) are the same as for (33), except that θ23 and δCP get complementary
values with respect to 45◦ and −90◦, respectively.

We can immediately see that the values in (36) are close to the µτ -U mixing predictions
in (4). In fact, one can check that an exact µτ -U mixing is obtained if ma,s satisfy the
special ratio

ma

ms

= 11 , (37)

as can be checked explicitly using the analytic formulas in Refs. [28, 30]. Inserting this
ratio of masses, the neutrino mass matrix in (33) becomes, after multiplying by an overall
physically irrelevant phase of ω2,

Mν = ms

⎛

⎝
1 1 3
1 1 + 11ω2 3 + ω2

3 3 + 11ω2 9 + 11ω2

⎞

⎠ . (38)

Clearly, there is no µτ -R symmetry on Mν , i.e., it does not have the form in (9). However,
by comparing to (8), it is easy to check that its hermitean square,

Hν = M †
νMν = 11 |ms|2

⎛

⎝
1 −1 − 2i

√
3 1− 2i

√
3

−1 + 2i
√
3 19 17 + 4i

√
3

1 + 2i
√
3 17− 4i

√
3 19

⎞

⎠ , (39)

does satisfy µτ -R symmetry after we flip the sign of the second row and column. Thus
we conclude that the LSS mass matrix obeys µτ -U PMNS mixing in the limit of Eq. (37).
Since the best fit parameters of the LSS model are close to Eq. (37) then we can understand
why its predictions for the atmospheric angle and CP phase are both close to maximal.
However, since the LSS mass matrix has only two input parameters, which fixes all
neutrino masses and PMNS mixing parameters, there are other predictions including the
reactor angle, the solar angle, the absolute neutrino masses and the Majorana phase,
which µτ symmetry by itself does not address.

Obviously, the rephasing invariant conditions in (10b) are also satisfied. To check that
Hν is essentially complex, we can use (10a) and obtain

Im
[
(Hν)eµ(Hν)µτ (Hν)τe

]
= −113|ms|6 × 24

√
3 ≠ 0 . (40)

Since it is negative, the ambiguity in the sign of δ in (4) is now removed and we have
δ = −π/2 in this case. Alternatively, we could use rephasing with opposite phases for µ
and τ on (39) to eliminate the arguments of the entries (eµ) and (eτ) so that

Hν → 11|ms|2
⎛

⎝
1

√
13

√
13√

13 19
√
337e−iγ

√
13

√
337eiγ 19

⎞

⎠ , (41)
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equal

for case I and case II, respectively. They satisfy the following structure

(H⌫)12 = �(H⌫)
⇤
13 , (H⌫)22 = (H⌫)33 , (8)

from which one can directly prove ✓23 = 45� and � = 270�. The di↵erence of H⌫ between two cases can

be rotated away by redefinition of the unphysical phases in the charged lepton sector. Therefore, all

oscillation parameters, including ✓13, ✓13, �, as well as mass parameters �m2
21 and �m2

31, are predicted

to be exactly the same, as have been obtained in Eqs. (3) and (4). Without respecting the Majorana

phase and unphysical phases, the PMNS matrix in both cases takes the same form as

U =

0

BB@

2p
6

c+p
6

c�p
6

1p
6
�

c+p
6
� i c�2 �

c�p
6
+ i c+2

1p
6
�

c+p
6
+ i c�2 �

c�p
6
� i c+2

1

CCA . (9)

The mixing is a special case of the TM1 mixing.

This model is not fully consistent with the oscillation data since both the predicted ✓13 and ratio of

mass square di↵erences ↵ are smaller than the current global data of neutrino oscillation in 3� ranges.

As a comparison, current data give ✓13 ⇠ (8.09�, 8.98�) and ↵ ⇠ (0.0262, 0.0334) in 3� ranges.

2 Radiative corrections to the model

The explicit flavour texture of the µ⌧ -LSS model is corrected due to radiative corrections. We wonder

if the µ⌧ -LSS model can be compatible with current data after the RG running e↵ect is included.

We assume the flavour structure of the µ⌧ -LSS model is preserved at a new scale ⇤µ⌧ . This scale is

su�ciently higher than the electroweak scale ⇤EW for relatively large RG running e↵ect, but low than

the seesaw scale ⇤0, thus heave degrees of freedom do not need to be considered in the RG running. At

such a scale, the neutrino mass and flavour mixing is governed by the dimension-5 Weinberg operator

L � `H̃  `cH̃ + h.c. (10)

where  is a 3⇥ 3 coupling matrix. After the electroweak symmetry breaking, the Higgs gains the VEV

hHi = vH , the neutrino mass is given by M⌫ = v2
H
. In our following discussion, we will always use

M⌫ = v2
H

no matter at the scale lower or higher than the electroweak scale. For scale higher than the

electroweak scale, M⌫ should not be understood as neutrino masses, but just the coupling matrix with

its unit normalised by v2
H
.

The RG equation of the coupling matrix  is given in []. M⌫ at two scales due to the radiative

correction can be written as an integrated from as [?]

M⌫(⇤EW) = I↵

0

B@
Ie 0 0

0 Iµ 0

0 0 I⌧

1

CAM⌫(⇤µ⌧ )

0

B@
Ie 0 0

0 Iµ 0

0 0 I⌧

1

CA , (11)

where

I↵ = exp


�

1

16⇡2

Z ln⇤µ⌧

ln⇤EW

↵(t)dt

�
,

Il = exp


�

C

16⇡2

Z ln⇤µ⌧

ln⇤EW

y2
l
(t)dt

�
, (12)

2

c± =

s

1± 11

3
p
17
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Littlest Mu-Tau Seesaw

The layout of the remainder of the paper is as follows. In section 2, we briefly review

the µ⌧ -LSS model and its prediction of oscillation parameters. In section 3, we consider

how these parameters are modified after including radiative corrections. The concrete

model is given in section 4, where all flavon vacuum alignments are realised explicitly.

Section 5 is devoted to conclusions. In the appendices, we list the basis of S4 used for

model building and discuss the vacuum degeneracy of flavons.

2 The µ⌧-LSS mass matrix

There are two cases of the LSS neutrino mass matrix [29] (after the seesaw mechanism

has been implemented) namely,

Case I: M⌫ = !ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 3 1

3 9 3

1 3 1

1

CA ,

Case II: M⌫ = !
2
ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+ms

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (1)

where ! = e
i2⇡/3. As observed in [31], if ma,s satisfy the special ratio ma

ms
= 11 then this

results in maximal atmospheric mixing and CP violation, as can be checked explicitly

using the analytic formulas in Refs. [26, 29]. Inserting this ratio of masses, the neutrino

mass matrix takes one of the two forms

Case I: M⌫ = ms

0

B@
1 3 1

3 9 + 11! 3 + 11!

1 3 + 11! 1 + 11!

1

CA ,

Case II: M⌫ = ms

0

B@
1 1 3

1 1 + 11!2 3 + 11!2

3 3 + 11!2 9 + 11!2

1

CA . (2)

We refer to them as the µ⌧ -LSS mass matrices. With the µ⌧ conjugation [31],

⌫e ! ⌫
⇤
e
, ⌫µ ! ⌫

⇤
⌧
, ⌫⌧ ! ⌫

⇤
µ
, (3)

one transforms the mass matrix from one case to the other. Both cases predict the same

mixing angles (✓13, ✓12, ✓23), the same Dirac-type CP-violating phase (�)

✓13 = arcsin

✓
c�
p
6

◆
⇡ 7.807� ,

✓12 = arctan
⇣
c+

2

⌘
⇡ 34.50� ,

2



for case I and case II, respectively. They satisfy the following structure

(H⌫)12 = �(H⌫)
⇤
13 , (H⌫)22 = (H⌫)33 , (8)

from which one can directly prove ✓23 = 45� and � = 270�. The di↵erence of H⌫ between two cases can

be rotated away by redefinition of the unphysical phases in the charged lepton sector. Therefore, all

oscillation parameters, including ✓13, ✓13, �, as well as mass parameters �m2
21 and �m2

31, are predicted

to be exactly the same, as have been obtained in Eqs. (3) and (4). Without respecting the Majorana

phase and unphysical phases, the PMNS matrix in both cases takes the same form as

U =

0

BB@

2p
6

c+p
6

c�p
6

1p
6
�

c+p
6
� i c�2 �

c�p
6
+ i c+2

1p
6
�

c+p
6
+ i c�2 �

c�p
6
� i c+2

1

CCA . (9)

The mixing is a special case of the TM1 mixing.

This model is not fully consistent with the oscillation data since both the predicted ✓13 and ratio of

mass square di↵erences ↵ are smaller than the current global data of neutrino oscillation in 3� ranges.

As a comparison, current data give ✓13 ⇠ (8.09�, 8.98�) and ↵ ⇠ (0.0262, 0.0334) in 3� ranges.

2 Radiative corrections to the model

The explicit flavour texture of the µ⌧ -LSS model is corrected due to radiative corrections. We wonder

if the µ⌧ -LSS model can be compatible with current data after the RG running e↵ect is included.

We assume the flavour structure of the µ⌧ -LSS model is preserved at a new scale ⇤µ⌧ . This scale is

su�ciently higher than the electroweak scale ⇤EW for relatively large RG running e↵ect, but low than

the seesaw scale ⇤0, thus heave degrees of freedom do not need to be considered in the RG running. At

such a scale, the neutrino mass and flavour mixing is governed by the dimension-5 Weinberg operator

L � `H̃  `cH̃ + h.c. (10)

where  is a 3⇥ 3 coupling matrix. After the electroweak symmetry breaking, the Higgs gains the VEV

hHi = vH , the neutrino mass is given by M⌫ = v2
H
. In our following discussion, we will always use

M⌫ = v2
H

no matter at the scale lower or higher than the electroweak scale. For scale higher than the

electroweak scale, M⌫ should not be understood as neutrino masses, but just the coupling matrix with

its unit normalised by v2
H
.

The RG equation of the coupling matrix  is given in []. M⌫ at two scales due to the radiative

correction can be written as an integrated from as [?]

M⌫(⇤EW) = I↵

0

B@
Ie 0 0

0 Iµ 0

0 0 I⌧

1

CAM⌫(⇤µ⌧ )

0

B@
Ie 0 0

0 Iµ 0

0 0 I⌧

1

CA , (11)

where

I↵ = exp


�

1

16⇡2

Z ln⇤µ⌧

ln⇤EW

↵(t)dt

�
,

Il = exp


�

C

16⇡2

Z ln⇤µ⌧

ln⇤EW

y2
l
(t)dt

�
, (12)

2
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s
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Renormalisation 
Group Corrections

for case I and case II, respectively. On the right hand side of Eq. (??), only one parameter ✏ appears.

The RG running e↵ect specifies the ⌧ sector, which breaks the µ⌧ -U symmetry. As a result, two cases

in Eq. (??) gain totally di↵erent corrections.

By perturbatively diagonalising H⌫ , we obtain corrections to both ✓13 and the ratio of mass square

di↵erences ↵, which are determined by ✏. Including the other parameters, the corrected oscillation

parameters are approximatively given by

✓13 ⇡ 7.807� � 8.000�✏ ,

✓12 ⇡ 34.50� � 12.30�✏ ,

✓23 ⇡ 45.00� � 31.64�✏ ,

� ⇡ 270.00� + 3.23�✏ ,

↵ ⇡ 0.0247� 0.0147✏ (18)

in case I, and

✓13 ⇡ 7.807� + 0.345�✏ ,

✓12 ⇡ 34.50� � 13.96�✏ ,

✓23 ⇡ 45.00� � 30.50�✏ ,

� ⇡ 270.00� + 2.33�✏ ,

↵ ⇡ 0.0247� 0.0249✏ (19)

in case II. Here again, I↵ gives only an overall enhancement or suppression to masses and thus does not

contribute to the above formulas.

Let us first have a look at case II. We can see that ✓13 gains a very small correction from ✏. In order

to enhance ✓13 by 0.2�, ✏ should be positive and not smaller than 0.5, in spite of validity of perturbation

calculation. MSSM always gives negative correction and thus, does not satisfy the requirement. SM

gives positive correction, but the correction is too small. Another reason forbidding us to consider

RG running is that ✓13 and �m2
21/�m2

31 gain corrections in opposite directions. If one parameters

runs closer to the experimental allowed range, the other runs farther away for the experimental allowed

range.

Then, we turn back to case I. In this case, both ✓13 and � are corrected in the same direction. To

increase their values, ✏ has to be negative with value �✏ ⇠ O(0.1). Such a value can be obtained in

MSSM with large tan� with value of order 10.

We perform the numerical illustration for RG corrections in the MSSM.

3 A µ⌧-LSS model in S4 ⇥ S4

In this section, we present a flavour model to realise the µ⌧ -LSS flavour structure. We assume the

flavour symmetry to be S4L ⇥ S4R ⇥ Zn in the SUSY framework. How lepton gain flavoured masses

based on specified flavon vacuum will be discussed in section ?? and how flavons gain the specified

VEVs will be given in section ??.
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increase their values, ✏ has to be negative with value �✏ ⇠ O(0.1). Such a value can be obtained in

MSSM with large tan� with value of order 10.

We perform the numerical illustration for RG corrections in the MSSM.

3 A µ⌧-LSS model in S4 ⇥ S4

In this section, we present a flavour model to realise the µ⌧ -LSS flavour structure. We assume the

flavour symmetry to be S4L ⇥ S4R ⇥ Zn in the SUSY framework. How lepton gain flavoured masses
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Conclusions
Most parameters well measured in oscillation 
experiments…but…CP phase, octant, ordering?
Also: Dirac or Majorana? Absolute masses? 

TB mixing explained by S4…excluded by reactor 
angle…but…S4 violations allow: charged lepton 
corrections, or TM1,TM2, with testable sum rules 

Mu-tau symmetry predicts                                     
Littlest mu-tau seesaw…one parameter…wow! 

Origin of Plato’s symmetry? - see backup slides 
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3 Plato’s Fire

The patterns of Eqs. (5) and (6) should be simultaneously maintained by some symmetry, but

it looks impossible. However, there is in fact a solution, and it is based on the non-Abelian

discrete symmetry A4 [9, 10]. What is A4 and why is it special?

Around the year 390 BCE, the Greek mathematician Theaetetus proved that there are

five and only five perfect geometric solids. The Greeks already knew that there are four basic

elements: fire, air, water, and earth. Plato could not resist matching them to the five perfect

geometric solids and for that to work, he invented the fifth element, i.e. quintessence, which

is supposed to hold the cosmos together. His assignments are shown in Table 1.

Table 1: Properties of Perfect Geometric Solids

solid faces vertices Plato Group

tetrahedron 4 4 fire A4

octahedron 8 6 air S4

icosahedron 20 12 water A5

hexahedron 6 8 earth S4

dodecahedron 12 20 ? A5

The group theory of these solids was established in the early 19th century. Since a

cube (hexahedron) can be imbedded perfectly inside an octahedron and the latter inside

the former, they have the same symmetry group. The same holds for the icosahedron and

dodecahedron. The tetrahedron (Plato’s “fire”) is special because it is self-dual. It has

the symmetry group A4, i.e. the finite group of the even permutation of 4 objects. The

reason that it is special for the neutrino mass matrix is because it has 3 inequivalent one-

dimensional irreducible representations and 1 three-dimensional irreducible representation

exactly. Its character table is given below.
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Origin of Plato’s symmetry?
Two possibilities:
1. From gauge 

group e.g. 
SU(3) or 
SO(3)

2. From extra 
dimensions 
e.g. string 
theory



Origin of Plato’s symmetry?
Possibility 1:

Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120;
Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891;
B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417; 

be obtained after the relevant irrep get a VEV. For instance, some of those subgroup
obtained by irreps up to 13 are shown in Table 1. The minimal irrep for SO(3) ! S4

is a 9-plet, while that for SO(3) ! A5 is a 13-plet. Applying a 9-plet flavon ⇢ and a
13-plet flavon  , respectively, we will realise these breakings in a SUSY framework in the
following.

irrep 1 3 5 7 9 11 13
subgroups SO(3) SO(2)

SO(3)
Z2 ⇥ Z2

SO(2)
SO(3)

1
A4

Z3

D4

SO(2)
SO(3)

S4 1
A4

S4

A5

Table 1: The not systematical stabiliser subgroups in the low-dimensional irreducible repre-
sentations of the group SO(3) [27].

2.2.1 SO(3) ! A4

The simplest irrep to break SO(3) ! A4 is using a 7-plet [26, 27]. In this work, we
introduce a 7-plet flavon ⇠ to achieve this goal. In the 3d flavour space, it is represented
as a rank-3 tensor ⇠ijk, which satisfies the requirements in Eq. (3), i.e.,

⇠ijk = ⇠jki = ⇠kij = ⇠ikj = ⇠jik = ⇠kji , ⇠iik = 0 . (5)

Constrained by Eq. (5), there are 7 free components of ⇠, which can be chosen as

⇠111, ⇠112, ⇠113, ⇠123, ⇠133, ⇠233, ⇠333 . (6)

For the A4 symmetry, we work in the Ma-Rajasekaran (MR) basis, where the generators
s and t in the 3d irreducible representation are given by

gs =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , gt =

0

@
0 0 1
1 0 0
0 1 0

1

A . (7)

The A4-invariant VEV, satisfying

(gs)ii0(gs)jj0(gs)kk0h⇠i0j0k0i = h⇠ijki ,

(gt)ii0(gt)jj0(gt)kk0h⇠i0j0k0i = h⇠ijki , (8)

is given by

h⇠123i ⌘
v⇠
p
6
, h⇠111i = h⇠112i = h⇠113i = h⇠133i = h⇠233i = h⇠333i = 0 . (9)

The VEV of ⇠ is geometrically shown in Fig. 1.
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Figure 1: A geometrical description of the 7-plet ⇠ijk as a tank-3 tensor with i, j, k = 1, 2, 3.
Points in the same colour represent the identical components, e.g., ⇠112 = ⇠121 = ⇠211 all in
green, etc. As a traceless tensor, points in grey are dependent upon the rest, e.g., ⇠122 =
⇠212 = ⇠221 = �⇠111� ⇠133. These properties leave only 7 independent components, showing in
7 di↵erent colours. For the A4-invariant VEV, only those in red, ⇠123 = ⇠132 = ⇠231 = ⇠213 =
⇠312 = ⇠321, take non-zero values.

The discussion of SO(3) ! A4 has been given in Refs. [26–28]. The main idea is con-
structing flavon potential and clarifying the A4-invariant one in Eq. (9) to be the minimum
of the potential, where v⇠ is determined by the minimisation. This idea cannot be di-
rectly applied to supersymmetric flavour models. In the later case, the flavon potential
is directly related to the flavon superpotential

Vf =
X

i

����
@wf

@�i

����
2

+ · · · , (10)

where �i represent any scalars in the theory, and the dots are negligible soft breaking
terms and D-terms for the fields charged under the gauge group. This potential is more
constrained than the non-supersymmetric version. If the minimisation of the superpo-
tential @wf/@�i = 0 has a solution, the minimisation of the potential @Vf/@�i = 0 is
identical to the minimisation of the superpotential. Since most flavour models have been
built in SUSY, it is necessary to consider if SO(3) ! A4 can be achieved in SUSY.

In order to break SO(3) to A4, we introduce two driving fields ⇠d1 ⇠ 1, ⇠d5 ⇠ 5 and consider
the following superpotential terms

w⇠ = ⇠d1
�
c1(⇠⇠)1 � µ2

⇠

�
+ c2

�
⇠d5(⇠⇠)5

�
1
, (11)
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Break SO(3) using large Higgs reps

Possibility 1:
Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120;
Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891;
B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417; 



Possibility 2:  Extra dimensions (string theory)
G.Altarelli and F.Feruglio, hep-ph/0512103
R.de Adelhart Toorop, F.Feruglio and C.Hagedorn, 1112.1340
F.Feruglio, 1706.08749; J.C.Criado and F.Feruglio, 1807.01125; J.T.Penedo and S.T.Petcov 1806.11040;  
P.P.Novichkov, J.T.Penedo, S.T.Petcov and A.V.Titov, 1811.04933, 1812.02158;
T.Kobayashi, K.Tanaka and T.H.Tatsuishi,1803.10391;
T.Kobayashi, N.Omoto, Y.Shimizu, K.Takagi, M.Tanimoto and T.H.Tatsuishi,1808.03012;
G.J.Ding, S.F.King and X.G.Liu, 1903.12588
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The structure of a torus 𝑇2 ≃ The structure of a lattice on ℂ-plane

Without loss of generality,

𝜔1,𝜔2 → 1, 𝜔2
𝜔1

≡ 1, 𝜏

𝜏

𝑂 1

𝑇2

≃
𝜔1

𝜔2

With identification

ℒeff depends on 𝜏. e.g.) ℒeff ⊃ 𝑌 𝜏 𝑖𝑗𝜙𝜓𝑖𝜓𝑗 +⋯

¾4𝐷 effective theory depends on a modulus 𝜏

x5
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x5
<latexit sha1_base64="Jq6DIXDrhmvucMdfM/j1gJ7WFU8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+pd9MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AERwI2k</latexit><latexit sha1_base64="Jq6DIXDrhmvucMdfM/j1gJ7WFU8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+pd9MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AERwI2k</latexit><latexit sha1_base64="Jq6DIXDrhmvucMdfM/j1gJ7WFU8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+pd9MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AERwI2k</latexit><latexit sha1_base64="Jq6DIXDrhmvucMdfM/j1gJ7WFU8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaUDbbSbt0swm7G7GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+pd9MoVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVT236t2dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AERwI2k</latexit>

y5
<latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit>

y5
<latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit><latexit sha1_base64="vc6Y/dlJMzU3nDllNghXEqN5BrU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK1hbaUDbbTbt0swm7EyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCajhUijeQoGSdxLNaRRI3g7GN1O//cS1EbF6wCzhfkSHSoSCUbTSfda/6Fdrbt2dgSwTryA1KNDsV796g5ilEVfIJDWm67kJ+jnVKJjkk0ovNTyhbEyHvGupohE3fj47dUJOrDIgYaxtKSQz9fdETiNjsiiwnRHFkVn0puJ/XjfF8MrPhUpS5IrNF4WpJBiT6d9kIDRnKDNLKNPC3krYiGrK0KZTsSF4iy8vk8ezuufWvbvzWuO6iKMMR3AMp+DBJTTgFprQAgZDeIZXeHOk8+K8Ox/z1pJTzBzCHzifPxNGjaU=</latexit>

z5 = x5 + iy5
<latexit sha1_base64="5RYaoMLKX5hpYlJmTF1VHa0iVl4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoiLXoRil48VrAf0Iaw2W7apZtN2N2IMfRvePGgiFf/jDf/jds2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/vhm6nceqFQsEvc6jakb4qFgASNYG6n/5NWvHr36GUu9uleu2FV7BrRMnJxUIEfTK3/1BxFJQio04VipnmPH2s2w1IxwOin1E0VjTMZ4SHuGChxS5WazmyfoxCgDFETSlNBopv6eyHCoVBr6pjPEeqQWvan4n9dLdHDpZkzEiaaCzBcFCUc6QtMA0IBJSjRPDcFEMnMrIiMsMdEmppIJwVl8eZm0z6uOXXXuapXGdR5HEY7gGE7BgQtowC00oQUEYniGV3izEuvFerc+5q0FK585hD+wPn8A4ViQ6g==</latexit><latexit sha1_base64="5RYaoMLKX5hpYlJmTF1VHa0iVl4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoiLXoRil48VrAf0Iaw2W7apZtN2N2IMfRvePGgiFf/jDf/jds2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/vhm6nceqFQsEvc6jakb4qFgASNYG6n/5NWvHr36GUu9uleu2FV7BrRMnJxUIEfTK3/1BxFJQio04VipnmPH2s2w1IxwOin1E0VjTMZ4SHuGChxS5WazmyfoxCgDFETSlNBopv6eyHCoVBr6pjPEeqQWvan4n9dLdHDpZkzEiaaCzBcFCUc6QtMA0IBJSjRPDcFEMnMrIiMsMdEmppIJwVl8eZm0z6uOXXXuapXGdR5HEY7gGE7BgQtowC00oQUEYniGV3izEuvFerc+5q0FK585hD+wPn8A4ViQ6g==</latexit><latexit sha1_base64="5RYaoMLKX5hpYlJmTF1VHa0iVl4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoiLXoRil48VrAf0Iaw2W7apZtN2N2IMfRvePGgiFf/jDf/jds2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/vhm6nceqFQsEvc6jakb4qFgASNYG6n/5NWvHr36GUu9uleu2FV7BrRMnJxUIEfTK3/1BxFJQio04VipnmPH2s2w1IxwOin1E0VjTMZ4SHuGChxS5WazmyfoxCgDFETSlNBopv6eyHCoVBr6pjPEeqQWvan4n9dLdHDpZkzEiaaCzBcFCUc6QtMA0IBJSjRPDcFEMnMrIiMsMdEmppIJwVl8eZm0z6uOXXXuapXGdR5HEY7gGE7BgQtowC00oQUEYniGV3izEuvFerc+5q0FK585hD+wPn8A4ViQ6g==</latexit><latexit sha1_base64="5RYaoMLKX5hpYlJmTF1VHa0iVl4=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEoiLXoRil48VrAf0Iaw2W7apZtN2N2IMfRvePGgiFf/jDf/jds2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+QVtFiSS0RSIeya6PFeVM0JZmmtNuLCkOfU47/vhm6nceqFQsEvc6jakb4qFgASNYG6n/5NWvHr36GUu9uleu2FV7BrRMnJxUIEfTK3/1BxFJQio04VipnmPH2s2w1IxwOin1E0VjTMZ4SHuGChxS5WazmyfoxCgDFETSlNBopv6eyHCoVBr6pjPEeqQWvan4n9dLdHDpZkzEiaaCzBcFCUc6QtMA0IBJSjRPDcFEMnMrIiMsMdEmppIJwVl8eZm0z6uOXXXuapXGdR5HEY7gGE7BgQtowC00oQUEYniGV3izEuvFerc+5q0FK585hD+wPn8A4ViQ6g==</latexit>
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1 Introduction

A considerable interest in discrete flavour symmetries [1–7] has been fostered by early mod-
els of quark masses and mixing angles [8,9] and, more recently, by the discovery of neutrino
oscillations. Early data were well-compatible with a highly symmetric lepton mixing pat-
tern, the tri-bimaximal one [10], which could be derived from small non-abelian discrete
symmetry groups such as A4 [11–13]. Other discrete groups like S4 and A5 produced inter-
esting alternative mixing patterns, which could be adopted as zeroth-order approximation
to the data. Today this approach is facing several di�culties. The formidable recent exper-
imental progress has sharpened the neutrino oscillation parameters, revealing many details
that require a precise description, such as the non-vanishing value of the reactor angle, the
deviation of the atmospheric angle from the maximal value and a non-trivial Dirac CP-
violating phase. Inclusion of these features in a realistic model based on discrete symmetries
requires departure from minimality. Large corrections to the zeroth-order approximation
can be introduced at the price of spoiling predictability, due to the ignorance about the non-
negligible higher-order contributions. Alternatively, groups of large dimensionality can be
invoked to correctly fit the data [14–19]. Discrete flavour symmetries can also be combined
with CP invariance in predictive models [20, 21]. Apart from the loss of minimality, there
are several drawbacks in this program. The breaking of flavour symmetries typically relies
on a generous set of scalar multiplets, the so-called flavons, and the Yukawa interactions
generally include non-renormalizable operators with flavon insertions. Higher-dimensional
operators with multiple flavon insertions come with unknown coe�cients that a↵ect the
model predictions. Moreover the flavon energy density has to be cleverly designed to get
the correct vacuum alignment. The approach is mainly focused on lepton mixing angles
while neutrino masses are reproduced by tuning the available parameters. Finally, it is
not straightforward to extend the construction to the quark sector that seems not to like
discrete symmetries. In view of these disadvantages, anarchy [22–26] and its generaliza-
tions have gained considerable momentum. Anarchy in the neutrino sector can arise in a
variety of di↵erent frameworks providing a common description to both quark and lepton
mass/mixing parameters, also in the context of grand unified theories [27]. However in
the anarchy paradigm the observed lepton mixing angles are regarded as environmental
quantities [28] and cannot be accurately predicted. For their intrinsic nature models based
on anarchy essentially escape experimental tests aiming at an accuracy that matches the
experimental precision.

In this wavering between order and anarchy we feel encouraged to investigate new
directions. Aim of the present work is to explore a new class of models generalizing the
current approach based on discrete symmetry groups. These models are required to be
invariant under transformations of the modular group, acting on the complex modulus ⌧
(Im(⌧) > 0) as linear fractional transformations:

⌧ ! a⌧ + b

c⌧ + d
, (a, b, c, d integers , ad� bc = 1) .

In a supersymmetric theory these transformations naturally induce transformations of the
matter multiplets according to representations of �N , the so-called finite modular groups.
Moreover there are holomorphic combinations of the modulus ⌧ , the modular forms of level

2



S, T are generators of A4 if T3=1,  S4 if T4=1,  A5 if T5=1, …
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!

(21)

and the T transformation:
 

!
0
1

!
0
2

!
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1 0
1 1

! 
!1

!2

!

=

 
!1

!1 + !2

!

. (22)

The real 2 ⇥ 2 matrices S and T (with det S = det T = 1) transform the lattice basis
vectors as shown in the second and third panels of Fig. 2.

Without loss of generality, the lattice can be rescaled as (!1, !2) ! (1, ⌧), where
⌧ ⌘ !2/!1 is a complex modulus field in the upper half of the complex plane which
describes the compactification [37]. The S, T transformations above then apply to the
special linear fractional transformations of the modulus field, ⌧ ! (a⌧ + b)/(c⌧ + d),
where a, b, c, d are elements of the matrices S or T above. Eq. 21 transforms ⌧ ! �1/⌧
(associated with compactification radius duality R ! 1/R), while Eq. 22 transforms
⌧ ! ⌧ +1, a lattice shift which may be repeated ad infinitum. Applying the constraint
T

N = I, reduces the infinite modular group � (generated by S, T with S
2 = (ST )3 =

I) into its finite subgroup �N . For example, �3 = A4, �4 = S4, �5 = A5, are the
familiar flavour symmetries [37].

Modular invariance controls orbifold compactifications of the heterotic super-
string, hence the 4d e↵ective Lagrangian must respect modular symmetry. This
implies Yukawa couplings Yi(⌧) (involving twisted states whose modular weights do
not add up to zero) are modular forms [38]. Thus the Yi(⌧) must form multiplets of
�N , acting rather like flavon fields with well defined alignments which depend on h⌧i.
In general h⌧i is a free parameter [39], but it may be fixed by the orbifold [40] ⇤⇤.
For example, a particular orbifold with �3 and h⌧i = ! = e

i2⇡/3 gives Yukawa triplet
alignments such as Yi = (�1, 2!, 2!2), respecting mu-tau reflection symmetry in the
framework of SU(5) Grand Unification [40].
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Level 3 Weight 2
acts as A4 triplet:

that there are three linearly independent such forms, which we call Yi(⌧). Three linearly
independent weight 2 and level-3 forms are constructed in the Appendix C. They read:

Y1(⌧) =
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where ⌘(⌧) is the Dedekind eta-function, defined in the upper complex plane:

⌘(⌧) = q1/24
1Y

n=1

(1� qn) q ⌘ ei2⇡⌧ . (29)

They transform in the three-dimensional representation of A4. In a vector notation where
Y T = (Y1, Y2, Y3) we have

Y (�1/⌧) = ⌧ 2 ⇢(S)Y (⌧) , Y (⌧ + 1) = ⇢(T )Y (⌧) ,

with unitary matrices ⇢(S) and ⇢(T )

⇢(S) =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , ⇢(T ) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A , ! = �1

2
+

p
3

2
i .

The q-expansion of Yi(⌧) reads:

Y1(⌧) = 1 + 12q + 36q2 + 12q3 + ...

Y2(⌧) = �6q1/3(1 + 7q + 8q2 + ...)

Y3(⌧) = �18q2/3(1 + 2q + 5q2 + ...) .

From the q-expansion we see that the functions Yi(⌧) are regular at the cusps. Moreover
Yi(⌧) satisfy the constraint:

Y 2
2 + 2Y1Y3 = 0 . (30)

As discussed explicitly in Appendix D, the constraint (30) is essential to recover the correct
dimension of the linear space M2k(�(3)). On the one side from table 1 we see that this
space has dimension 2k + 1. On the other hand the number of independent homogeneous
polynomial Yi1Yi2 · · · Yik of degree k that we can form with Yi is (k + 1)(k + 2)/2. These
polynomials are modular forms of weight 2k and, to match the correct dimension, k(k�1)/2
among them should vanish. Indeed this happens as a consequence of eq. (30). Therefore
the ring M(�(3)) is generated by the modular forms Yi(⌧) (i = 1, 2, 3).
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kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the
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3 3 3A4:

Yukawa couplings involving twisted states whose modular 
weights do not add up to zero are modular forms 

F.Feruglio, 1706.08749

free modulus

Figure 1: Fundamental domain for �(3).

be constructed by fundamental domain F = {⌧ 2 H|� 1/2  Re ⌧  1/2 and |⌧ | � 1} of
SL(2,Z) [39].

The modular forms of weight 2k and level N = 3 form a linear space M2k(�(3)), and
its dimension turns out to be 2k + 1 [25, 40]. For the lowest nontrivial weight 2k = 2,
the dimension is equal to 3. The modular space M2k(�(3)) can be constructed from the
Dedekind eta-function.

3 Modular forms of weight 2, 4, 6 at level N = 3

The modular form of modular weight 2 at level N = 3 have been given in ref []:

Y1(⌧) =
i

2⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

◆
,

Y2(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !2⌘

0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
,

Y3(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !2⌘

0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
(10)

where ! = e2⇡i/3 , and ⌘(⌧) is the Dedekind eta-function, which is written by

⌘(⌧) = q1/24
1Y

n=1

(1� qn) (11)

where q = e2⇡i⌧ . The q�expansion of Yi reads:

Y =

0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .
�6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )
�18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

1

A (12)

4 τ =
ω2

ω1

Modular Forms



A4 Modular Symmetry
G.J.Ding, S.F.K. and X.-G.Liu, 1907.11714

Models mass matrices
assignment weight

⇢Ec
1,2,3

kEc
1,2,3

kL kNc

A1 W1, C1 1,1,1 1, 3, 5 1 �

A2 W1, C2 10,10,10 1, 3, 5 1 �

A3 W1, C3 100,100,100 1, 3, 5 1 �

Weinberg A4 W1, C4 1,1,10 1, 3, 1 1 �

A5 W1, C5 1,1,100 1, 3, 1 1 �

operator A6 W1, C6 10,10,1 1, 3, 1 1 �

A7 W1, C7 100,100,1; 1, 3, 1 1 �

A8 W1, C8 100,100,10 1, 3, 1 1 �

A9 W1, C9 10,10,100 1, 3, 1 1 �

A10 W1, C10 1,100,10 1, 1, 1 1 �

B1(C1)[D1] S1(S2)[S3], C1 1,1,1 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]
B2(C2)[D2] S1(S2)[S3], C2 10,10,10 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]
B3(C3)[D3] S1(S2)[S3], C3 100,100,100 0(3)[1], 2(5)[3], 4(7)[5] 2(�1)[1] 0(1)[1]

Type I B4(C4)[D4] S1(S2)[S3], C4 1,1,10 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B5(C5)[D5] S1(S2)[S3], C5 1,1,100 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]

see-saw B6(C6)[D6] S1(S2)[S3], C6 10,10,1 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B7(C7)[D7] S1(S2)[S3], C7 10,10,100 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B8(C8)[D8] S1(S2)[S3], C8 100,100,1 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]
B9(C9)[D9] S1(S2)[S3], C9 100,100,10 0(3)[1], 2(5)[3], 0(3)[1] 2(�1)[1] 0(1)[1]

B10(C10)[D10] S1(S2)[S3], C10 1,100,10 0(3)[1], 0(3)[1], 0(3)[1] 2(�1)[1] 0(1)[1]

Table 4: The summary of models. notice that parentheses and brackets respresent other two classes that
they are only di↵erent in neutrino sector.

5 Numerical Analysis

In this section we will discuss the numerical results for our models that have listed
in previous section. Since some phases can be absorbed through field redefinition, some
coupling constants of the models can be taken to be real. We first count the number of
independent real free parameters of each model. For instance, we can rephase the charged
lepton superfields Ec

1, E
c
2, E

c
3 to make the parameters ↵, �, �, �1 real while the phase of �2

can not be removed. Thus the charged lepton mass matrix depends on the independent
real parameters �/↵, �/↵, �1/↵, |�2/↵|,Arg(�2/↵) except the overall scale factor ↵vd. If the
neutrino masses originate from the Weinberg operator, the e↵ective neutrino mass matrix
would be expressed in terms of modular forms as functions of the modulus ⌧ besides the
overall factor v2u/⇤. If the neutrino masses are generated through the seesaw mechanism,
the light neutrino mass matrix has two independent real parameters |g2/g1|,Arg(g2/g1) and
the overall scale factor is g21v

2
u/⇤ which controls the absolute scale of neutrino masses, as can

seen from table 3. In this way, we can easily read out the independent real input parameters
of our models and the results are collected in table 6.

It’s convenience for us to fit them by choosing the corresponding dimensionless observable
quantities. In this paper we uniformly choose six accurately known dimensionless observable
quantities:

Qi = {sin2 ✓12, sin
2 ✓13, sin

2 ✓23, r, me/mµ, mµ/m⌧} (57)

The Best-fit values and 1� errors have listed in the Table 5.
There are many popular approach to exploring the parameter space, for instance, �2

optimization by a grid or random sample , the advantage of pre-determining the ranges and
step size for each parameter and thus of being able to control exactly which points in the
parameter space will be probed, but it also has obvious limitations, Firstly, the number of
points required scales as kN , where N is the dimentions of the parameter space and k is
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By scanning the parameter space, we find the minimum �2 values, then the free dimensionless
parameters has been determined by the way. Finally, to determine the overall factors, we
need to use the quantities which have absolute magnitude, i.e me, mµ, m⌧ , �m2

21 and �m2
31.

2 We restrict the free parameter space in the following way:

�/↵, �/↵, �1/↵, |�2/↵|, |g2/g1| 2 [0, 104], (59)

Arg(�2/↵) Arg(g2/g1) 2 [0, 2⇡] (60)

and ⌧ is taken from the fundamental domain F3 (see the Fig. 1). Due to the underlying theory
enjoys the modular symmetry �̄, namely the vacua related by modular transformations are
physically equivalent [33], moreover the theory enjoys a ”conjugation symmetry”, namely
when

⌧ ! �⌧ ?, gi ! g?i , (61)

this transformation leaves lepton masses and mixing angles unchanged while the signs of
both Dirac and Majorana CP phases would be flipped. Hence it is su�cient to limit in the
range Re⌧ > 0 during the numerical analysis. So in practice, we can restrict ⌧ in this way:
Re ⌧ 2 [0, 0.5], |⌧ | > 1. The predictions of the mixing parameters in the conjugate region
Re⌧ 2 [�0.5, 0] can be easily obtained by only shifting the overall signs of the Dirac as well
as Majorana CP phases. Hence all the numerical results given in the following come in pair
with opposite CP violation phases. We listed the final numerical results in the following.

5.1 Numerical results of the models

We have extensively scanned over the parameter space of for each model. The basic
situation of numerical analysis is shown in the table 7

Models
Ordering

Models
Ordering

Models
Ordering

Models
Ordering

NO IO NO IO NO IO NO IO
A1 8 8 B1 4 4 C1 8 8 D1 4 4
A2 8 8 B2 4 4 C2 8 8 D2 4 4
A3 8 8 B3 4 4 C3 8 8 D3 4 4
A4 8 8 B4 8 8 C4 8 8 D4 8 4
A5 8 8 B5 8 8 C5 8 8 D5 4 8
A6 8 8 B6 8 4 C6 8 8 D6 4 8
A7 8 8 B7 8 8 C7 8 8 D7 4 4
A8 8 8 B8 8 8 C8 8 8 D8 4 4
A9 8 8 B9 4 4 C9 8 8 D9 4 4
A10 8 8 B10 4 4 C10 8 8 D10 4 4

Table 7: The summary of numerical results of all models for NO and IO ordering. 8 represents the best-fit
value of the model fall in the 3� range of the experimental. In contrast, 4 represents the best-fit value of
the model exceed the 3� range of the experimental. It can be seen that the modelA1 ⇠ A10 and C1 ⇠ C10
are not consistent with the experimental.

Next we report the details of numerical results of the some of these ”4” models. Our
main interest is the case of NO ordering, moreover as few parameters as possible in the
models. Thus we select the models B9, B10, D5 ⇠ D10 with NO ordering as the our main
numerical analysis objects, and for the case of IO ordering, we give a good example: model
D10. The results of the numerical analysis are summarized in tables 8-12. Then we display

2In this paper, we only use the �m
2
21 to determine the overall factors.
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5 Conclusion

In this paper we have provided a comprehensive analysis of lepton masses and mixing in
theories with �3

⇠= A4 modular symmetry, where the single modulus field ⌧ is the unique
source of flavour symmetry breaking, with no flavons allowed, and all masses and Yukawa
couplings are modular forms. Similar to previous analyses, we have discussed all the simplest
neutrino sectors arising from both the Weinberg operator and the type I seesaw mechanism,
with lepton doublets and right-handed neutrinos assumed to be triplets of A4. Unlike previ-
ous analyses, we have allowed right-handed charged leptons to transform as all combinations
of 1, 10 and 100 representations of A4, using the simplest di↵erent modular weights to break
the degeneracy, leading to ten di↵erent charged lepton Yukawa matrices, instead of the usual
one.

The above considerations imply ten di↵erent Weinberg models, labelled as A1-A10, and
thirty di↵erent type I seesaw models, labelled as B1-B10, C1-C10, D1-D10, which we have anal-
ysed in detail, in the form of extensive sets of figures and tables. The results of the numerical
analysis are summarised in table 6, where we see that fourteen models for both NO and IO
can accommodate the data, indicated by “4”, where the original model corresponds to the
case of D10 and all the other successful models are new. Interestingly, most of the successful
patterns B9, B10, D5 ⇠ D10 (apart from D5 ⇠ D6) predict tightly constrained values for
the mixing parameters and large neutrino mass observables |mee| and mmin, together with
approximately maximal Dirac phase. There are also other interesting correlations among
the mixing parameters for these models.

The most successful models B9, B10, D5 ⇠ D10 all contain six real free parameters and two
overall mass scales, describing the entire lepton sector (three charged lepton masses, three
neutrino masses, three lepton mixing angles and three CP violating phases). These are the
minimal models of �3 modular-invariant supersymmetry theories allowed by experiment. The
results presented here provide new opportunities for A4 modular symmetry model building,
including possible extensions to the quark sector.
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Models mass matrices
assignment weight

( ⇢Ec , ⇢L , ⇢Nc ) kE1,2,3 kL kNc

A1 W1 (1,3 ,�) � 1 �
A2 W2 (1,30 ,�) � 1 �
A3 S1 (1,3 ,3) � 2 0

With A4 S2 (1,3 ,3) � �1 1
flavons A5 S3 (1,30 ,3) � 2 0

A6 S4 (1,3 ,30) � 2 0
A7 S5 (1,30 ,30) � 2 0
A8 S6 (1,30 ,30) � �1 1

B1 C1 , W1 (1 ,3 ,�) 1 , 3 , 5 1 �
B2 C2 , W2 (1 ,30 ,�) 1 , 3 , 5 1 �
B3 C1 , S1 (1 ,3 ,3) 0 , 2 , 4 2 0

Without B4 C1 , S2 (1 ,3 ,3) 3 , 5 , 7 �1 1
flavons B5 C2 , S3 (1 ,30 ,3) 0 , 2 , 4 2 0

B6 C1 , S4 (1 ,3 ,30) 0 , 2 , 4 2 0
B7 C2 , S5 (1 ,30 ,30) 0 , 2 , 4 2 0
B8 C2 , S6 (1 ,30 ,30) 3 , 5 , 7 �1 1

Table 4: The summary of models and the corresponding predictions for neutrino and charged lepton mass
matrices. For the models with flavons in the charged lepton sector, the weights of the right-handed charged
leptons should satisfy the constraint in Eq. (B.4a), i.e. kE1 = 5kE3 + 4kL and kE2 = 4kE3 + 3kL.

Models free input parameters pi overall factors

A1, A2 {Re ⌧, Im ⌧} v2u/⇤
With A4, A5, A6, A8 {Re ⌧, Im ⌧} g2v2u/⇤

flavons A3, A7 {Re ⌧, Im ⌧, |g1/g2|, Arg(g1/g2)} g22v
2
u/⇤

B1, B2 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|, Arg(�2/↵)} ↵vd, v2u/⇤
Without B4, B5, B6, B8 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|, Arg(�2/↵)} ↵vd, g2v2u/⇤

flavons B3, B7 {Re ⌧, Im ⌧, �/↵, �1/↵, |�2/↵|,
Arg(�2/↵), |g1/g2|, Arg(g1/g2)}

↵vd, g22v
2
u/⇤

Table 5: The input parameters of each model, where the freedom of field redefinition has been used to absorb
the physically irrelevant phases. Notice that the values of the input parameters are real.
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, where ⌧

0 =
!
0
2

!
0
1

=
a⌧ + b

c⌧ + d
. (4)

A SL(2,Z) transformation on the modulus parameter ⌧ and its negative are equivalent,
as can be seen from equations 2 and 4. Therefore, we can use the infinite discrete group
PSL(2,Z) = SL(2,Z)/Z2, generated by

S : ⌧ ! �1/⌧ and T : ⌧ ! ⌧ + 1, (5)

to describe the transformations that relates equivalent tori. This is also called the modular
group �̄ satisfying �̄ = �/{±1}5. The generators of the infinite dimensional modular
group can be also written as

S =

✓
0 1
�1 0

◆
, T =

✓
1 0
1 1

◆
. (6)

They satisfy the presentation

� ' {S, T |S2 = (ST )3 = I}/{±1}, (7)

where S, T 2 SL(2,Z).

We will be considering the finite dimensional discrete subgroups by imposing an additional
constraint on T

N , where N is a positive integer,

�N ' {S, T |S2 = (ST )3 = T
N = I}, (8)

where S, T 2 SL(2,ZN). These groups, with small N are isomorphic to the known
discrete groups as �2 ' S3, �3 ' A4, �4 ' S4,�5 ' A5.

The physical action of the discrete modular transformations �̄M = SL(2,ZN)/{±1} [14]
fulfill the presentation

�̄M ' {S, T |S2 = (ST )3 = T
M = I}/{±1}, (9)

since any model built with modular symmetries is invariant under the change of sign.

We now introduce a convenient (if non-unique) representation for the modular transfor-
mations consistent with the presentation in Eq.9,

S =

✓
0 1
�1 0

◆
, T(M) =

✓
e
�2i⇡/M 0
1 e

2i⇡/M

◆
, (10)

which satisfies the presentation of the �̄M group, for any integer M > 2. This represen-
tation will be useful in the following discussion.

5The modular group � refers to SL(2,Z), while �̄ is used for PSL(2,Z) and takes into account the
equivalence of an SL(2,Z) matrix and its negative.
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Represented by the modular transformations (level M>2)

the fixed points are only invariant for a particular 
level M=3 and fixed modulus

F. De Anda, S.F.K., E.Perdomo, 1812.05620

2.2 Why the orbifold T
2
/Z2 suggests modular A4 symmetry with

fixed modulus ⌧ = ! = e
i2⇡/3

or ⌧ = ! + 1

In this subsection we present an argument which shows that a particular T 2
/Z2 orbifold

(as assumed in this paper) suggests an underlying modular A4 symmetry with fixed
modulus parameter ⌧ = ! = e

i2⇡/3 or ⌧ = ! + 1. More precisely, we shall show that
this is the only possible finite modular symmetry and modulus value consistent with the

orbifold T
2
/Z2.

We begin by defining the orbifold T
2
/Z2 in terms of two arbitrary lattice vectors !1 and

!2,

z = z + !1,

z = z + !2,

z = �z.

(11)

The action of the orbifold in equation 11 leaves 4 invariant 4d branes given by 6

z̄ =

⇢
0,

!1

2
,
!2

2
,
!1 + !2

2

�
. (12)

After compactification, the symmetries of the branes remain unbroken, therefore it is
relevant to study any possible symmetry among the branes which will a↵ect the fields
allocated on them. At this stage the modulus ⌧ = !2/!1 can apparently take any value.
However we shortly present a proof that, by considering the e↵ect of modular symmetry
on the branes, the only consistent surviving finite modular subgroup is A4 with fixed
⌧ = !2/!1 = e

i2⇡/3 or ⌧ = ! + 1.

The proof will determine for which values of !1 and !2 (corresponding to the orbifold in
Eq. 11) the branes are left invariant under the finite modular transformations in Eq. 10.
In order to do this, we will apply the convenient representation of the finite modular
transformations in Eq. 10 on the general set of branes in Eq. 12 and see if there is any
solution (i.e. any value of !1,!2 and M) for which the branes are left invariant. The
result will be that the only consistent choice is �̄3 = A4 with ⌧ = ! or ⌧ = ! + 1.

Proof

Applying the finite modular transformation in Eq. 10 on the lattice vectors gives,

S

✓
!1

!2

◆
=

✓
!2

�!1

◆
, T(M)

✓
!1

!2

◆
=

✓
e
�2i⇡/M

!1

!1 + e
2i⇡/M

!2

◆
. (13)

The S-transformed branes are then

z̄
0
S =

⇢
0,

!2

2
,
�!1

2
,
!2 � !1

2

�
. (14)

Using the orbifold transformations from Eq. 11, we can add !1 to the second and fourth
branes, and obtain the original set. Therefore the brane set is always invariant under the
S transformation, for any value of !1 and !2.

6The notation for the lattice vectors !1,2 should not be confused with the twist angle ! = ei2⇡/3.
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We show that for the orbifold

Finally, without loss of generality, we can take the solution m = 1 and M = 3 then rescale
the basis vector as in Eq. 3 and work on the orbifold T

2
/Z2 with the torus defined by

!1 = 1 and !2 = e
i2⇡/3. If we would have chosen the M = 6 case, the basis vectors would

be !1 = 1 and !2 = ! + 1 with the same A4 symmetry. We conclude that the orbifold
T

2
/Z2 can only be consistent with the finite modular group �̄3 = A4 with fixed modulus

⌧ = ! = e
i2⇡/3 or ⌧ = ! + 1.

This concludes the proof.

2.3 The orbifold T
2
/Z2 with ! = e

i2⇡/3
and modular A4 symmetry

Following the argument of the previous subsection, we henceforth focus on the orbifold
T

2
/Z2 with particular twist angle denoted as ! = e

i2⇡/3, identified as the modulus ⌧

associated with a particular finite modular symmetry A4 (the only choice consistent with
this orbifold).

This orbifold then corresponds to the identification

z = z + 1,

z = z + !,

z = �z,

(22)

where the first two equations are the periodic conditions from the torus T 2 and the third
one is the action generated by the orbifolding symmetry Z2. The twist corresponds to
! = e

i2⇡/3. The orbifold symmetry transformations leave 4 invariant 4d branes shown in
figure 2

z̄ =

⇢
0,

1

2
,
!

2
,
1 + !

2

�
. (23)

Fixingm = 1 andM = 3, the set of branes is invariant under the modular transformations

S =

✓
0 1
�1 0

◆
, T(3) =

✓
!
2 0
1 !

◆
, (24)

on the lattice vectors (1,!)T . These transform the basis vectors as

S

✓
1
!

◆
=

✓
!

�1

◆
, T(3)

✓
1
!

◆
=

✓
!
2

1 + !
2

◆
=

✓
�1� !

�!

◆
, (25)

(noting that 1 + ! + !
2 = 0) leaving the lattice invariant as can be seen from Fig. 1.

The matrices S, T(3) fulfill the presentation of the group they generate to be

{S, T(3)|S2 = T
3

(3)
= (ST(3))

3 = I}/{±1} = �3 ' A4, (26)

where S, T(3) 2 SL(2,Z3). So that the branes are indeed invariant under the discrete
modular group �3 ' A4.

The above argument confirms that fields on the branes must respect an �3 ' A4 modular
symmetry, with fixed modulus ⌧ = ! = e

i2⇡/3. We emphasize that this is one of the main
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Figure 1: A sketch of the tri-direct CP approach for two right-handed neutrino models, where the high

energy family and CP symmetry Gf oHCP is spontaneously broken down to Gatm oH
atm
CP in the sector of

one of the right-handed neutrinos, and Gsol o H
sol
CP in the sector of the other right-handed neutrino, with

the charged lepton sector having a di↵erent residual flavour symmetry Gl.

was understood that the LSS model may arise from a semi-direct symmetry approach corre-
sponding to a di↵erent residual flavour symmetry for each charge sector, where a particular
residual flavour symmetry may be assumed in each of the neutrino and charged lepton sec-
tors. To be precise, in the semi-direct symmetry approach, it was shown that there is an
SU subgroup of S4 in the neutrino sector and the T subgroup of S4 in the charged lepton
sector, leading to a constrained form of TM1 mixing [24] in which the first column of the
tri-bimaximal mixing matrix is preserved, but with the reactor angle and CP phases fixed
by the same two parameters which fix the neutrino masses.

The LSS model is a general and predictive framework for explaining neutrino masses and
lepton mixing, and it is not confined to TM1. For instance, the golden LSS is an another
viable class of LSS models [30], the flavor symmetry group is A5 and it is spontaneously
broken to di↵erent residual subgroups in the charged lepton, atmospheric neutrino and solar
neutrino sectors. The golden LSS predicts the lepton mixing is of GR1 form where the first
column of the golden ratio mixing matrix is preserved [30]. In both the original LSS and
golden LSS models, it was always assumed that there is a high energy CP symmetry which
is completely broken in each of the sectors, with no residual CP symmetry.

In this paper we propose a new tri-direct CP approach for two right-handed neutrino
models based on the idea of spontaneously broken family and CP symmetry, leaving a
di↵erent residual flavour symmetry, together with a di↵erent residual CP symmetry, in each
of the two right-handed neutrino sectors. In other words, the high energy family and CP
symmetry Gf oHCP is spontaneously broken down to GatmoHatm

CP in the sector of one of the
right-handed neutrinos, and GsoloHsol

CP in the sector of the other right-handed neutrino, with
the charged lepton sector having a di↵erent residual flavour symmetry Gl, as schematically
illustrated in figure 1. The tri-direct CP approach is a hybrid of the direct and indirect
approaches. The common residual symmetry of the neutrino sector in the direct model is
splitted into two branches: the residual symmetries associated with the atmospheric and
solar neutrinos. In comparison with the indirect model, the alignments associated with each
right-handed neutrino are enforced by residual symmetry. In such a tri-direct CP approach

3

Tri-direct CP with S4NO for x, ⌘, ma and r ⌘ ms/ma being free parameters

(Gl, Gatm, Gsol) Xsol �2
min sin2 ✓13 sin

2 ✓12 sin
2 ✓23 �CP /⇡ �/⇡ m2(meV)m3(meV)mee(meV)

N1 (ZT
3 , Z

U
2 , ZSU

2 )
1 0.383 0.0224 0.318 0.580 �0.386 0.335 8.597 50.249 3.100
U 0.383 0.0224 0.318 0.580 �0.386 0.910 8.597 50.249 3.725

N2 (ZT
3 , Z

ST
3 , ZSU

2 )
1 0.383 0.0224 0.318 0.580 �0.386 0.754 8.596 50.249 3.798
U 0.383 0.0224 0.318 0.580 �0.386 0.996 8.596 50.249 3.604

N3 (ZT
3 , Z

S
2 , Z

SU
2 ) U 4.321 0.0225 0.318 0.538 �0.447 0.444 8.603 50.242 3.064

N4 (ZT
3 , Z

TST 2

2 , ZU
2 ) 1 5.081 0.0225 0.337 0.563 �0.407 0.284 8.601 50.244 2.950

N5 (K(S,U)
4 , ZTU

2 , ZTU
2 ) U 20.461 0.0225 0.256 0.582 0 �0.265 8.597 50.249 3.026

N6 (ZTSU
4 , ZT

3 , Z
SU
2 ) U 8.698 0.0226 0.345 0.554 �0.419 0.202 8.605 50.239 2.638

N7 (K(S,TST 2)
4 , ZT

3 , Z
SU
2 )

1 12.254 0.0224 0.328 0.513 �0.482 0.502 8.600 50.245 3.099
U 11.621 0.0224 0.327 0.514 0 0 8.601 50.244 3.877

N8 (K(S,TST 2)
4 , ZU

2 , ZTU
2 ) U 5.768 0.0228 0.298 0.537 �0.451 0.365 8.539 50.326 2.615

IO for x, ⌘, ma and r ⌘ ms/ma being free parameters

(Gl, Gatm, Gsol) Xsol �2
min sin2 ✓13 sin

2 ✓12 sin
2 ✓23 �CP /⇡ �/⇡ m1(meV)m2(meV)mee(meV)

I1 (ZT
3 , Z

ST
3 , ZU

2 ) 1 17.640 0.0226 0.310 0.5 �0.928 0.306 49.377 50.120 43.792

I2 (ZT
3 , Z

SU
2 , ZTU

2 ) U 17.640 0.0226 0.310 0.5 �0.682 0.843 49.377 50.120 21.168

I3 (K(S,U)
4 , ZTST 2

2 , ZU
2 )

1 17.640 0.0226 0.310 0.5 �0.495 0.102 49.377 50.120 47.946
S 17.640 0.0226 0.310 0.5 �0.495 0.102 49.377 50.120 47.946

I4 (K(S,U)
4 , ZTU

2 , ZTU
2 ) U 20.419 0.0227 0.256 0.582 0 1 49.377 50.120 23.384

I5 (ZT
3 , Z

SU
2 , ZSU

2 ) U 18.008 0.0227 0.318 0.5 �0.5 0.743 49.377 50.120 24.840

I6 (ZT
3 , Z

TST 2

2 , ZU
2 ) 1 17.640 0.0226 0.310 0.5 0.913 �0.389 49.377 50.120 41.048

I7 (ZT
3 , Z

U
2 , ZTU

2 ) U 17.640 0.0226 0.310 0.5 0.975 �0.175 49.377 50.120 46.918

I8 (ZT
3 , Z

U
2 , ZSTSU

2 ) U 17.640 0.0226 0.310 0.5 �0.761 0.759 49.377 50.119 24.569

I9 (ZT
3 , Z

SU
2 , ZSTSU

2 ) U 17.640 0.0226 0.310 0.5 �0.954 0.249 49.377 50.120 45.347

I10 (ZTSU
4 , ZS

2 , Z
TU
2 )

U 17.640 0.0226 0.310 0.5 �0.00465�0.102 49.377 50.120 47.946
STS 17.640 0.0226 0.310 0.5 �0.00465�0.102 49.377 50.120 47.946

I11 (ZTSU
4 , ZS

2 , Z
T 2U
2 )

U 17.640 0.0226 0.310 0.5 �0.128 �0.548 49.377 50.120 34.480
ST 2S 17.640 0.0226 0.310 0.5 �0.372 0.548 49.377 50.120 34.480

I12 (ZTSU
4 , ZU

2 , ZTU
2 ) U 17.640 0.0226 0.310 0.5 �0.772 0.729 49.377 50.120 25.920

I13 (ZTSU
4 , ZTU

2 , ZU
2 ) 1 17.640 0.0226 0.310 0.5 0.834 �0.636 49.377 50.120 30.323

I14 (K(S,TST 2)
4 , ZT

3 , Z
SU
2 )

1 17.640 0.0226 0.310 0.5 �0.104 �0.448 49.377 50.120 38.772
U 2.046 0.0225 0.310 0.607 �0.604 �0.448 49.377 50.120 38.778

I15 (K(S,TST 2)
4 , ZU

2 , ZTU
2 ) U 17.640 0.0226 0.310 0.5 �0.666 �0.636 49.377 50.120 30.323

I16 (K(S,U)
4 , ZTST 2

2 , ZTU
2 ) STS 17.640 0.0226 0.310 0.5 �0.872 0.548 49.377 50.120 34.480

I17 (K(S,U)
4 , ZTU

2 , ZU
2 ) S 28.676 0.0225 0.310 0.477 0.915 �0.548 49.377 50.120 34.486

I18 (K(S,U)
4 , ZTU

2 , ZT 2U
2 ) ST 2S 9.241 0.0227 0.310 0.523 �0.743 0.510 49.377 50.120 36.178

Table 3: The predictions for the lepton mixing angles, CP violation phases, neutrino masses and the e↵ective Majorana
mass mee in neutrinoless double beta decay for all viable residual symmetries, where the parameters x, ⌘, ma and
r ⌘ ms/ma are treated as free parameters. The residual CP transformation associated with atmospheric neutrino
can be read out from table 2. We only show one representative residual CP transformation of the solar neutrino
sector since the other residual CP transformations can be obtained by multiplying the residual flavor symmetry Gsol

with the given CP transformation from the left-hand side.
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comprehensive analysis of lepton mixing patterns which can be obtained from the flavour group
S4 and CP symmetry in the tri-direct CP approach in a model independent fashion [56]. The
model construction along the tri-direct CP approach was also illustrated [55, 56]. In the minimal
seesaw model, a phenomenologically viable pattern of lepton mixing and neutrino masses can also
be obtained from the breaking of A5 flavour symmetry into three di↵erent subgroups in the charged
lepton, atmospheric neutrino and solar neutrino sectors [57].

It is remarkable that the original Littlest Seesaw model for CSD(3) can be reproduced from the
tri-direct CP approach [55, 56], if the S4 flavour symmetry and CP symmetry are broken to the
remnant symmetries ZT

3 , Z
U
2 ⇥H

atm
CP and Z

SU
2 ⇥H

sol
CP in the charged lepton sector, the atmospheric

sector and the solar neutrino sector, respectively, corresponding to theN1 case. In this case, one row
of the neutrino Dirac mass matrix is proportional to (0,�1, 1) and the other row is proportional
to (1, 2 � x, x), where x is enforced to be a real parameter by the residual symmetry, thereby
overcoming the previous problem where it could be complex in general. Then the light neutrino
mass matrix is determined to be1 [56]

m⌫ = ma

0

@
0 0 0
0 1 �1
0 � 1 1

1

A+mse
i⌘

0

@
1 2� x x

2� x (x� 2)2 (2� x)x
x (2� x)x x

2

1

A , (1)

where an overall phase has been neglected, ma, ms, ⌘ and x are four real free parameters. In a
concrete model, the parameters x and ⌘ could be fixed to certain values through the technique
of vacuum alignment [55, 56]. For example, CSD(3) corresponding to x = 3 and ⌘ = 2⇡/3, can
be achieved within the N1 case. Then all three mixing angles, two CP phases and three neutrino
masses only depend on two real parameters ma and ms which can be determined by the mass
squared di↵erences �m

2
21 ⌘ m

2
2 � m

2
1 and �m

2
31 ⌘ m

2
3 � m

2
1 precisely measured in neutrino

oscillation experiments. Then one can extract the predictions for all others mixing parameters.
Obviously this kind of model is highly predictive.

In this paper, we shall focus on a particularly interesting example of the N1 case with x = �1/2
and ⌘ = �⇡/2, henceforth referred to as the new Littlest Seesaw, which was one of the best fit points
found in [56] where the lepton mixing parameters and neutrino masses are predicted to lie in rather
narrow regions, with an atmospheric angle in the second octant as preferred by the latest global fits.
Motivated by the excellent agreement of this case with experimental data, in this work we develop
further this new Littlest Seesaw model in two di↵erent ways: we discuss leptogenesis and we also
construct a concrete model to demonstrate how it could arise from a realistic theory. We emphasise
that the model involves a particularly simple and “maximal” phase ⌘ = �⇡/2 which is the unique
source of CP violation for both neutrino oscillations and leptogenesis. It is noteworthy that the
observed value of the baryon asymmetry YB of our Universe will be obtained through flavoured
thermal leptogenesis in both the Standard Model and the Minimal Supersymmetric Standard Model
(MSSM). We will propose an explicit supersymmetric (SUSY) model in the framework of minimal
seesaw mechanism with 2RHN based on S4 o HCP and show that the mass hierarchies of the
charged lepton and the light neutrino mass matrix in Eq. (1) with x = �1/2 and ⌘ = �⇡/2 may
be naturally derived in such a model.

The rest of this paper is organized as follows. In section 2, we revisit the N1 case of tri-direct CP
models with the alignments h�atmi / (0, 1,�1)T , h�soli / (1, x, 2� x)T which can be derived from
the S4 flavour symmetry in combination with CP symmetry, assuming the N1 residual symmetry.
We show that the new Littlest Seesaw model, which corresponds to a benchmark point in the N1

case with x = �1/2 and ⌘ = �⇡/2, provides an excellent fit to the experimental data of lepton
mixing angles and neutrino masses. We study the predictions of the new Littlest Seesaw model

1
Note that the seesaw mechanism results in a light e↵ective Majorana mass matrix was defined in the convention

Le↵ = � 1
2⌫

c
Lm⌫⌫L+h.c. Also note that here the second entries of the vacuum alignments which enter the Dirac mass

matrix are multiplied by minus one as compared to the usual Littlest Seesaw convention.

3
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Figure 1: Variation of �2
with respect to the phase ⌘ for the typical values of x = 3, 4,�1/2,�3/4,�3/5, for the

N1 case of tri-direct CP models.

which give rise to the following values of observables

sin2 ✓13 = 0.02241, sin2 ✓12 = 0.318, sin2 ✓23 = 0.582, �CP = �0.382⇡, ' = 0.333⇡ ,

m1 = 0meV, m2 = 8.597meV, m3 = 50.249meV, mee = 3.112meV , (10)

where mee refers to the e↵ective Majorana mass in neutrinoless double beta decay, and ' is the
Majorana phase. These predictions for lepton mixing angles agree with the experimental data quite
well, and the global minimum of the �2 function is �2

min = 0.384. Note that the �2 function includes
the contributions of three mixing angles and two squared mass di↵erences as usual. Because the
indication of a preferred value of the Dirac phase �CP from global data analyses is rather weak [60],
we do not include any information on �CP in the �

2 function. We emphasise that the values of
the parameter x, ⌘, r and ma are not fixed by the residual symmetry, and can only be fixed by
explicit model construction. This task is easier for the simpler the values of x and ⌘ where the solar
vacuum alignment h�soli is easier to achieve, therefore we are interested in the simplest values of
these parameters.

We report the results of �2 analysis for some representative values of x and ⌘ in table 1. Once
the values of x and ⌘ are fixed, all the mixing parameters and neutrino masses only depend on
the input parameters ma and r whose values of them can be determined by the mass squared
di↵erences �m

2
21 and �m

2
31. Then the three lepton mixing angles, two CP violation phases and

the absolute neutrino mass scale are uniquely predicted by the theory. We notice that the e↵ective
Majorana mass mee lies in the range of 1 to 4 meV, consequently it is impossible to be measured
in foreseeable future.

The original Littlest Seesaw model [15–18] corresponds to the cases of (x, ⌘) = (3, 2⇡/3),
(�1,�2⇡/3), and the CSD(4) model [19, 20] can be exactly reproduced for (x, ⌘) = (4, 4⇡/5).
From table 1, we see that the values (x, ⌘) = (�1/2,±⇡/2), (�3/4,±3⇡/5) and (�4/5,±3⇡/5)
can give rise to a smaller �2

min than the original Littlest Seesaw model and CSD(4) model [15–20].
We have shown �

2
min as a function of ⌘ for x = 3, 4,�1/2,�3/4,�3/5 in figure 1. Moreover, we

plot the contour regions for the 3� intervals of mixing angles ✓13 and ✓23 and mass ratio m2/m3

in the plane r versus ⌘/⇡ in figure 2. The result for ✓12 is not displayed here, because it is re-
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Original Littlest Seesaw

New  Littlest Seesaw

The model is based on the flavour symmetry S4⇥Z4⇥Z9 in which the desired alignments and the
phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
focussed on the N1 case where the flavour symmetry S4 and CP are broken to Z

T
3 in the charged

lepton sector, ZU
2 ⇥ H

atm
CP in the atmospheric sector and Z

SU
2 ⇥ H

sol
CP in the solar neutrino sector

with H
atm
CP = {1, U} and H

sol
CP = {1, SU}, the vacuum alignment of �atm and �sol would be fixed

to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m

2
21 and �m

2
31. The comprehensive numerical analysis shows

that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.
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TM1Tri-direct CP with S4 gives the structure

2.1 The new Littlest Seesaw: x = �1/2, ⌘ = �⇡/2

Before getting into too many technicalities of model construction, we analyze the predictions for
lepton mixing parameters and neutrino masses for x = �1/2, ⌘ = �⇡/2. In this case, the light
neutrino mass matrix in Eq. (1) becomes

m⌫ = ma

0

@
0 0 0
0 1 �1
0 � 1 1

1

A� ims

4

0

@
4 10 � 2
10 25 � 5
�2 � 5 1

1

A . (11)

We note that all lepton mixing parameters and mass ratio m2/m3 are determined by only a single
parameter r = ms/ma. The expressions for the three lepton mixing angles and the CP invariants
are given by

sin2 ✓13 =
1

6

✓
1� 45r2 + 16

Cr

◆
, sin2 ✓12 = 1� 4Cr

5Cr + 45r2 + 16
,

sin2 ✓23 =
1

2
+

540r2

5Cr + 45r2 + 16
, JCP = � 4r

Cr
, I1 = �6r2

Cr
, (12)

with

Cr = 4
p
B |x=�1/2,⌘=�⇡/2 =

q
(225r2 + 16)2 � 2304r2 . (13)

Notice that ✓23 is predicted to lie in the second octant, it is preferred by the present neutrino
oscillation data [60]. As both ✓13 and ✓23 depend on a single parameter r, a sum rule between them
can be obtained2

sin2 ✓23 =
1 + 4 sin2 ✓13 +

p
1 + 28 sin2 ✓13(1� 3 sin2 ✓13)

4 cos2 ✓13
. (14)

The two non-zero neutrino masses can be read o↵ from Eq. (5) as,

m
2
2 =

1

8
m

2
a

�
16 + 225r2 � Cr

�
, m

2
3 =

1

8
m

2
a

�
16 + 225r2 + Cr

�
. (15)

It is easy to see that the mass ratio m2/m3 only depends on the parameter r. Consequently we
can express the mass ratio m

2
2/m

2
3 in terms of ✓13 as

m
2
2

m
2
3

=
10 sin2 ✓13(3 sin2 ✓13 � 1) +

p
1 + 28 sin2 ✓13(1� 3 sin2 ✓13)� 1

2 sin2 ✓13(15 sin2 ✓13 � 8) + 2
. (16)

We plot the dependence of all lepton mixing parameters and mass ratio m2/m3 on the parameter
r in figure 3. Eliminating the input parameter r, we can relate all above physical observables to the
reactor mixing angle ✓13. We see from figure 3 that the three lepton mixing angles and neutrino mass
ratio are within their 1� ranges at the best fit point r = 0.145. The best fitting values of Dirac CP
phase and Majorana CP phase are �CP ' �0.354⇡ and ' ' 0.316⇡, respectively. We numerically
scan over the parameter space of ma and r, and find the viable range of r is r 2 [0.139, 0.153] to
be compatible with the present neutrino oscillation data at 3� level [60]. Furthermore, we find the
neutrino masses and mixing parameters are predicted to lie in the following rather narrow regions,

0.3167  sin2 ✓12  0.3194, 0.02044  sin2 ✓13  0.02437, 0.593  sin2 ✓23  0.609,

�0.358  �CP /⇡  �0.348, 0.308  '/⇡  0.322, 3.084meV  mee  3.388meV,

8.319meV  m2  8.950meV, 49.305meV  m3  51.206meV . (17)

Therefore this new Littlest Seesaw model is very predictive and it should be easily excluded by
precise measurement of ✓12, ✓23 and �CP in forthcoming neutrino facilities.

2
The sum rule for ✓12 is cos

2 ✓12 cos
2 ✓13 = 2/3 which holds true for all TM1 models.
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neutrino masses and mixing parameters are predicted to lie in the following rather narrow regions,

0.3167  sin2 ✓12  0.3194, 0.02044  sin2 ✓13  0.02437, 0.593  sin2 ✓23  0.609,

�0.358  �CP /⇡  �0.348, 0.308  '/⇡  0.322, 3.084meV  mee  3.388meV,

8.319meV  m2  8.950meV, 49.305meV  m3  51.206meV . (17)

Therefore this new Littlest Seesaw model is very predictive and it should be easily excluded by
precise measurement of ✓12, ✓23 and �CP in forthcoming neutrino facilities.

2
The sum rule for ✓12 is cos

2 ✓12 cos
2 ✓13 = 2/3 which holds true for all TM1 models.
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The model is based on the flavour symmetry S4⇥Z4⇥Z9 in which the desired alignments and the
phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
focussed on the N1 case where the flavour symmetry S4 and CP are broken to Z

T
3 in the charged

lepton sector, ZU
2 ⇥ H

atm
CP in the atmospheric sector and Z

SU
2 ⇥ H

sol
CP in the solar neutrino sector

with H
atm
CP = {1, U} and H

sol
CP = {1, SU}, the vacuum alignment of �atm and �sol would be fixed

to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m

2
21 and �m

2
31. The comprehensive numerical analysis shows

that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.
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agreement with the present data for many examples, which include both the original Littlest Seesaw
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It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m
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31. The comprehensive numerical analysis shows

that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.
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Figure 3: The predictions of the new Littlest Seesaw model with x = �1/2, ⌘ = �⇡/2 for the mixing parameters

and mass ratio m2/m3. The shaded regions represent the 1� and 3� ranges of each mixing parameter and mass

ratio [60]. On the left panel, the values of mixing parameters and mass ratio are predicted with respect to r and

the black vertical line denotes the best fit value rbf = 0.145. On the right panel, we show the predictions for mixing

parameters and mass ratio as functions of sin ✓13.

3 Predictions for leptogenesis in the new Littlest Seesaw model

It is well-known fact that there is a predominance of matter over antimatter present in the observ-
able Universe. The value of baryon asymmetry of the Universe normalised to the entropy density
is [61],

YB = (0.870300± 0.011288)⇥ 10�10 (95%CL) . (18)

Apart from elegantly explaining the tiny neutrino masses, the seesaw mechanism provides a sim-
ple and attractive mechanism for understanding the matter-antimatter asymmetry of the Universe
via leptogenesis [62]. The out-of-equilibrium decays of right-handed neutrinos in the early Uni-
verse generates a lepton asymmetry because of the CP violating Yukawa couplings. The lepton
asymmetry is subsequently converted into a baryon asymmetry via sphaleron processes in the SM.

In our concerned model, the phase ⌘ is the unique source of CP violation, and it controls CP
violation in both neutrino oscillations and leptogenesis. Therefore the measurable CP violation in
future neutrino oscillation experiments are closely related to the baryon asymmetry of the Universe.
In the present work, we shall focus on the simplest version of the leptogenesis in which the lepton
asymmetry is dominantly generated by the interactions and decay of the lightest right-handed
neutrino. The phase ⌘ is fixed to ⌘ = �⇡/2 in the new Littlest Seesaw model, and it yields a Dirac
CP violation phase �CP ' 1.646⇡. In this section, we shall study the prediction for leptogenesis
within the framework of SM and MSSM. The condition of successful baryogenesis will allow us to
determine the mass of the lightest right-handed neutrino in the new Littlest Seesaw model.

3.1 Leptogenesis for the new Littlest Seesaw model in the SM

In the SM, the final baryon asymmetry is given by [63]

YB =
12

37

X

↵

Y�↵ , (19)
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Figure 4: The correlation between YB and �CP for the new Littlest Seesaw model in SM whereM1 = 1.176⇥10
11
GeV.

The Planck result for the baryon asymmetry YB at 95% CL is represented by the horizontal band [61]. The red star

denotes the best fitting point at which the �2
function reaches a global minimum.

3.2 Leptogenesis for the new Littlest Seesaw model in the MSSM

In the MSSM, the final baryon asymmetry can be computed from the following formula [72]

YB =
10

31

X

↵

Ŷ�↵ . (37)

In the MSSM, the contributions of eN1 and eL↵ should be considered, which are the supersymmetric
partners of the lightest right-handed neutrino N1 and the lepton doublet L↵ respectively. In
other words, the densities Y eN1

and Ye↵ should be included in the Boltzmann equations. Then the
Boltzmann equations in MSSM are given by [66]
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, (38)

where the total (particle and sparticle) B/3� L↵ asymmetries denoted as Ŷ�↵ and

Ŷ
eq
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eq
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eq
` , Y
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phase ⌘ = �⇡/2 are achieved.

We emphasise that the model independent tri-direct CP approach is a quite predictive scheme
for constructing neutrino mass models based on discrete flavour symmetry and CP symmetry, even
without specialising to a particular choice of the two real input parameters ⌘ and x. Here we have
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to h�atmi / (0, 1,�1)T and h�soli / (1, x, 2� x)T , where importantly x is real due to the residual
CP symmetry. As a consequence, the lepton mixing matrix is determined to be the TM1 pattern,
and the experimental data on neutrino mixing can be described very well. Thus the structure is
enforced by residual symmetry in tri-direct CP approach, with S4 flavour symmetry yielding good
agreement with the present data for many examples, which include both the original Littlest Seesaw
model and the new Littlest Seesaw model [55, 56].

It is interesting to compare the new Littlest Seesaw with (x, ⌘) = (�1/2,�⇡/2) to the original
Littlest Seesaw model with (x, ⌘) = (3, 2⇡/3), (�1,�2⇡/3) [15, 17, 19], which also provides a good
fit the data, as summarized in table 1. However we find that the new Littlest Seesaw with arguably
simpler values x = �1/2, ⌘ = �⇡/2, can provide a better description to the experimental data than
the original Littlest Seesaw. The mixing parameters are predicted to lie in quite narrow regions,
and they are all within the reach of future neutrino experiments. The denominator of the phase
⌘ = �⇡/2 is the smallest one among the di↵erent benchmark values in table 1, consequently the
case of x = �1/2, ⌘ = �⇡/2 might be expected to be easier to realise in a concrete model than the
original Littlest Seesaw and other cases listed in table 1.

We emphasise that the choice x = �1/2 and ⌘ = �⇡/2 the new Littlest Seesaw model, is both
simpler and more successful than the original Littlest Seesaw model. As usual, all three lepton
mixing angles, leptonic CP violation phases and three neutrino masses (m1 = 0) only depend on
two input parametersma and r = ms/ma whose values can be determined by the precisely measured
neutrino mass squared di↵erences �m
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that all lepton mixing parameters and neutrino masses are restricted in rather narrow regions, as
shown in Eq. (17). The new Littlest Seesaw di↵ers most markedly in its predictions for ✓23 and
�CP . While the atmospheric mixing angle ✓23 is predicted to be close to maximal in the original
Littlest Seesaw model, it is predicted to to be in the second octant and close to the current central
value [60] in the new Littlest Seesaw model.

The “maximal” phase ⌘ = �⇡/2 is the unique source of CP violation in the new Littlest Seesaw
model, as usual controlling both low energy CP violation and the CP asymmetry in leptogenesis.
Hence the CP violation which may be observed in neutrino oscillations is related to be baryon
asymmetry of the Universe. We have studied the generation of the baryon asymmetry of the
Universe through leptogenesis in the new Littlest Seesaw model. We have numerically solved the
flavoured Boltzmann equations for the lepton asymmetries, and found that the observed excess
of matter over antimatter can be produced for the lightest right-handed neutrino mass M1 =
1.176 ⇥ 1011 GeV in SM and M1 = 3.992 ⇥ 1010 GeV in MSSM with tan� = 5. We conclude
that the new Littlest Seesaw model can give an excellent fit to the neutrino oscillation data and
leptogenesis simultaneously.

Finally we have constructed a fully working explicit model based on the flavour group S4 and
CP symmetry which fixes the values of x = �1/2 and ⌘ = �⇡/2 in the new Littlest Seesaw model.
The charged lepton mass hierarchy is naturally realised in our model, and the required vacua
h�ai / (0, 1,�1)T , h�si / (1,�1/2, 5/2)T and the relative phase ⌘ = �⇡/2 are readily generated
through the supersymmetric F -term alignment mechanism. It would be interesting to extend this
predictive new Littlest Seesaw model to the quark sector to give a unified description of quark and
lepton flavour mixing, for instance in the framework of a supersymmetric grand unified theory.
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Figure 4: The correlation between YB and �CP for the new Littlest Seesaw model in SM whereM1 = 1.176⇥10

11
GeV.

The Planck result for the baryon asymmetry YB at 95% CL is represented by the horizontal band [61]. The red star

denotes the best fitting point at which the �2
function reaches a global minimum.

3.2 Leptogenesis for the new Littlest Seesaw model in the MSSM

In the MSSM, the final baryon asymmetry can be computed from the following formula [72]
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Ŷ
eq
`

, (38)

where the total (particle and sparticle) B/3� L↵ asymmetries denoted as Ŷ�↵ and

Ŷ
eq
` = Y

eq
˜̀ + Y

eq
` , Y

eq
˜̀ ' Y

eq
` ' 45

⇡4gMSSM
⇤

, Y
eq
Natm

= Y
eq
eNatm

' 45z2K2(z)

2⇡4gMSSM
⇤

, (39)

12



A.E.Cárcamo Hernández and S.F.King,1903.02565 

Littlest Inverse Seesaw
2

involves two right-handed neutrinos plus two additional singlets, is given by:

M⌫ =
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where 0n⇥m are n⇥m dimensional submatrices consisting of all zeroes and the other submatrices in the flavour basis
have the structure:
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The light active neutrino mass matrix arising from the inverse seesaw formula m⌫ = �mD(MT )�1
µM

�1
m
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D
takes

the same form as the usual LS model [17–24]:
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3 9 3
1 3 1

1

A (3)

The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.

The flavour puzzle of the SM indicates that New Physics has to be advocated to explain the observed SM fermion mass
and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
presented in Appendix A. The superpotential that determines the vacuum configuration for the S4 doublet and triplet
scalars of our model is presented in Appendix B.

II. THE MODEL

We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.

1 An example of a dynamical explanation for the smallness of the µ parameter of the inverse seesaw and its connection with Dark matter
is provided in Ref. [128]
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The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.
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families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
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We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.
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Field SU(3)c SU(2)L U(1)Y U(1)Õ

Qi 3 2 1/6 0

u
c
i 3 1 ≠2/3 0

d
c
i 3 1 1/3 0

Li 1 2 ≠1/2 0

e
c
i 1 1 1 0

‹
c 1 1 0 1

‹c 1 1 0 ≠1

„ 1 1 0 1

Hu 1 2 1/2 ≠1

Hd 1 2 ≠1/2 ≠1

TABLE I. The minimal model consists of three left-handed families Âi = Qi, Li and its CP conju-
gated right-handed fields Â

c
i = u

c
i , d

c
i , e

c
i (i = 1, 2, 3), and two CP conjugated right-handed neutrinos

‹
c
, ‹c which carry opposite charge under the U(1)Õ gauge group, together with the U(1)Õ-breaking

scalar field „ and the two Higgs scalar doublets Hu and Hd which are charged under U(1)Õ. No-
tice that all the fermions of this table are left-handed spinors and the bars indicate conjugate
representations under the SM gauge group.

At dimension 6, the only e�ective operator that is generated at tree level is [52]
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When the Higgs doublets acquire VEVs, ”Ld=6 leads to corrections to the light neutrino
kinetic terms, which become non-diagonal. The necessary rotation and normalisation to
bring the neutrino kinetic terms to its canonical form induces deviations of unitarity in the
leptonic mixing matrix that appears in the charged current (CC) interactions.

In the full theory, the renormalisable Yukawa and mass Lagrangians of this minimal
model contain the following terms
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and
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where the transposes in the leptons have been omitted to shorten notation. We assume
that the Yukawa couplings between the left-handed neutrinos ‹i, the vector-like neutrino

4

Minimal Type Ib seesaw
Hernandez-Garcia and SFK 1903.01474

In terms of the Yukawa couplings, the light neutrino mass matrix of Eq. (11) built up
from the Dirac and Majorana mass matrices of Eq. (6) reads
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, (14)

where it can be seen that the smallness of the light neutrino masses stem not only from the
suppression of M

‹ , but also from the small size of ‘1
4. On the other hand, the deviations of

unitarity will be
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where the second term can be safely neglected since it would be of the order of the neutrino
mass scale squared over v

2. Therefore, in this model the deviations of unitarity of the
PMNS matrix are not suppressed by ‘1, and could be arbitrarily large. At leading order,
the deviations of unitarity are thus determined only by the first row of mD containing the
3 complex Yukawa couplings y

‹
i , and the mass scale of the vector-like neutrino M

‹ .

However, since both ÷ and m̂ are built from mD and MN , they may not be fully indepen-
dent. This implies that in determinate cases, ÷ could be partially reconstructed from m̂, and
therefore, from the observed pattern of neutrino masses and mixings in neutrino oscillation
experiments. In the particular case of this minimal scenario, the Yukawa couplings y

‹
i4 (y‹Õ

i4)
of Eq. (6) will be determined [60] up to an overall factor y (yÕ) from the elements of the
PMNS mixing matrix, and the two mass squared splittings, �m

2
sol and �m

2
atm. Notice that

in this minimal scenario just two light neutrinos get masses, and that therefore, the lightest
neutrino is strictly massless5. On the other hand, since the hierarchy of the neutrinos is not
determined yet, there will be two possible relations for the Yukawa couplings. For a normal
hierarchy (NH), m1 = 0 and the Yukawa couplings read

y
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31. While for an inverted hierarchy (IH), m3 = 0 and the Yukawa couplings are

given by

y
‹
i = yÔ

2
1Ô

1 + fl (Uú
PMNS)i2 +

Ô
1 ≠ fl (Uú

PMNS)i1

2
, (17)

y
‹Õ
i = y

Õ
Ô

2
1Ô

1 + fl (Uú
PMNS)i2 ≠

Ô
1 ≠ fl (Uú

PMNS)i1

2
,
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1 + r) with r = �m
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2
32. As a result, all the

neutrino phenomenology of this minimal scenario is described by five free parameters: two

4 A suppression from v
Õ is not considered since it must give rise to the down-type quark masses, and in

particular to the bottom quark mass, in the general model [29].
5 The lightest neutrino is still massless when the 1-loop neutrino mass corrections that arise from the

neutrino self-energy are considered [61].
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Light effective neutrino matrix

Unitarity violation due to large y

Assume
Hd 
couplings 
small

‹
c
4 and H̃d in Eq. (3) are suppressed by ‘1. This assumption allows the Yukawa couplings

between the left-handed neutrinos ‹i, the vector-like neutrino ‹
c
4 and Hu in Eq. (3) to be

large, leading to possibly observable violations of unitarity. The key point here is that the
e�ective Weinberg-like operator for neutrino mass involves both the Higgs doublets and
hence the Yukawa coupling to Hu may be large if that to H̃d is small, for a given neutrino
mass. This is not possible for the usual Weinberg operator arising from the conventional
seesaw mechanism, which makes the novel seesaw mechanism discussed here interesting.

In the following basis, the full neutrino mass matrix reads
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where v = vEW/
Ô

2 ƒ 174 GeV and v
Õ are the VEVs of the Higgs Hu and Hd, respectively,

and where the Dirac and Majorana mass matrices are defined as
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The neutrino mass matrix of Eq. (5) is diagonalised by the full unitary matrix U
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db , (7)

where m
diag and M

diag are the diagonal matrices containing the masses of the light and heavy
sectors, respectively. In all generality, this diagonalisation can be done as the product of two
consecutive rotations. This first rotation is a block-diagonalisation, while the second matrix
contains the two unitary rotations V and V

Õ that diagonalise the masses of the light and
heavy neutrinos, respectively. Since the rotation between the two heavy states is unphysical,
V

Õ = I can be used, and thus, the full unitary neutrino mixing matrix U is given by
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A11 A12
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0 I
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db , (8)

where the block-diagonalisation can be parametrise as the exponential of a block o�-diagonal
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FIG. 3. Allowed region of the free parameters y and M
‹ in the minimal scenario when the present

bound [63] on µ æ e“ is considered. For each hierarchy, the boundary ranges from the solid to the
dashed line depending on the values of the phases ” and –. The pink region corresponds to NH
while the blue region corresponds to IH.

constrain on ÷12 of Eq. (21) and a NH (IH) in the light neutrino sector is considered. The
allowed region depends on the CP-violating phase ” and the Majorana phase – of the PMNS
matrix. The boundaries of the allowed regions depend on the values of the free phases ”

and –. For a NH (IH), the solid line correspond to ” = – = 0 (” ƒ fi/2, – ƒ 9fi/10) and
can be relaxed until the dashed line which corresponds to ” = 0 and – = 2fi (” = – = 0).
For the numerical analysis, the central values of the ◊ij mixing angles of the PMNS matrix,
the solar and the atmospheric mass splittings of the NuFIT 4.0 [64] have been adopted.

III. RENORMALISABLE TYPE IB (PLUS TYPE IA) SEESAW MODEL

The model of the previous Section does not allow renormalisable Yukawa couplings for
the charged fermions and so must be extended somehow. Here we identify the two right-
handed neutrinos as originating from a fourth vector-like family, whose presence also allows
for the generation of e�ective Yukawa couplings. Notice that the vector-like structure makes
the model anomaly-free since the anomalies cancel between conjugate representations in the
fourth family [27].

The particle content of the general model that we consider here consists in three left-
handed families Âi = Qi, Li, the CP conjugated right handed families Â

c
i = u

c
i , d

c
i , e

c
i

(excluding the right-handed neutrinos) and a fourth vector-like left-handed family consist-
ing in Â4 = Q4, L4, and Â

c
4 = u

c
4, d

c
4, e

c
4, ‹

c
4 and the conjugate representations Â4 = Q4, L4,

and Â
c
4 = u

c
4, d

c
4, e

c
4, ‹

c
4. Here we identify ‹

c
4 and ‹

c
4 with ‹

c and ‹c of the minimal type Ib
seesaw model of the previous Section. So far we have not included any genuine right-handed
neutrino N

c (neutral under U(1)Õ). However, later in this Section we shall consider the
additional e�ect of including (in addition to the fourth family states) one CP conjugated
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FIG. 2. Diagram showing the extra neutrino contributions to µ æ e“. Here ‹n refers to the
neutrinos in the mass basis, and „

≠ represents the Goldstone boson.

real numbers y and y
Õ, two phases ” and –, and one mass scale M

‹
4 . But only four of them

will enter in the description of the deviations of unitarity through Eq. (15).

Since the presence of the extra heavy vector-like neutrinos induces deviation of unitarity
in the PMNS matrix, the GIM cancellation [62] that suppresses flavour-changing processes is
lost. As a result, the present limits on LFV processes will set a strong constrain on the non-
unitarity of the leptonic mixing matrix, and therefore on the free parameters of the minimal
scenario y, ” and – through Eq. (15). In particular, the nowadays strongest constrain on
the elements of the ÷ matrix comes from µ æ e“. Figure (2) shows the extra contribution
to the radiative decay µ æ e“ in presence of the vector-like neutrinos of the model.

The contribution to the branching ratio from both the heavy vector-like neutrinos and
the light neutrinos ‹i is given by

� (µ æ e“)
� (µ æ e‹µ‹e)

= 3–

32fi

|
5ÿ

n=1
U2nU

†
n1F (xn)|2

(UU †)11 (UU †)22
, (18)

where xn = M
2
n/M

2
W , and where F (xn) reads

F (xn) = 10 ≠ 43xn + 78x
2
n ≠ (49 ≠ 18 log xn) x

3
n + 4x

4
n

3 (xn ≠ 1)4 , (19)

For masses of the vector-like neutrinos M
‹ ∫ MW , the sum in Eq. (18) can be separated

in light and heavy sectors factorizing the corresponding F (xn) function. In particular, for
heavy neutrinos with masses M

‹ & 1 TeV

� (µ æ e“)
� (µ æ e‹µ‹e)

ƒ 3–

8fi
|÷21|2

1
F (xn) ≠ F (0)

22 . 3–

2fi
|÷21|2 , (20)

where can be seen that the loss of the GIM cancellation comes from the di�erence of the two
mass scales involved, and the non-unitarity of the leptonic mixing matrix. When comparing
with the existing present experimental limit [63] of the radiative decay, the following upper
bound at 1‡ is derived [50]

|÷21| Æ 8.4 · 10≠6
. (21)

In Figure 3 the allowed region of the free parameters of the minimal scenario is shown.
The pink (blue) regions correspond to the allowed values of y and M

‹ when the present
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