and Astronomy

Neutrino Physics - a review

Steve King, 4th September 2019, Corfu

European Institute for Sciences and Their Applications

Corfu Summer Institute

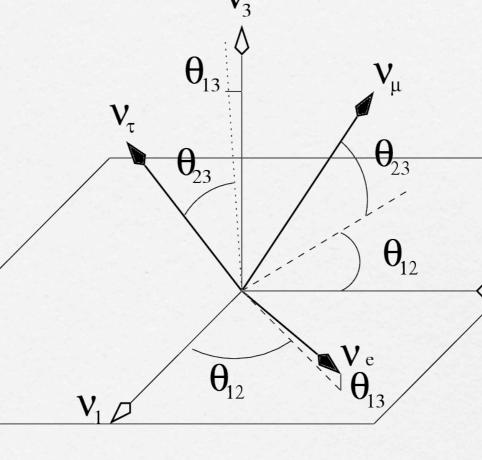
19th Hellanic School and Workshops on Elementary Particle Physics and Gravity

PMNS Lepton mixing matrix

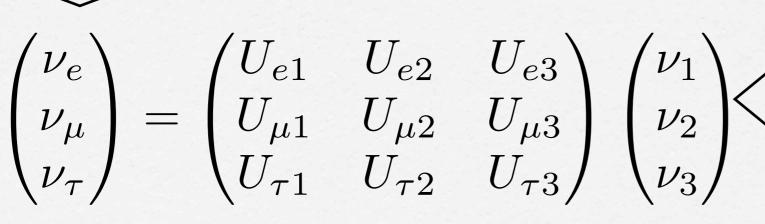
Pontecorvo Maki Nakagawa Sakata

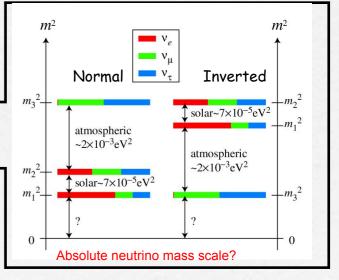
Standard Model states

$$\begin{pmatrix} \mathbf{v}_e \\ e^- \end{pmatrix}_L \quad \begin{pmatrix} \mathbf{v}_{\mu} \\ \mu^- \end{pmatrix}_L \quad \begin{pmatrix} \mathbf{v}_{\tau} \\ \mathbf{\tau}^- \end{pmatrix}_L$$



Neutrino mass states





PMNS Lepton mixing matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Atmospheric Reactor Solar Majorana

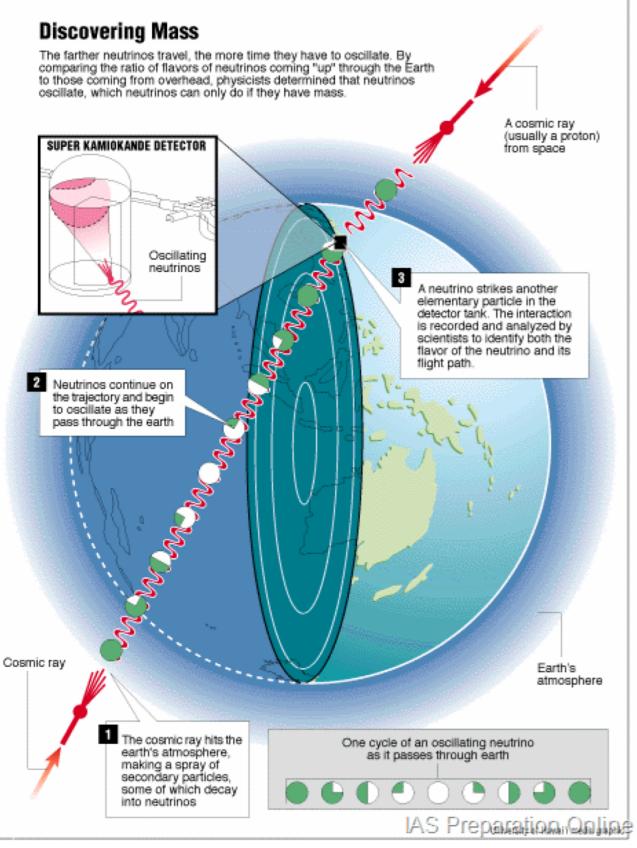
$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

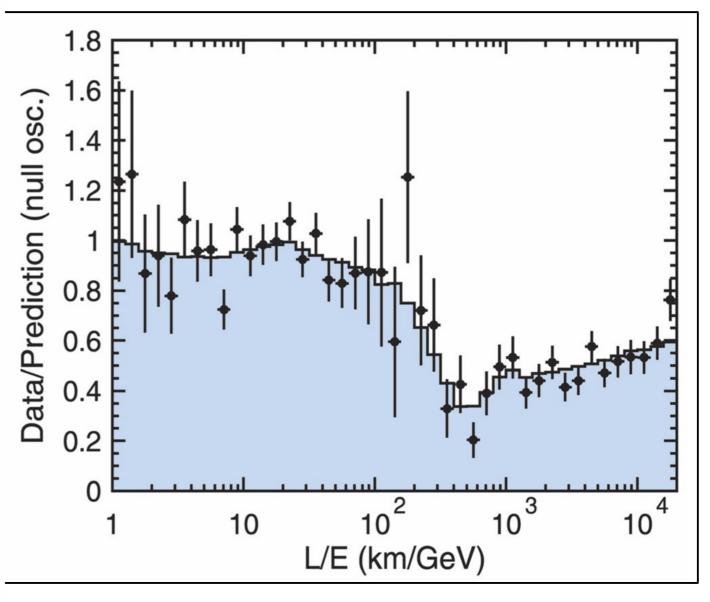
 $\times \operatorname{diag}(1, e^{i\alpha_{21}/2}, e^{i\alpha_{31}/2})$

The 6 parameters measurable in neutrino oscillations (assuming 3 active neutrinos):

- \divideontimes The atmospheric mass squared difference Δm_{31}^2
- *The solar mass squared difference $\Delta m_{21}^2 = m_2^2 m_1^2$
- stThe atmospheric angle $heta_{23}$
- *The solar angle $\,\theta_{12}$
- *The reactor angle θ_{13}
- *The CP violating phase δ

Atmospheric Neutrino Oscillations (1998)





$$Prob. = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{E}$$

Atmospheric neutrino oscillations show characteristic L/E variation

Brief History of Neutrino Physics post 1998

Atmospheric v_{μ} disappear, large θ_{23} (1998)

SK

Solar v_e disappear, large θ_{12} (2002)

SK, SNO

Solar v_e are converted to $v_{\mu} + v_{\tau}$ (2002) SNO

Reactor anti- v_e disappear/reappear (2004) Kamland

Accelerator v_u disappear (2006) MINOS

Accelerator v_{tt} converted to v_{τ} (2010) OPERA

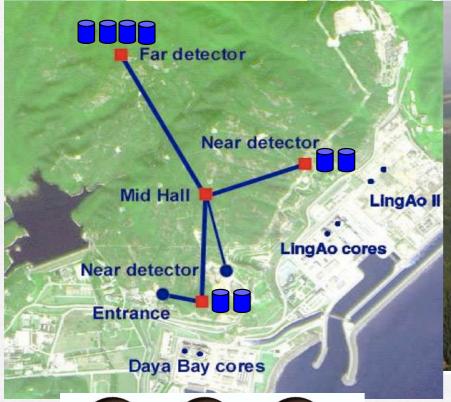
Accelerator v_{μ} converted to v_{e} , θ_{13} hint (2011) T2K

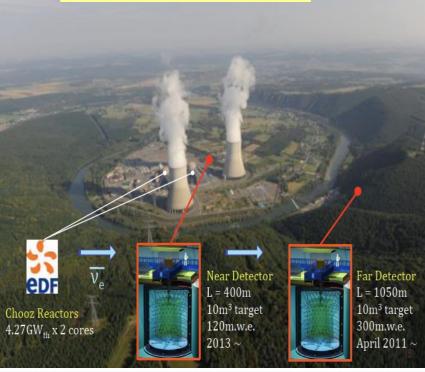
Reactor anti- v_e disapp θ_{13} meas.(2012) DB, Reno,DC

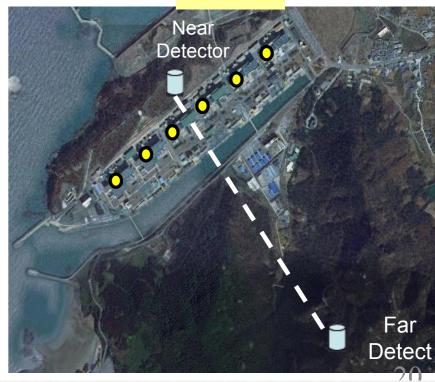
Daya Bay

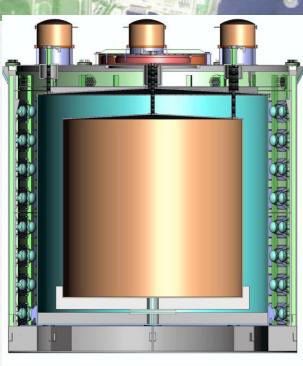
Double Chooz

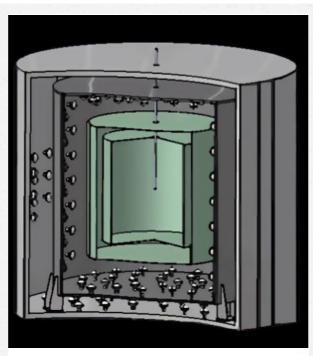
Reno



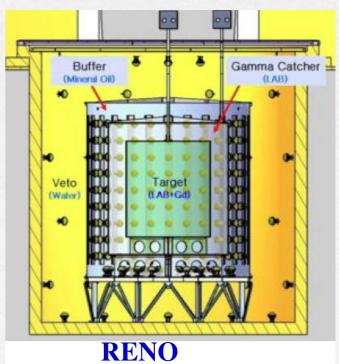








Double Chooz

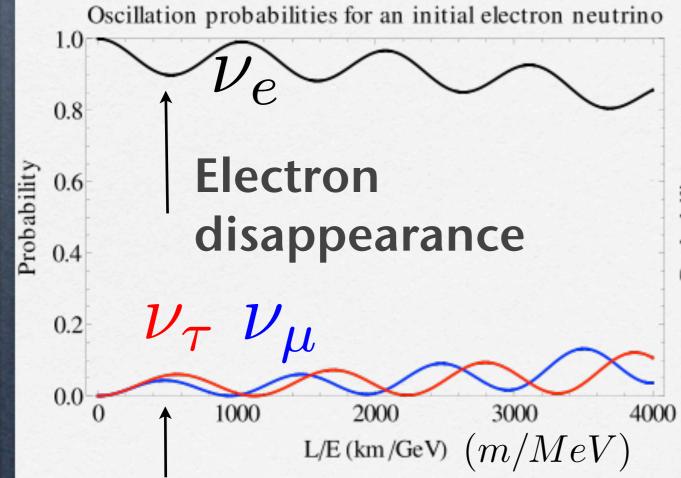


Electron Neutrino Oscillations

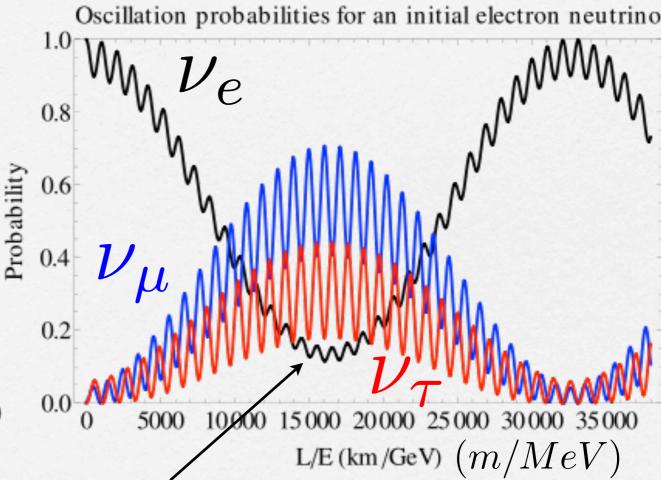
$$P(\bar{\nu}_e \to \bar{\nu}_e; E, L) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

$$-\sin^2 2\theta_{13}(\cos^2 \theta_{12}\sin^2 \Delta_{31} + \sin^2 \theta_{12}\sin^2 \Delta_{32})$$



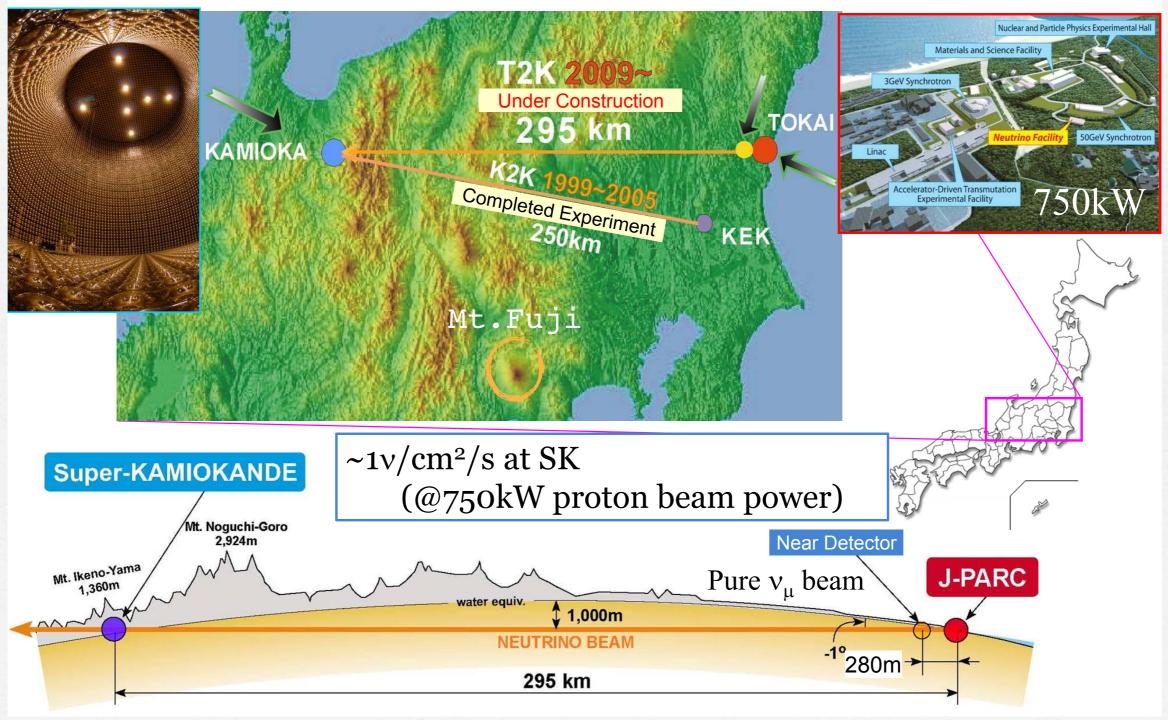
Daya Bay RENO $\frac{\Delta m_{31}^2 L}{4E} = \frac{\pi}{2}$ (1st atm max)



JUNO RENO50km (1st sol max)

$$\frac{\Delta m_{21}^2 L}{4E} = \frac{\pi}{2}$$

T2K (Tokai to Kamioka) Long Baseline v experiment



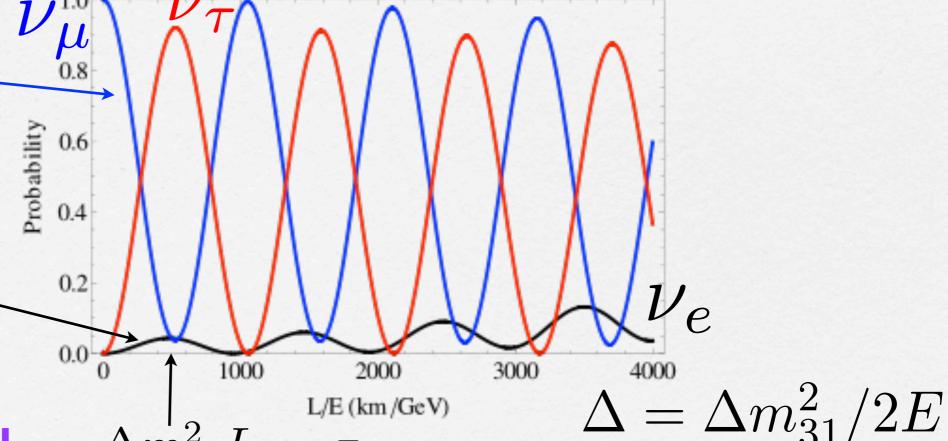
Muon Neutrino Oscillations

$$P(\nu_{\mu} \to \nu_{\mu}; E, L) = 1 - \sin^2(2\theta_{23})\sin^2\left(\frac{\Delta L}{2}\right) + \mathcal{O}(\epsilon)$$

Muon _____ disappearance

Electron appearance

Accelerator LBL (1st atm max)



Oscillation probabilities for an initial muon neutrino

$$\frac{\Delta m_{31}^2 L}{4E} = \frac{\pi}{2}$$

$$\epsilon \equiv \Delta m_{21}^2/\Delta m_{31}^2 \approx 0.03$$

Electron Neutrino Appearance

$$P(\nu_{\mu} \to \nu_e; E, L) \equiv P_1 + P_{\frac{3}{2}} + \mathcal{O}\left(\epsilon^2\right)$$

$$P_1 = \frac{4}{(1 - r_A)^2} \sin^2 \theta_{23} \sin^2 \theta_{13} \sin^2 \left(\frac{(1 - (r_A)\Delta L)}{2} \right),$$

$$P_{\frac{3}{2}} = 8J_r \frac{\epsilon}{r_A(1-r_A)} \cos\left(\delta + \frac{\Delta L}{2}\right) \sin\left(\frac{r_A \Delta L}{2}\right) \sin\left(\frac{(1-(r_A)\Delta L}{2}\right)$$

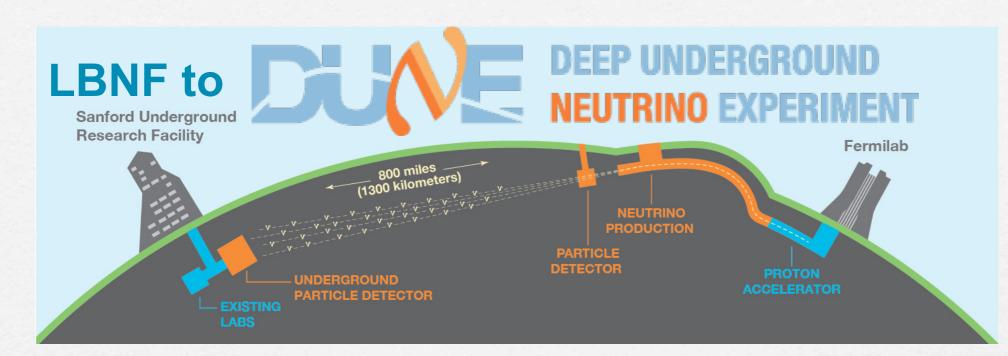
CP phase Matter effect

Electron appearance depends on CP phase

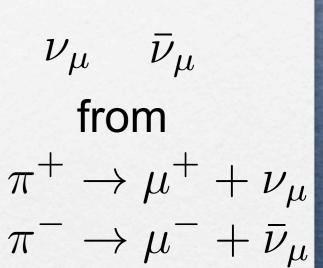
 $\Delta = \Delta m_{31}^2/2E$ $\epsilon \equiv \Delta m_{21}^2 / \Delta m_{31}^2 \approx 0.03$ $r_A = 2\sqrt{2}G_{\rm F}N_eE/\Delta m_{31}^2$

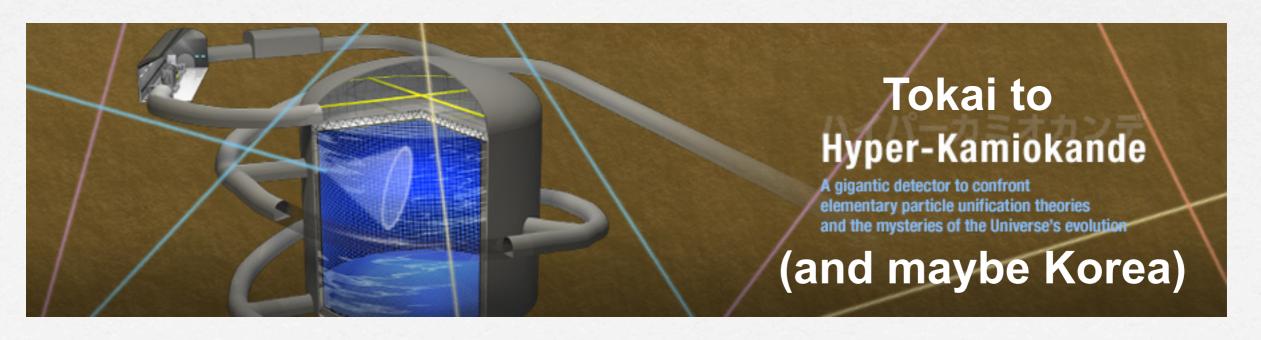
 r_A, δ change sign for antineutrinos $J_r = \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \sin \theta_{13}$

Future LBL experiments



Beams of

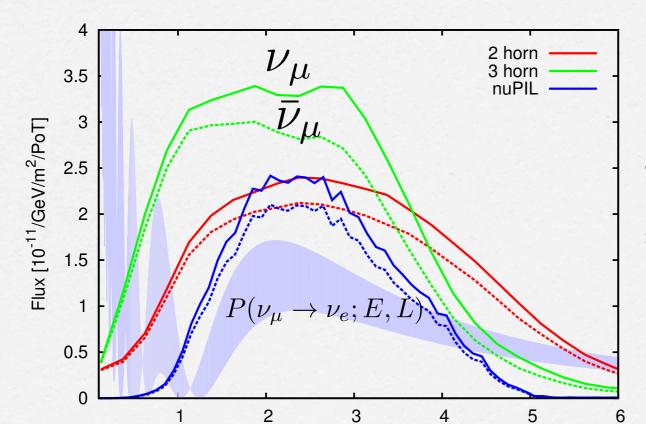




Highly complementary experiments:

DUNE

$$L = 1300 km$$

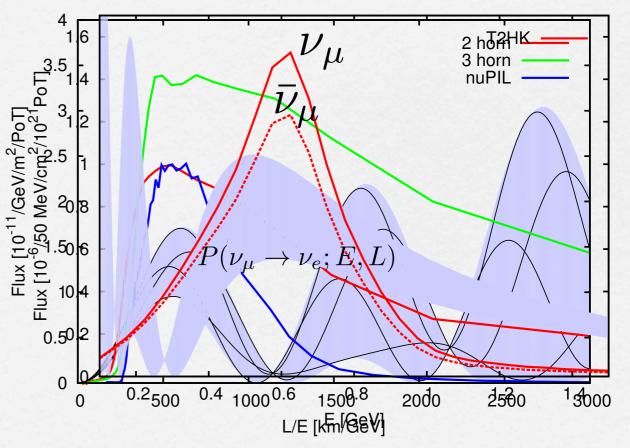


Wide Band Beam LAr detector

E [GeV]

T2HK

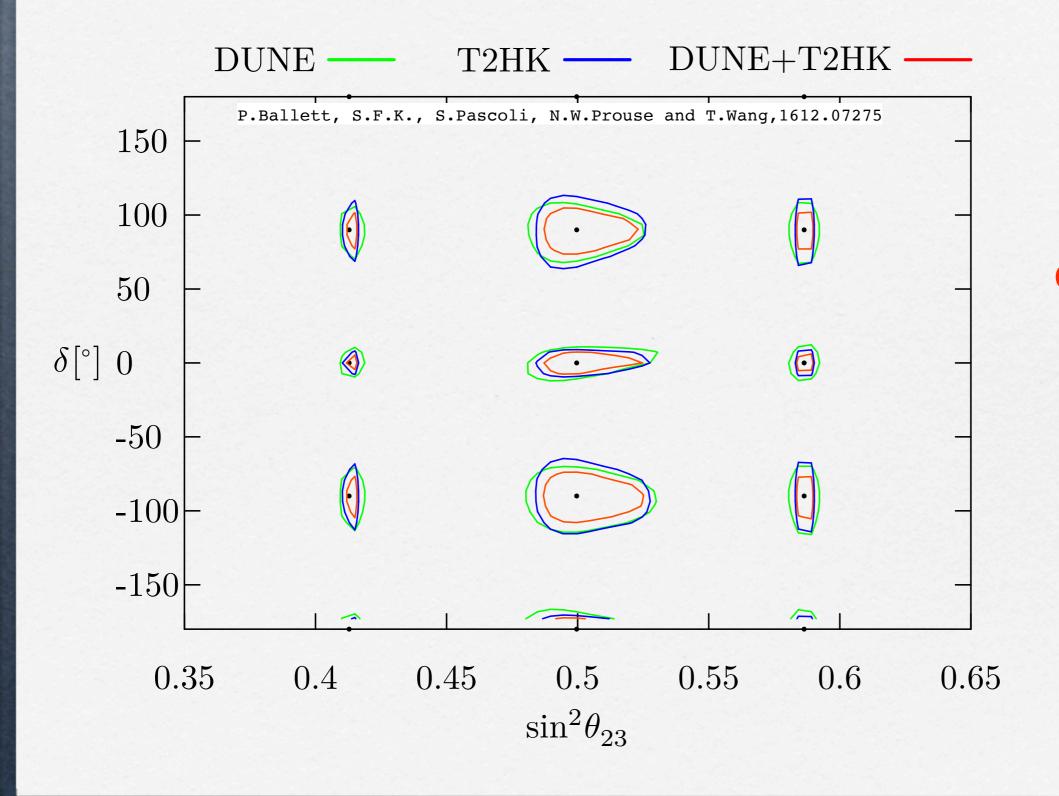
$$L=295km$$



Flux [10⁻⁶/50 MeV/cm²/10²¹PoT]

Narrow Band Beam (off-axis)
Water detector

Precision measurements



1 sigma contours in future

Parameters	Neutrino	Oscillation	Experiments
------------	----------	-------------	-------------

$$\Delta m^2_{21} \qquad \qquad {\rm KamLAND} \ (\overline{\nu}_e \to \overline{\nu}_e)^{21}$$

$$\Delta m_{31}^2 \qquad \qquad {\rm T2K} \; (\nu_{\mu} \to \nu_{\mu})^{22} \\ {\rm MINOS} \; (\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}, \, \nu_{\mu} \to \nu_{\mu})^{23}$$

$${\rm solar~neutrinos}~(\nu_e \to \nu_e)$$

$${\rm Borexino^{24},~SNO^{25,26},}$$

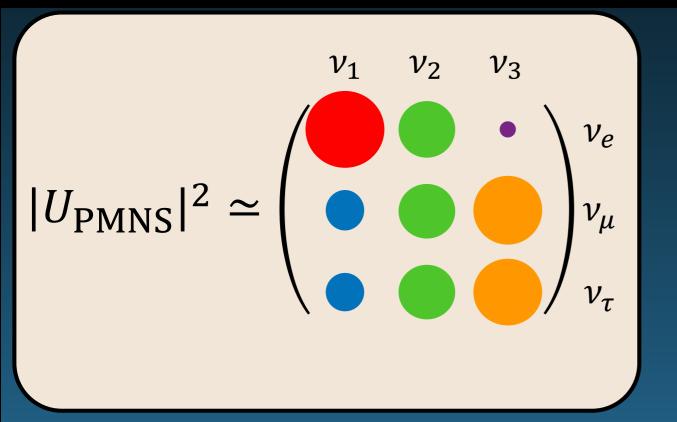
Daya Bay
$$(\overline{\nu}_e \to \overline{\nu}_e)^{28}$$
 RENO $(\overline{\nu}_e \to \overline{\nu}_e)^{29}$

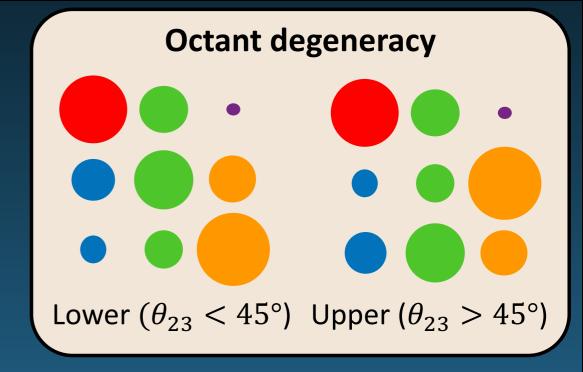
$$\theta_{23} \qquad \qquad (\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}, \, \nu_{\mu} \to \nu_{\mu})$$
 Super-Kamiokande I-IV 30

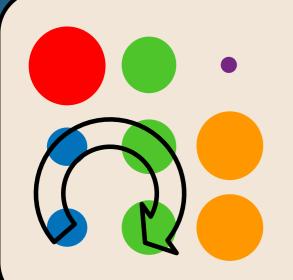
NuF	-IT 4.1 (2019)	Normal Ordering (best fit)		
		bfp $\pm 1\sigma$	3σ range	
F	$\sin^2 heta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \to 0.350$	
data	$ heta_{12}/^\circ$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	
atmospheric	$\sin^2 \theta_{23}$	$0.558^{+0.020}_{-0.033}$	$0.427 \rightarrow 0.609$	
lospl	$ heta_{23}/^\circ$	$48.3^{+1.1}_{-1.9}$	$40.8 \rightarrow 51.3$	
	$\sin^2 \theta_{13}$	$0.02241^{+0.00066}_{-0.00065}$	$0.02046 \rightarrow 0.02440$	
t SK	$ heta_{13}/^\circ$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	
without	$\delta_{\mathrm{CP}}/^{\circ}$	222_{-28}^{+38}	$141 \rightarrow 370$	
W	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.523^{+0.032}_{-0.030}$	$+2.432 \to +2.618$	

Open questions for neutrino mixing

Phill Litchfield





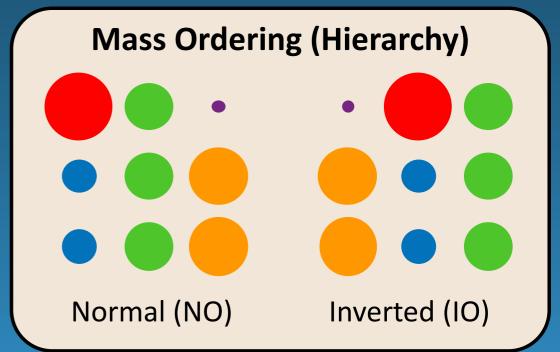


CP Violation

Complex mixing of these 4 elements causes

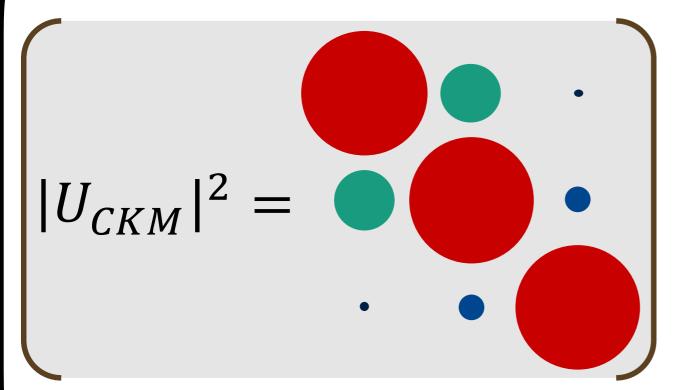
$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

Key parameter: δ_{CP}

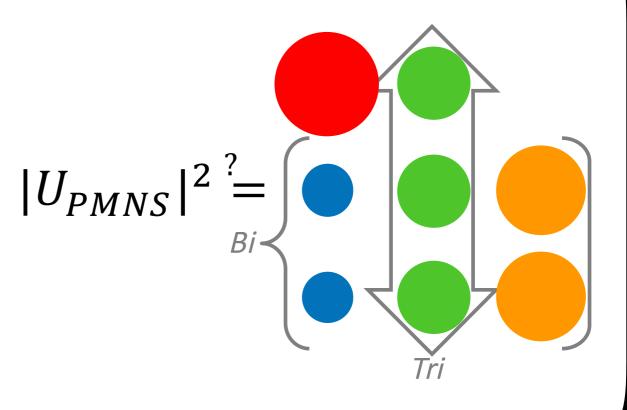


CKM vs Tri-bimaximal Mixing Phill Litchfield

CKM Matrix

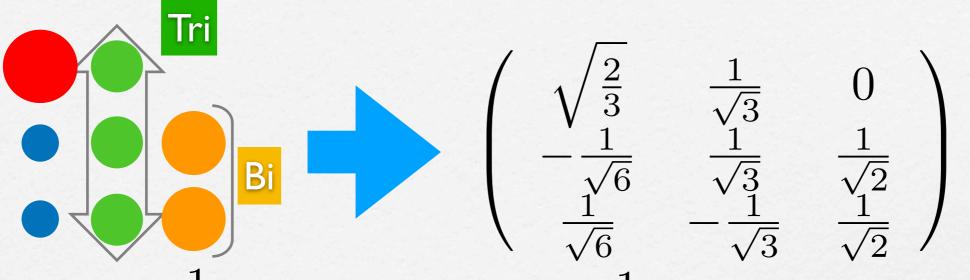


Tri-bimaximal Mixing



P.F.Harrison, D.H.Perkins and W.G.Scott, hep-ph/0202074

Tri-Bimaximal Mixing



 $\sin \theta_{12} = \frac{1}{\sqrt{3}}$

Allowed at 3 sigma

 $\sin \theta_{23} = \frac{1}{\sqrt{2}}$

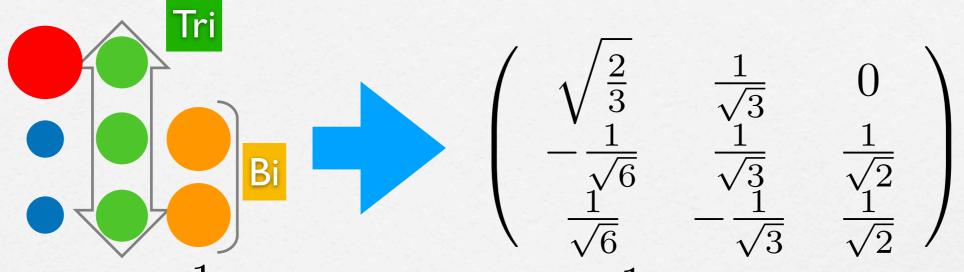
Allowed at 3 sigma

$$\sin\theta_{13}=0$$

Excluded at many sigma

P.F. Harrison, D.H. Perkins and W.G. Scott, hep-ph/0202074

Tri-Bimaximal Mixing



$$\sin \theta_{12} = \frac{1}{\sqrt{3}}$$

Allowed at

3 sigma

$$\sin \theta_{23} = \frac{1}{\sqrt{2}}$$

Allowed at

3 sigma

$$\sin \theta_{13} = 0$$

Excluded at many sigma

NuFIT 4.1 (2019) Best Fit Preferences:

$$s_{12}^2 < \frac{1}{3}$$

$$s_{23}^2 > \frac{1}{2}$$

$$s_{13}^2 = 0.02241 \pm 0.00065$$

Tri-Bimaximal-Reactor

$$\frac{|U_{e2}|^2}{|U_{e1}|^2} = \frac{1}{2}, \quad \frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = 1.$$

$$\sqrt{\frac{2}{3}}(1 - \frac{1}{4}\lambda^{2}) \qquad \frac{1}{\sqrt{3}}(1 - \frac{1}{\sqrt{6}}(1 + \lambda e^{i\delta}) \qquad \frac{1}{\sqrt{3}}(1 - \frac{1}{\sqrt{6}}(1 - \lambda e^{i\delta}) \qquad -\frac{1}{\sqrt{3}}(1 - \frac{1}{\sqrt{3}}(1 - \lambda e^{i\delta}))$$

$$1:1 \qquad \begin{pmatrix} \sqrt{\frac{2}{3}}(1-\frac{1}{4}\lambda^{2}) & \frac{1}{\sqrt{3}}(1-\frac{1}{4}\lambda^{2}) & \frac{1}{\sqrt{2}}\lambda e^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+\lambda e^{i\delta}) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}\lambda e^{i\delta}) & \frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^{2}) \\ \frac{1}{\sqrt{6}}(1-\lambda e^{i\delta}) & -\frac{1}{\sqrt{3}}(1+\frac{1}{2}\lambda e^{i\delta}) & \frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^{2}) \end{pmatrix}$$

$$\sin \theta_{12} = \frac{1}{\sqrt{3}}$$
Allowed at
3 sigma

$$\sin \theta_{23} = \frac{1}{\sqrt{2}}$$
Allowed at 3 sigma

$$\sin \theta_{13} = \frac{\lambda}{\sqrt{2}}$$
Allowed

Charged lepton corrections

Charged lepton rotation

$$U_{\rm PMNS} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0 \\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

$$=\begin{pmatrix} \dots & \dots & \frac{s_{12}^e}{\sqrt{2}}e^{-i\delta_{12}^e} \\ \dots & \dots & \frac{c_{12}^e}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \bullet \text{Reactor angle generated}$$
• Third row unchanged implies sum rules

$$\frac{s_{12}^{e}}{\sqrt{2}}e^{-i\delta_{12}^{e}}$$

$$\frac{c_{12}^{e}}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

Sum rules first derived and studied in: SFK hep-ph/0506297; S.Antusch, SFK hep-ph/0508044; S.Antusch, P.Huber, S.F.K and T.Schwetz, hep-ph/0702286; S.Antusch, S.F.K., M.Malinsky,0711.4727 More recent detailed phenomenological analyses:

D.Marzocca, S.T.Petcov, A.Romanino and M.C.Sevilla, 1302.0423; S.T.Petcov 1405.6006; P.Ballett, S.F.King, C.Luhn, S.Pascoli and M.A.Schmidt, 1410.7573

I.Girardi, S.T.Petcov and A.V.Titov, 1410.8056, 1504.00658, 1504.02402, 1605.04172, ... For asymmetric texture without sum rule see: M.H.Rahat, P.Ramond, B.Xu, 1805.10684

Charged lepton corrections

Charged lepton rotation

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\begin{pmatrix}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{pmatrix}$$

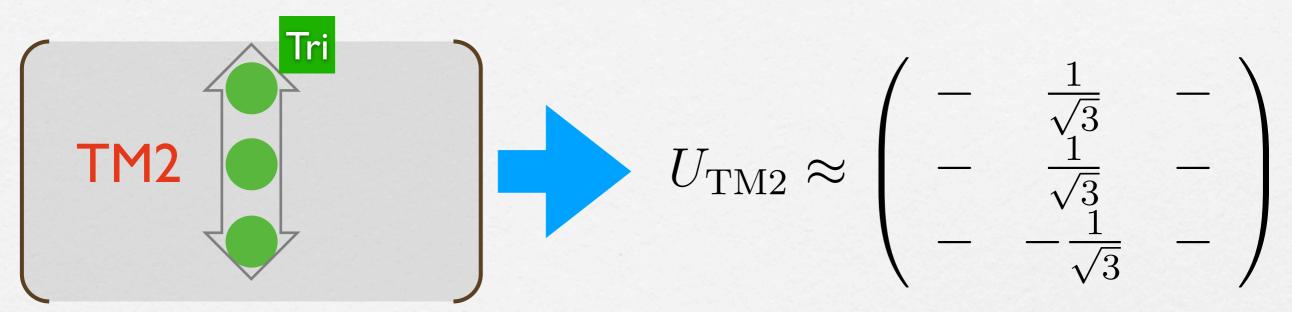
$$= \begin{pmatrix} \cdots & \cdots & \frac{s_{12}^e}{\sqrt{2}}e^{-i\delta_{12}^e} \\ \cdots & \cdots & \frac{c_{12}^e}{\sqrt{2}} \end{pmatrix} \xrightarrow{s_{13}} = \frac{s_{12}^e}{\sqrt{2}} \xrightarrow{\text{Suggests}} \\ c_{23}c_{13} = \frac{1}{\sqrt{2}} \xrightarrow{s_{23}^2 < \frac{1}{2}} \\ \text{Not best fit}$$

$$\frac{|U_{\tau 1}|}{|U_{\tau 2}|} = \frac{|s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta}|}{|-c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta}|} = \frac{1}{\sqrt{2}} \longrightarrow \cos \delta = \frac{t_{23}s_{12}^2 + s_{13}^2c_{12}^2/t_{23} - \frac{1}{3}(t_{23} + s_{13}^2/t_{23})}{\sin 2\theta_{12}s_{13}}$$

This derivation: P.Ballett, S.F.King, C.Luhn, S.Pascoli and M.A.Schmidt, 1410.7573

Tri-maximal Mixing

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798



Tri-Bi

$$U_{\rm TM1} \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & - & - \\ -\frac{1}{\sqrt{6}} & - & - \\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix}$$

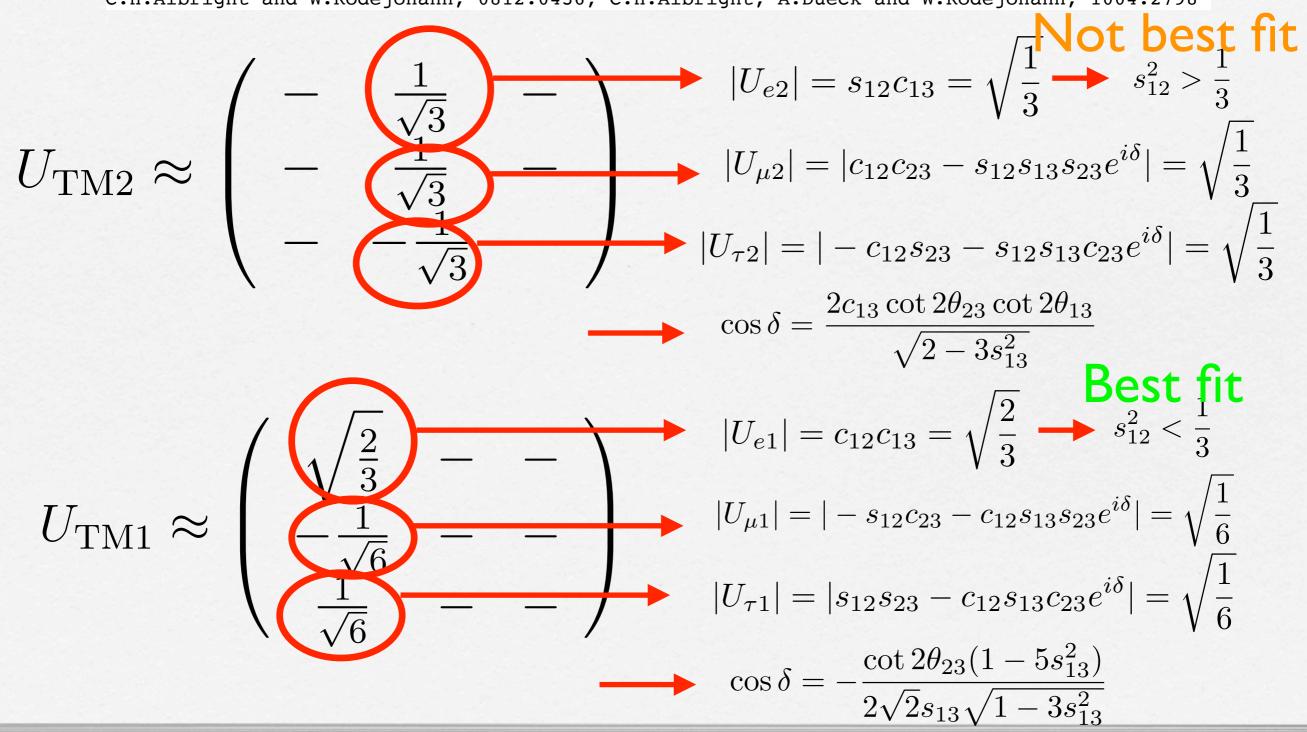
Tri-maximal Mixing

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798

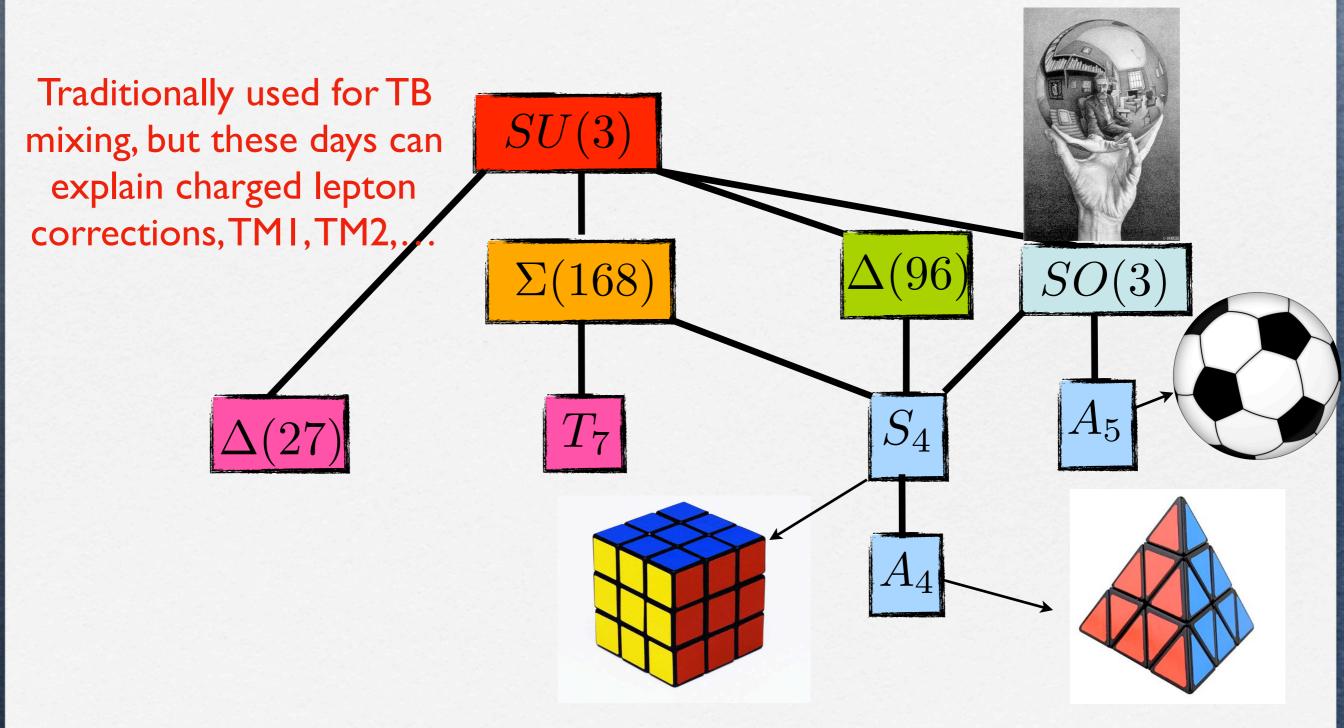
$$U_{\text{TM2}} \approx \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac$$

Tri-maximal Mixing

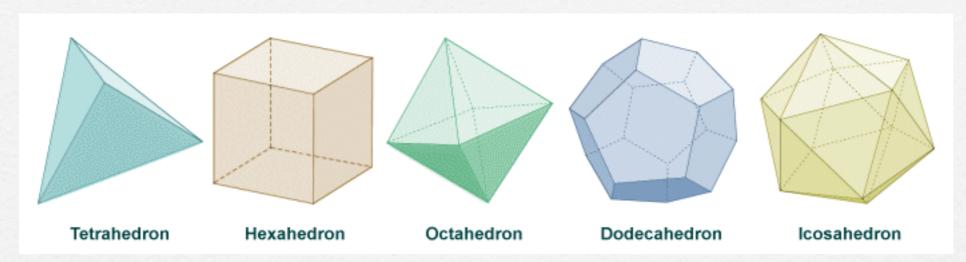
C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798



Family Symmetry



Platonic Solids



solid	faces	vertices	Plato	Group
tetrahedron	4	4	fire	A_4
octahedron	8	6	air	S_4
icosahedron	20	12	water	A_5
hexahedron	6	8	earth	S_4
dodecahedron	12	20	?	A_5

Plato's fire A4 can explain Tri-bimaximal Mixing

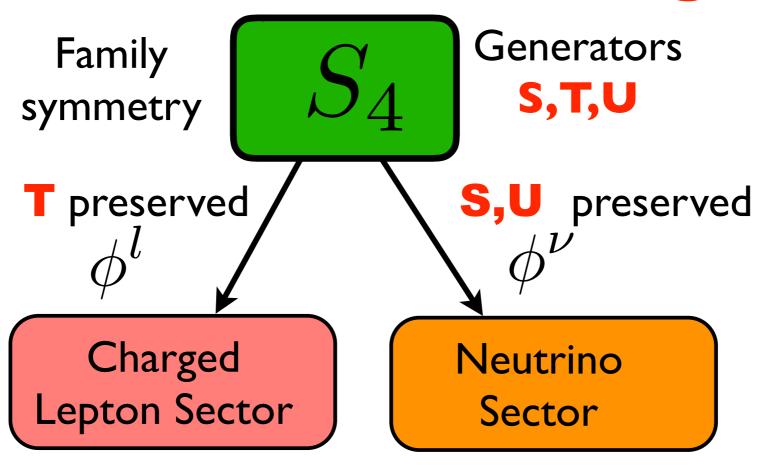
E.Ma and G.Rajasekaran, hep-ph/0106291; K.S.Babu, E.Ma, J.W.F.Valle, hep-ph/0206292; G.Altarelli and F.Feruglio, hep-ph/0504165,hep-ph/0512103

S.F.K., C.Luhn, 1301.1340

A4 and S4 Group Theory

S_4	A_4	S	T	U
1,1'	1	1	1	±1
2	$egin{pmatrix} 1'' \ 1' \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
3 , 3 '	3	$ \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} $	$\mp \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Diagonalised by TB matrix



S.F.K., C.Luhn, 1301.1340

Family symmetry

 S_4

Generators **S,T,U**

preserved

S.F.K., C.Luhn, 1301.1340

T preserved

Charged Lepton Sector Neutrino Sector

$$\begin{pmatrix} \sqrt{\frac{2}{3}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$$

$$\frac{\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}$$

$$-\frac{1}{\sqrt{3}}$$

$$0$$

$$\frac{1}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}}$$

TB mixing excluded so need to break S,T,U

Tri-bimaximal mixing from S4

Family Symmetry S_4 Generators S,T,U S_4 S,U preserved ϕ^l Charged Lepton Sector Neutrino Sector

break T

Tri-bimaximal mixing from S4

Family symmetry

 S_4

Generators **S,T,U**

break T

T preserved

 ϕ^l

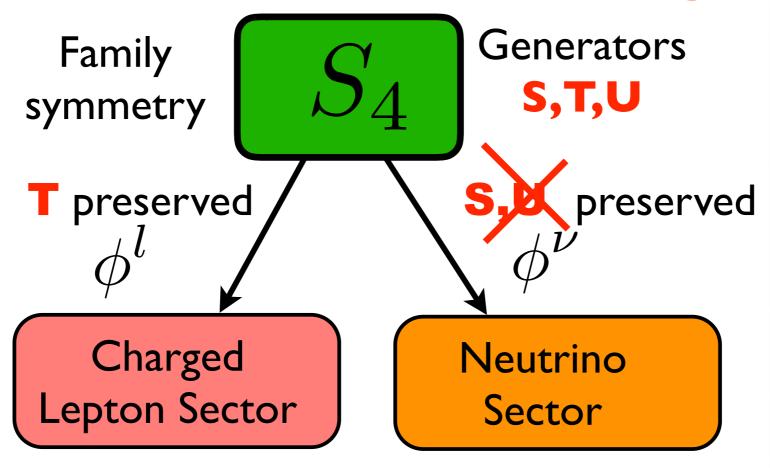
S,U preserved

 ϕ^{ι}

Charged
Lepton Sector

Neutrino Sector

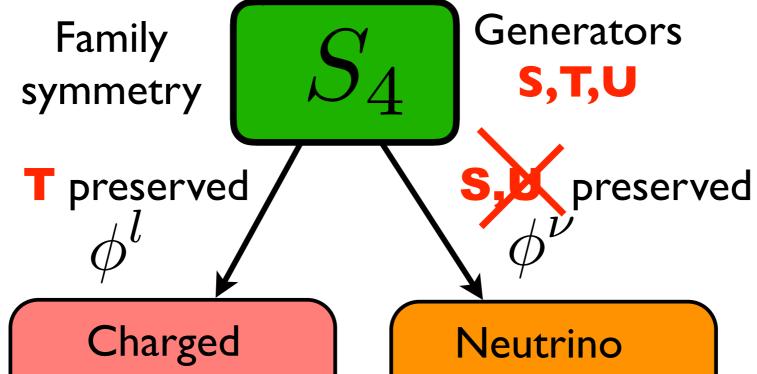
$$U_{\rm PMNS} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0 \\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
Charged lepton rotation



S.F.K., C.Luhn, 1301.1340

Y.Shimizu, M.Tanimoto, A.Watanabe, 1105.2929; S.F.K., C.Luhn, 1107.5332

break U



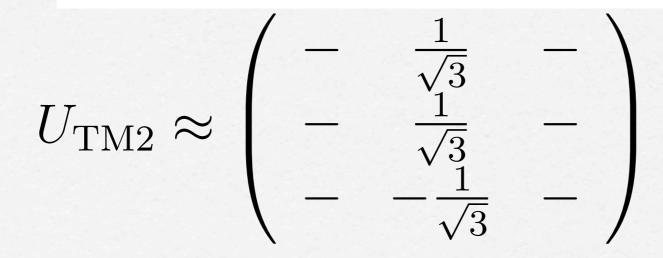
S.F.K., C.Luhn, 1301.1340

Y.Shimizu, M.Tanimoto, A.Watanabe, 1105.2929; S.F.K., C.Luhn, 1107.5332

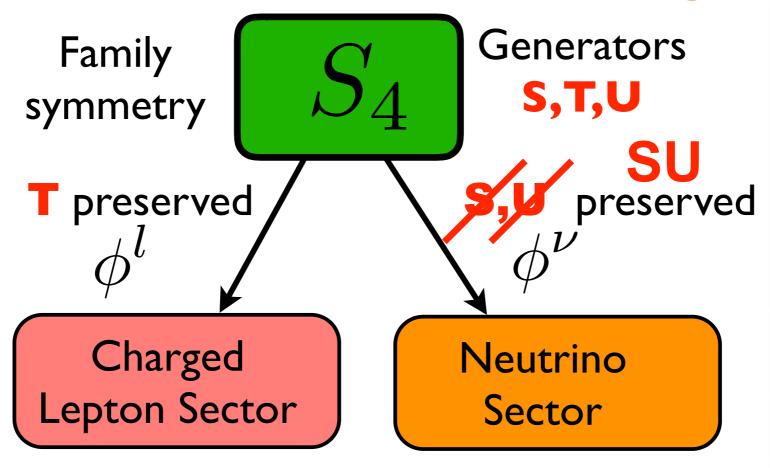
break U

Lepton Sector

Sector



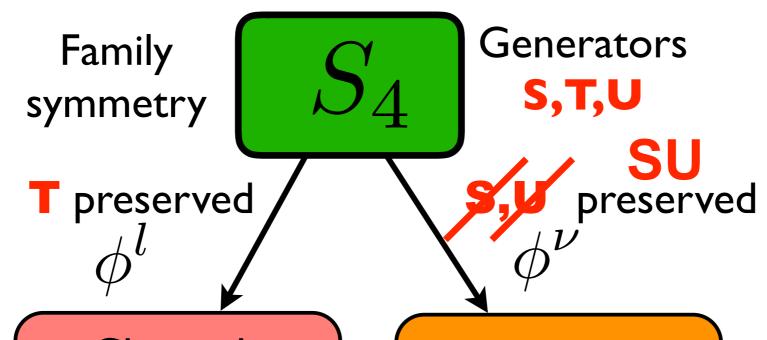
TM2 as A4 with just S and T



S.F.K., C.Luhn, 1301.1340

break S,U separately preserve SU

Tri-bimaximal mixing from S4



S.F.K., C.Luhn, 1301.1340

break S,U separately preserve SU

Charged Lepton Sector

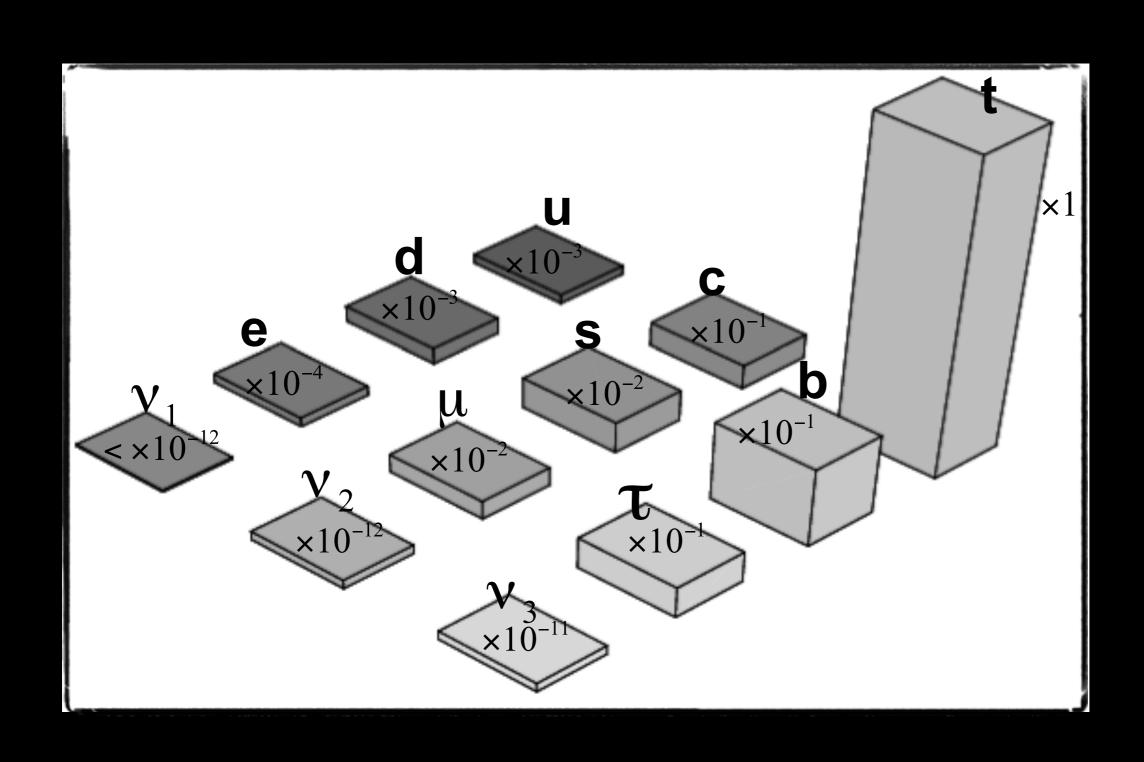
Neutrino Sector

$U_{\mathrm{TM1}} pprox \left(egin{array}{c} \sqrt{rac{2}{3}} & -rac{1}{\sqrt{6}} \\ -rac{1}{\sqrt{6}} & -rac{1}{\sqrt{6}} \end{array} ight)$

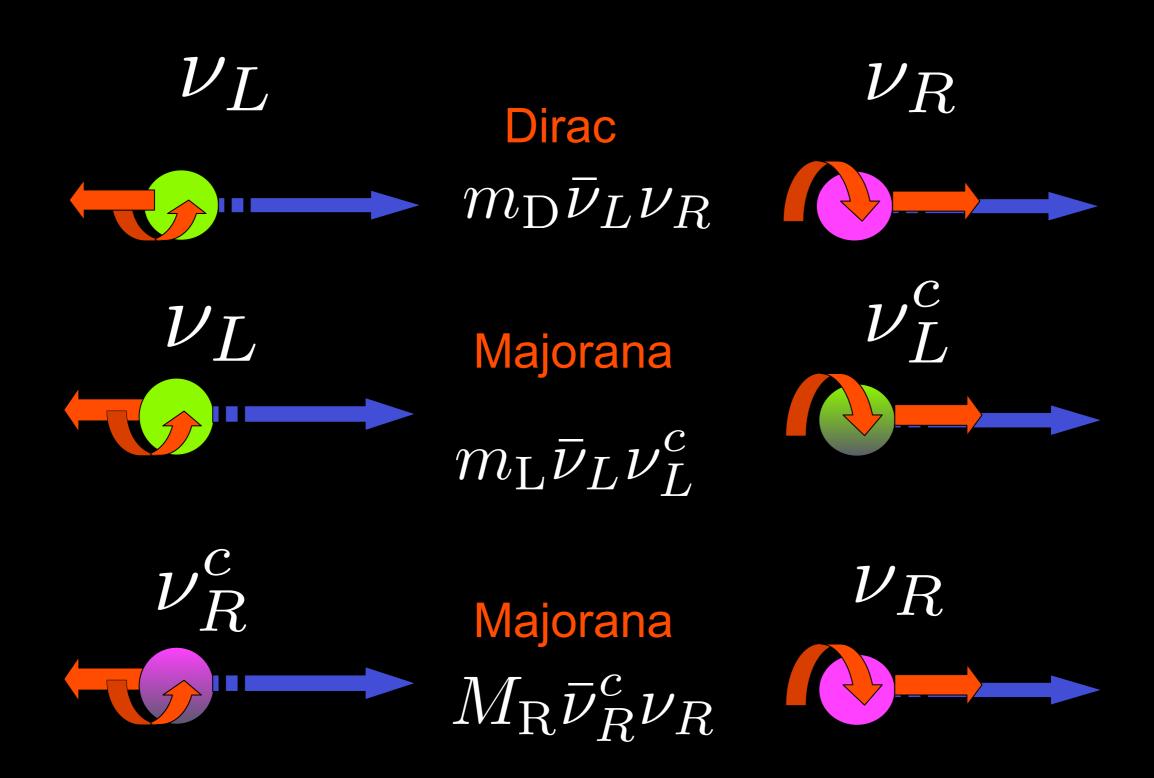
TMI with SU and T

D.Hernandez and A.Y.Smirnov 1204.0445,1212.2149,1304.7738; C.Luhn, 1306.2358 S.F.K.,C.Luhn,1607.05276

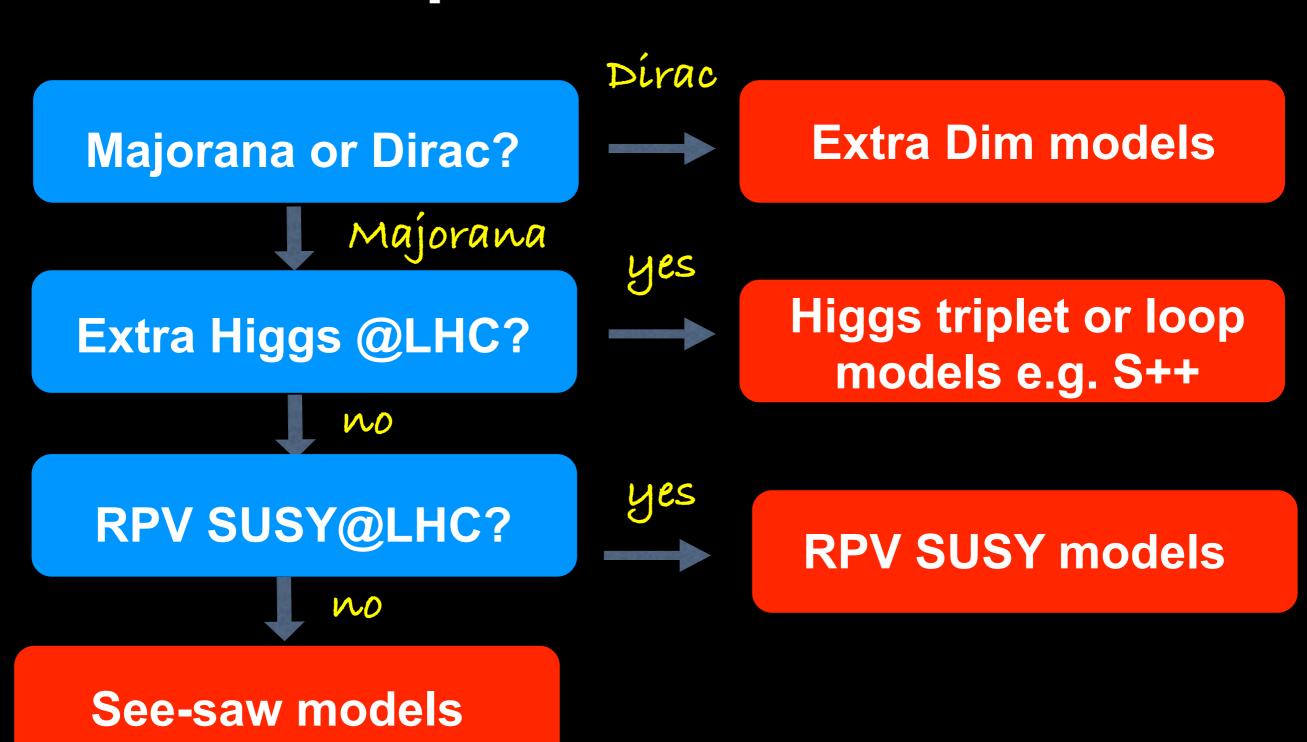
Why nu mass small?



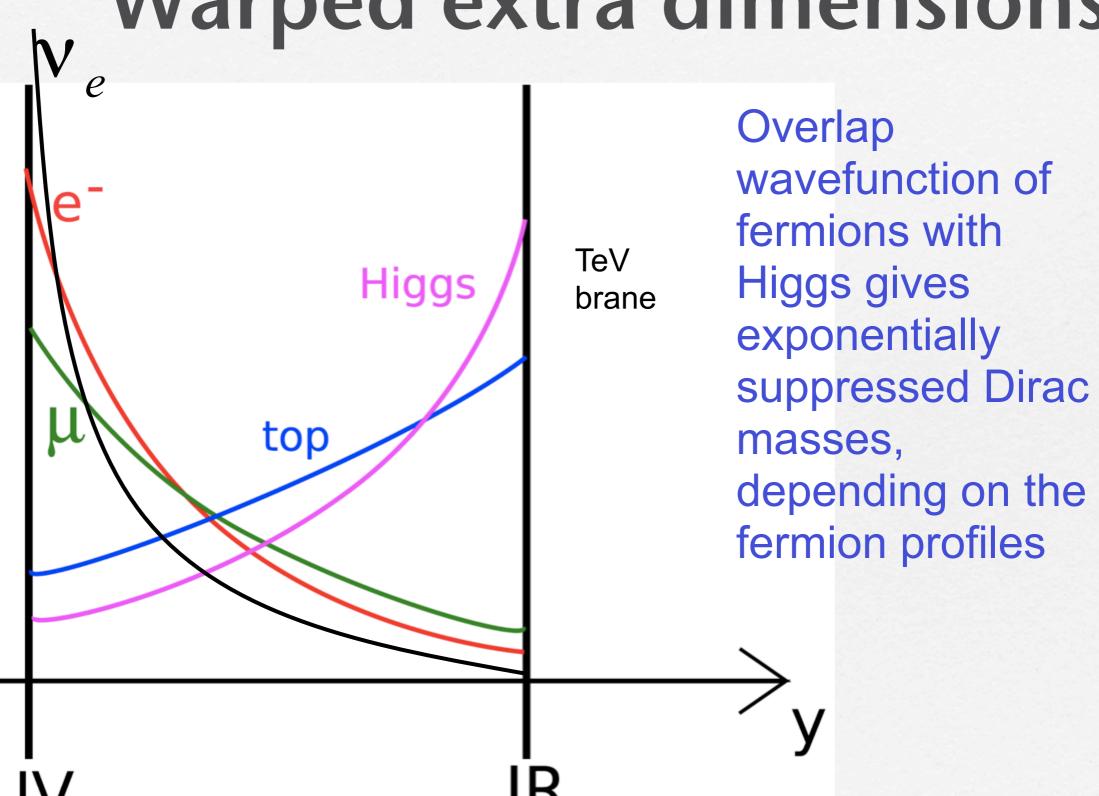
Dirac or Majorana?



Roadmap of neutrino mass



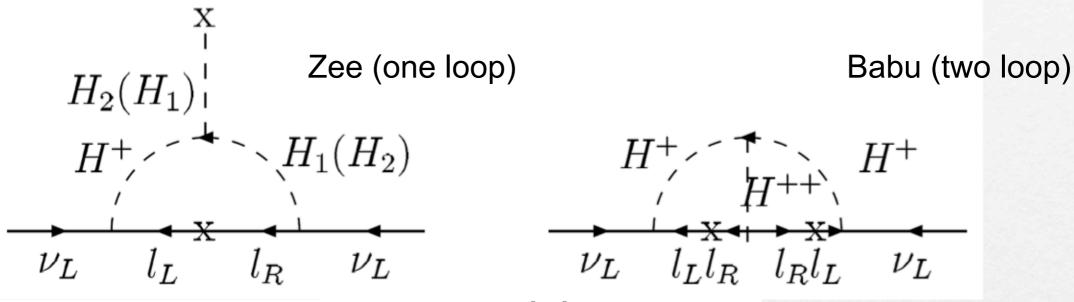
Warped extra dimensions

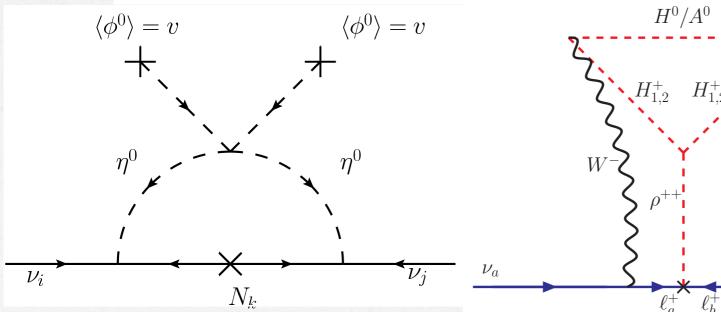


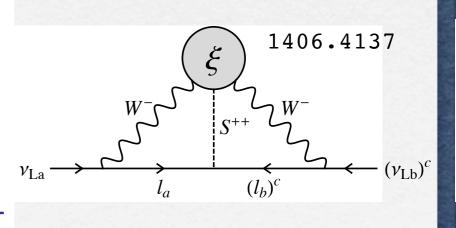
Planck

brane

Loop Models of Neutrino Mass







Scotogenic model

Cocktail model

Effective theory

R-Parity Violating SUSY

- □ Majorana masses can be generated via RPV SUSY
- ☐ Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets
- \square If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

$$\begin{array}{c|c} \langle \tilde{\mathbf{v}} \rangle & \langle \tilde{\mathbf{v}} \rangle \\ \hline \tilde{\mathbf{v}} & \tilde{\mathbf{v}} \\ \hline \tilde{\mathbf{v}} & \tilde{\mathbf{v}} \\ \hline \tilde{\mathbf{v}} & \tilde{\mathbf{v}} \\ \hline \end{array}$$

$$m_{LL}^{v} \approx \frac{\left\langle \tilde{v} \right\rangle^{2}}{M_{\chi}} \approx \frac{MeV^{2}}{TeV} \approx eV$$

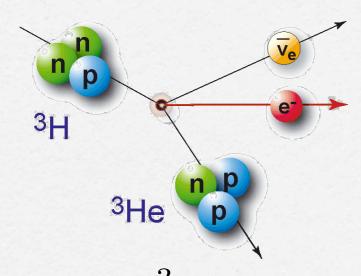
Experimental determination of neutrino mass

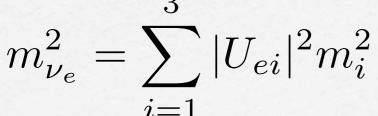
Majorana only (no signal if

Dirac)

Tritium beta decay

Neutrinoless double beta decay

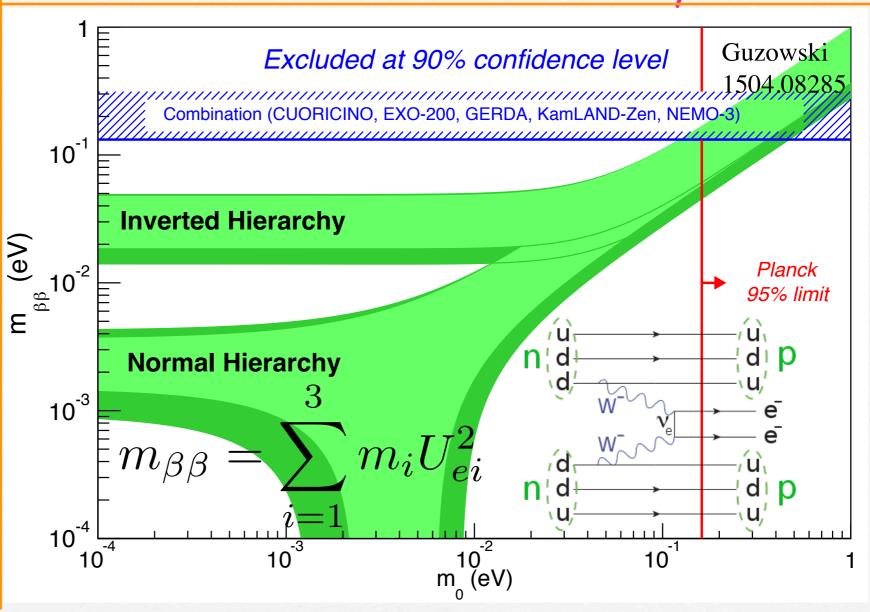




Present Mainz < 2.2 eV

KATRIN

~0.35eV



Is Majorana mass renormalisable?

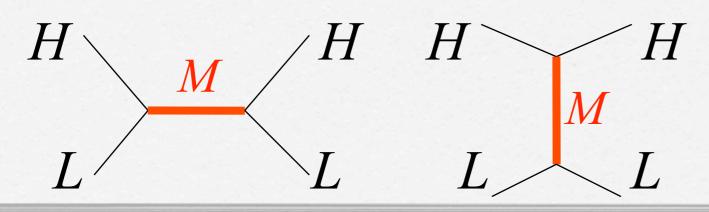
Renormalisable $\Delta L = 2$ operator $\lambda_V LL\Delta$

where Δ is light Higgs triplet with VEV < 8GeV from ρ parameter

Non-renormalisable $\Delta L = 2$ operator $\frac{\lambda_{v}}{M} LLHH = \frac{\lambda_{v}}{M} \langle H^{0} \rangle^{2} \overline{v_{eL}} v_{eL}^{c}$ Weinberg

This is nice because it gives naturally small Majorana neutrino masses $m_{LL} \sim <H^0>2/M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)



See-saw mechanisms

Type Ia see-saw mechanism

P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980), Schechter and Valle (1980)...

$$\begin{array}{c|cccc}
v_u & v_u \\
 & & \times \\
H_u^0 & & & H_u^0 \\
\hline
V_L & & V_R
\end{array}$$

$$\begin{array}{c|cccc}
W_{RR} \overline{V}_{R} V_{R}^{c} \\
\end{array}$$

Type Ib see-saw mechanism

Hernandez-Garcia and SFK 1903.01474

More details - see backup

$$V_{u}$$
 V_{d}
 H_{u}^{0}
 V_{R}
 $\tilde{H}_{d} = -i\sigma_{2}H_{d}^{*}$
 V_{L}
 $M_{RR}V_{R}V_{R}^{c}$

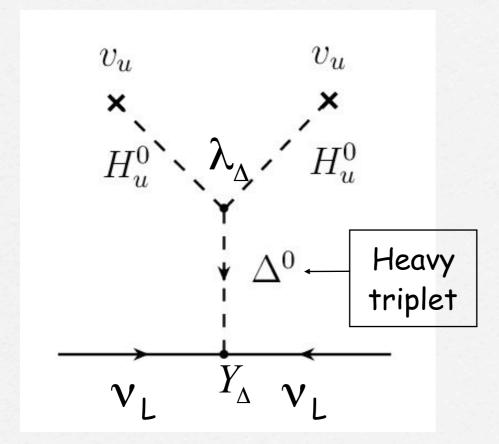
$$m_{LL}^{I} \approx -m_{LR} M_{RR}^{-1} m_{LR}^{T}$$

$$m_{LL}^{Ib} = - m_{LR1} M_{RR}^{-1} m_{LR2}^T$$

Type Ib

Type II see-saw mechanism (SUSY)

Lazarides, Magg, Mohapatra, Senjanovic, Shafi, Wetterich, Schechter and Valle...



$$m_{LL}^{II} \approx \lambda_{\Delta} Y_{\Delta} \frac{v_{u}^{2}}{M_{\Delta}}$$

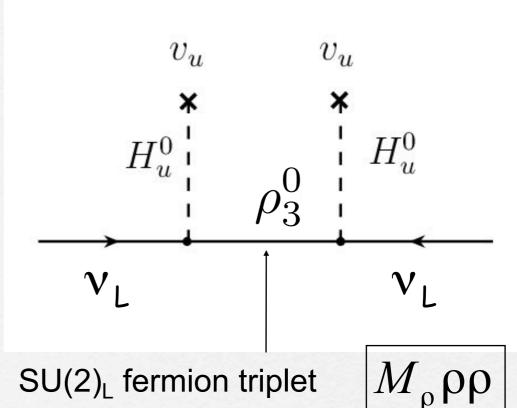
Type II

Type III see-saw mechanism

Foot, Lew, He, Joshi; Ma...

Supersymmetric adjoint SU(5)

Perez et al; Cooper, SFK, Luhn,...



SU(2)_L fermion triplet

$$m_{LL}^{III} \approx -m_{LR} M_{\rm p}^{-1} m_{LR}^{T}$$

Type III

See-saw w/extra singlets S

Inverse see-saw

Wyler, Wolferstein; Mohapatra, Valle

$$\begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix} \quad \mathsf{M} \approx \mathsf{TeV} \textcolor{red}{\Rightarrow} \mathsf{LHC}$$

$$M_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$$

Minimal example - see backup

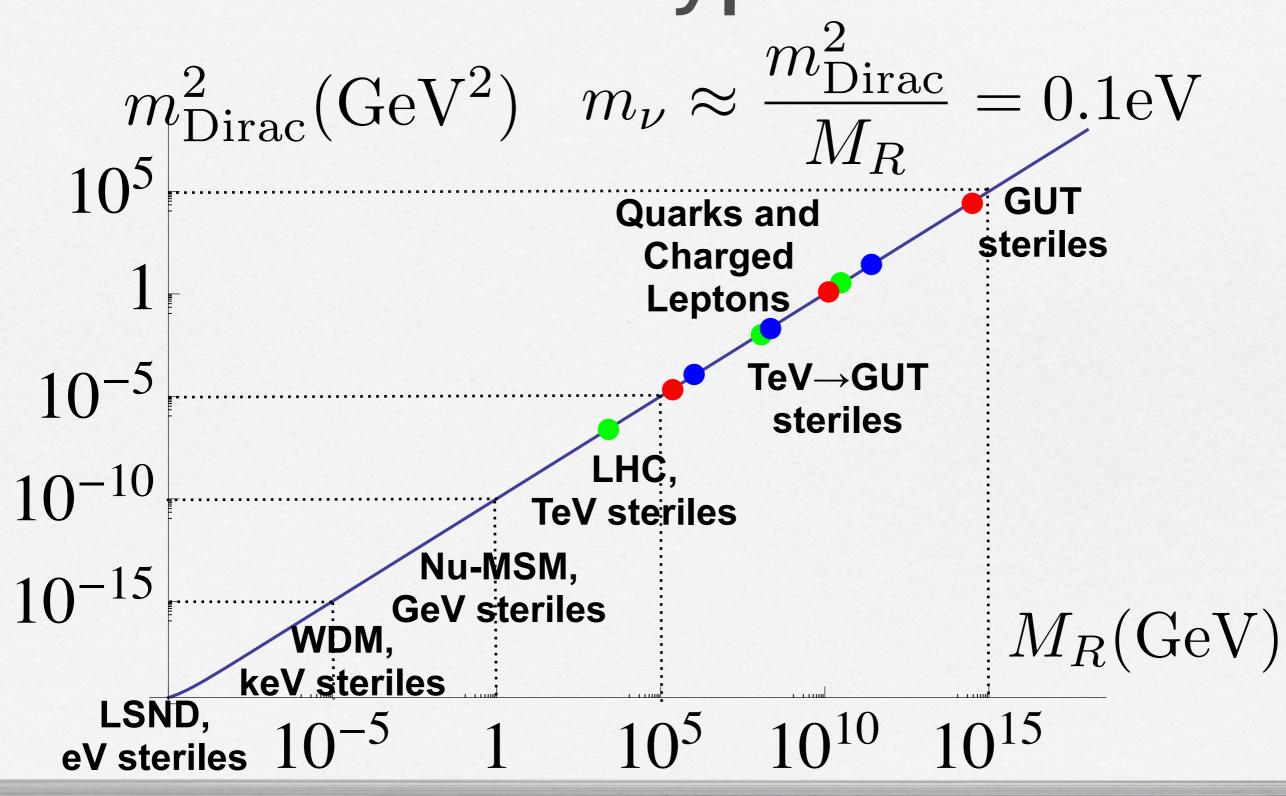
Linear see-saw

$$\left(egin{array}{ccc} 0 & M_D & M_L \ M_D^T & 0 & M \ M_L^T & M^T & 0 \end{array}
ight)$$
 Malinsky, Romao, Valle

$$M_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D^T$$

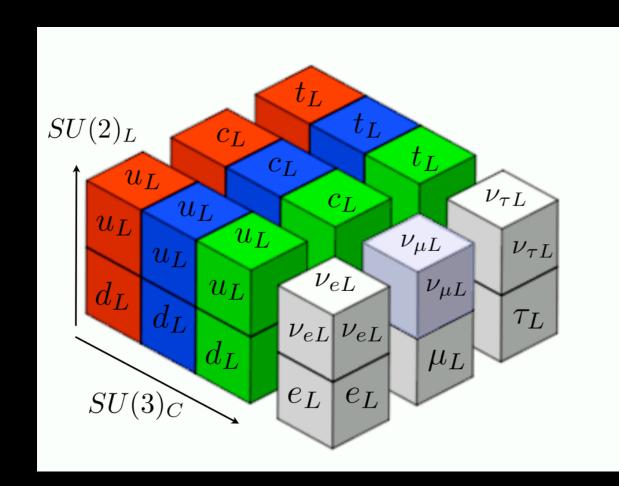
LFV predictions

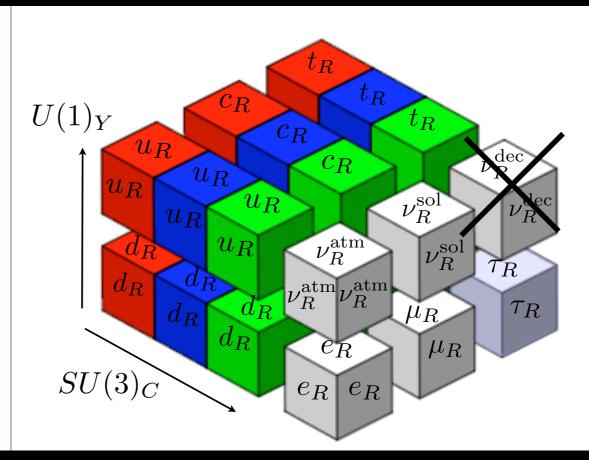
RHN masses in Type la Seesaw



Classic seesaw: $m_{\mathrm{Dirac}}^2(\mathrm{GeV}^2)$ Which Dirac Leptogenesis suggests 0.001 $M_R \sim 10^{10} \text{ GeV}$ $M_R({ m GeV})$

Minimal Type la seesaw





Type Ia seesaw with two RHNs s. Either one Dirac texture zero (NO)
Or two Dirac texture zeros (IO)

S.F.K, hep-ph/9912492

S.F.K,hep-ph/0204360

Frampton, Glashow, Yanagida, hep-ph/0208157

Littlest Seesaw

From Type Ia with S4 (backup) Dirac texture zero $Y^{\nu} = \begin{pmatrix} \dot{0} & be^{i\pi/3} \\ a & 3be^{i\pi/3} \\ a & be^{i\pi/3} \end{pmatrix} \qquad M_R = \begin{pmatrix} M_{\text{atm}} & 0 \\ 0 & M_{\text{sol}} \end{pmatrix}$ 4 real input parameters 8.40 8.35 **Best fit** 75.5 Sol/10¹³GeV 30 8.30 25 **Best fit** $20_{\Delta\chi^2}$ 8.20 5.0 10 8.15 8.10 8.02 8.04 8.06 $M_{atm}/10^{10} \text{GeV}$

- Fit includes effects of RG corrections
- **Determines the RHN masses!**

SFK 1304.6264; 1512.07531 SFK, Molina Sedgwick, Rowley, 1808.01005

Describes:

3 neutrino masses $(m_1=0)$,

3 mixing angles,

1 Dirac CP phase,

2 Majorana phases (1 zero)

1 BAU parameter Y_B

= 10 observables

of which 7 are constrained

Predictions	1σ range
$ heta_{12}/^\circ$	$34.254 \to 34.350$
$ heta_{13}/^\circ$	$8.370 \to 8.803$
$ heta_{23}/^\circ$	$45.405 \to 45.834$
$\Delta m_{12}^2 / 10^{-5} \mathrm{eV}^2$	$7.030 \rightarrow 7.673$
$\Delta m_{31}^2 / 10^{-3} \text{eV}^2$	$2.434 \rightarrow 2.561$
$\delta/^{\circ}$	$-88.284 \rightarrow -86.568$
$Y_B/10^{-10}$	$0.839 \to 0.881$

Also predicts NO and $m_1=0$

Littlest Seesaw

SFK 1304.6264; 1512.07531 SFK, Molina Sedgwick, Rowley, 1808.01005

Seesaw formula
$$M_{\nu} = m_D M_R^{-1} m_D^T \longrightarrow (M_{\nu})_{ij} \nu_{iL}^c \nu_{jL}^c = (M_{\nu}^*)_{ij} \nu_{iL} \nu_{jL}$$

Case I:
$$M_{\nu}^{I} = \omega m_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{s} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$
 Fits neutrino data with

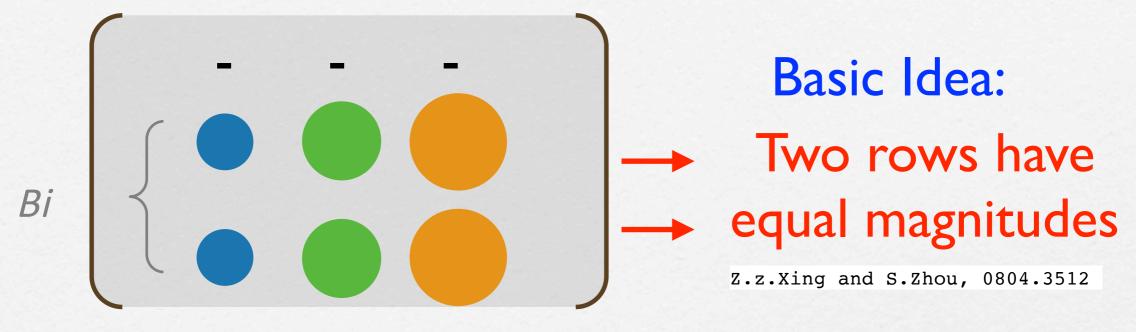
Case II:
$$M_{\nu}^{II} = \omega^2 m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_s \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$$
 $\omega = e^{i2\pi/3}$

Special case m_a/m_s=11 gives Littlest mu-tau seesaw

Case I:
$$M_{\nu} = m_s \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 + 11\omega & 3 + 11\omega \\ 1 & 3 + 11\omega & 1 + 11\omega \end{pmatrix}$$

Case II:
$$M_{\nu} = m_s \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 + 11\omega^2 & 3 + 11\omega^2 \\ 3 & 3 + 11\omega^2 & 9 + 11\omega^2 \end{pmatrix}$$

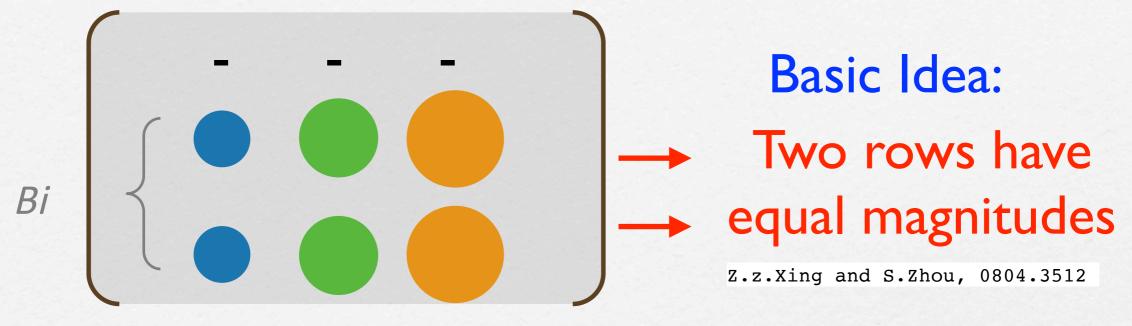
Case I: $M_{\nu} = m_s \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 + 11\omega & 3 + 11\omega \\ 1 & 3 + 11\omega & 1 + 11\omega \end{pmatrix}$, How can this be since it looks nothing like Case II: $M_{\nu} = m_s \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 + 11\omega^2 & 3 + 11\omega^2 \\ 3 & 3 + 11\omega^2 & 9 + 11\omega^2 \end{pmatrix}$. mu-tau symmetry?



$$\theta_{13} \neq 0$$

$$\theta_{23} = 45^{\circ},$$

$$\theta_{13} \neq 0$$
, $\theta_{23} = 45^{\circ}$, $\delta_{CP} = \pm 90^{\circ}$



$$\theta_{13} \neq 0$$
, $\theta_{23} = 45^{\circ}$, $\delta_{CP} = \pm 90^{\circ}$

$$V_0 = \begin{pmatrix} |V_{e1}| & |V_{e2}| & |V_{e3}| \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\mu 1}^* & V_{\mu 2}^* & V_{\mu 3}^* \end{pmatrix} \text{Generalisation of:} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} & \text{Mu-tau reflection symmetry} \\ V_{\mu 1}^* & V_{\mu 2}^* & V_{\mu 3}^* \end{pmatrix}_{\text{P.F.Harrison and W.G.Scott, hep-ph/0210197}} \text{Generalisation of:}$$

Mu-tau reflection symmetric Majorana mass matrix:

$$H_{
u}=M_{
u}^{\dagger}M_{
u}=egin{pmatrix}A&D&D^{*}\\D^{*}&B&C^{*}\\D&C&B\end{pmatrix}$$

Mu-tau reflection symmetric Majorana mass matrix:

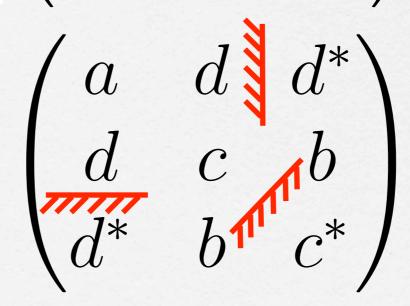
$$H_{
u}=M_{
u}^{\dagger}M_{
u}= egin{pmatrix}A&D&D^*\\D^*&B&C^*\\C&B\end{pmatrix}$$

THE MIRROR DID NOT SEEM TO BE OPERATING PROPERLY.

Can arise from:

$$M_{\nu} =$$

W.Grimus and L.Lavoura, hep-ph/0305309



More general examples:

H.J.He, W.Rodejohann and X.J.Xu, 1507.03541
A.S.Joshipura and K.M.Patel, 1507.01235

Littlest Mu-Tau Seesaw $\nu_{\mu} \leftrightarrow \nu_{\tau}^*$

$$M_{\nu} = m_s \begin{pmatrix} 1 & 1 & 3 \\ 1(1+11\omega^2)3+11\omega^2 \\ 3 & 3+11\omega^2(9+11\omega^2) \end{pmatrix} \qquad \omega = e^{i2\pi/3}$$
 unequal

S.F.K. and C.C.Nishi, 1807.00023

$$\omega = e^{i2\pi/3}$$

Littlest Mu-Tau Seesaw $\nu_{\mu} \leftrightarrow \nu_{ au}^*$

S.F.K. and C.C.Nishi, 1807.00023

$$\omega = e^{i2\pi/3}$$

$$H_{\nu} = M_{\nu}^{\dagger} M_{\nu} = 11 \, |m_{\rm s}|^2 \left(\begin{array}{ccc} 1 & -1 - 2i\sqrt{3} & 1 - 2i\sqrt{3} \\ -1 + 2i\sqrt{3} & 19 & 17 + 4i\sqrt{3} \\ 1 + 2i\sqrt{3} & 17 - 4i\sqrt{3} & 19 \end{array} \right) \text{equal}$$

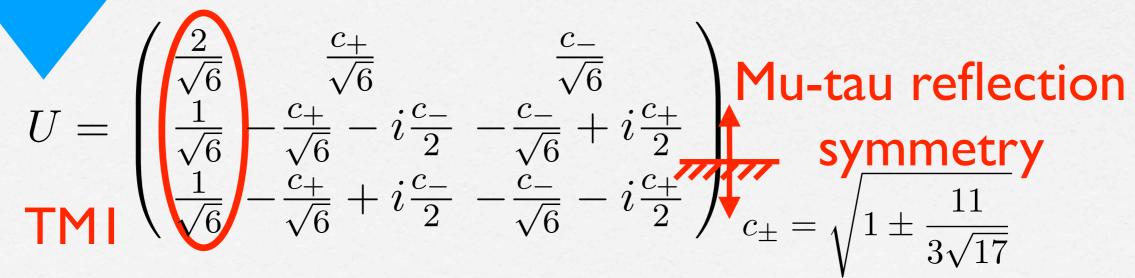
Littlest Mu-Tau Seesaw $\nu_{\mu} \leftrightarrow \nu_{\tau}^*$

$$M_{\nu} = m_s \begin{pmatrix} 1 & 1 & 3 \\ 1(1+11\omega^2)3 + 11\omega^2 \\ 3 & 3 + 11\omega^2(9+11\omega^2) \end{pmatrix}$$

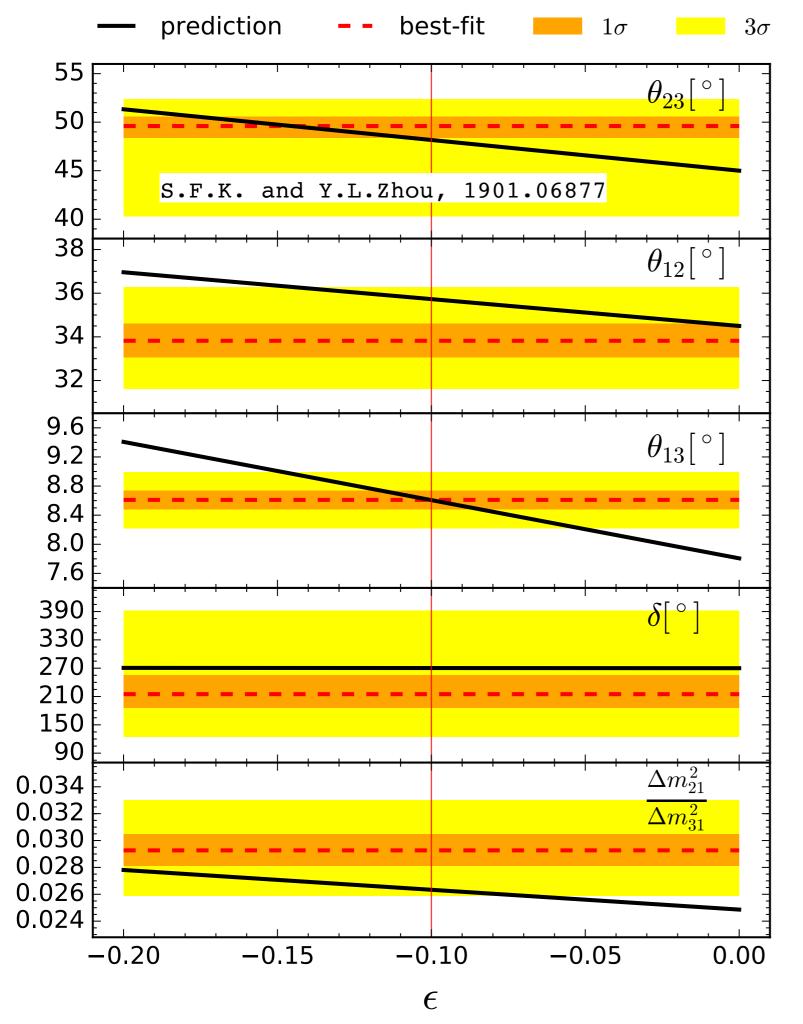
S.F.K. and C.C.Nishi, 1807.00023

$$\omega = e^{i2\pi/3}$$
 unequal

$$H_{\nu} = M_{\nu}^{\dagger} M_{\nu} = 11 \, |m_{\rm s}|^2 \left(\begin{array}{ccc} 1 & -1 - 2i\sqrt{3} & 1 - 2i\sqrt{3} \\ -1 + 2i\sqrt{3} & 19 & 17 + 4i\sqrt{3} \\ 1 + 2i\sqrt{3} & 17 - 4i\sqrt{3} & 19 \end{array} \right) \text{equal}$$



$$c_{\pm} = \sqrt{1 \pm \frac{11}{3\sqrt{17}}}$$



Littlest mu-tau seesaw

$$m_1 = 0$$

$$U = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{c_{+}}{\sqrt{6}} & \frac{c_{-}}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} - \frac{c_{+}}{\sqrt{6}} - i\frac{c_{-}}{2} - \frac{c_{-}}{\sqrt{6}} + i\frac{c_{+}}{2} \\ \frac{1}{\sqrt{6}} - \frac{c_{+}}{\sqrt{6}} + i\frac{c_{-}}{2} - \frac{c_{-}}{\sqrt{6}} - i\frac{c_{+}}{2} \end{pmatrix}$$

$$c_{\pm} = \sqrt{1 \pm \frac{11}{3\sqrt{17}}}$$

Renormalisation Group Corrections

$$\theta_{13} \approx 7.807^{\circ} - 8.000^{\circ} \epsilon$$
,

$$\theta_{12} \approx 34.50^{\circ} - 12.30^{\circ} \epsilon$$
,

$$\theta_{23} \approx 45.00^{\circ} - 31.64^{\circ} \epsilon$$
,

$$\delta \approx 270.00^{\circ} + 3.23^{\circ} \epsilon$$

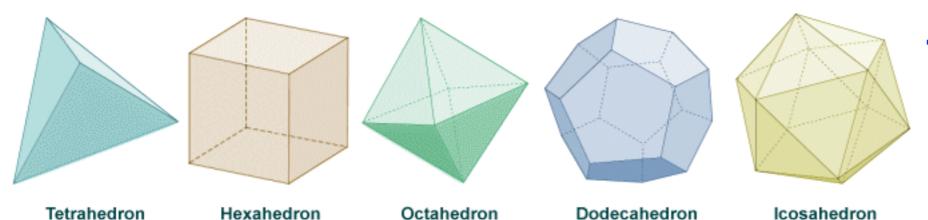
$$\Delta m_{21}^2 / \Delta m_{31}^2 \approx 0.0247 - 0.0147\epsilon$$

Conclusions

- ☐ Most parameters well measured in oscillation experiments...but...CP phase, octant, ordering? Also: Dirac or Majorana? Absolute masses?
- ☐ TB mixing explained by S₄...excluded by reactor angle...but...S₄ violations allow: charged lepton corrections, or TM1,TM2, with testable sum rules
- \Box Mu-tau symmetry predicts $\theta_{23}=45^{\circ}, \delta=-90^{\circ}$ Littlest mu-tau seesaw...one parameter...wow!
- ☐ Origin of Plato's symmetry? see backup slides

Backup slides

Origin of Plato's symmetry?



solid	faces	vertices	Plato	Group
tetrahedron	4	4	fire	A_4
octahedron	8	6	air	S_4
icosahedron	20	12	water	A_5
hexahedron	6	8	earth	S_4
dodecahedron	12	20	?	A_5

Two possibilities:

- I. From gauge group e.g. SU(3) or SO(3)
- 2. From extra dimensions e.g. string theory

Origin of Plato's symmetry?

Possibility 1:

Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120; Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891; B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417; S.F.K. and Ye-Ling Zhou, 1809.10292

Break SO(3) using large Higgs reps

irrep	<u>1</u>	3	<u>5</u>	7
subgroups	SO(3)	SO(2)	$Z_2 \times Z_2$	1
		SO(3)	SO(2)	A_4
			SO(3)	Z_3
				D_4
				SO(2)
				SO(3)

Origin of Plato's symmetry?

Possibility 1:

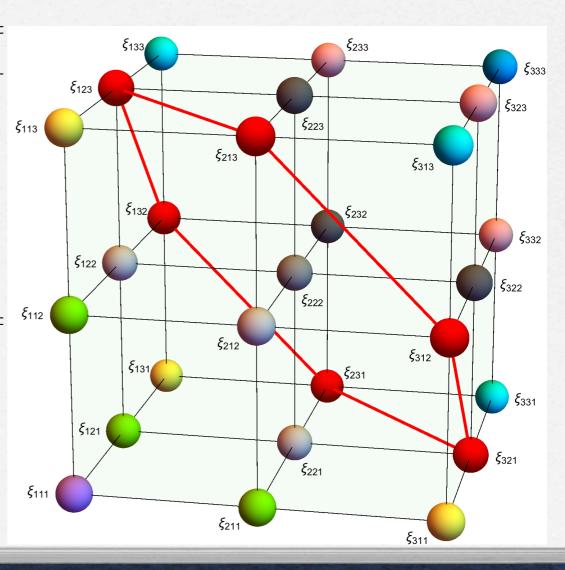
Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120; Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891; B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417; S.F.K. and Ye-Ling Zhou, 1809.10292

Break SO(3) using large Higgs reps E.g. 7-plet

irrep	1	3	<u>5</u>	7
subgroups	SO(3)	SO(2)	$Z_2 \times Z_2$	1
		SO(3)	SO(2)	A_4
			SO(3)	Z_3
				D_4
				SO(2)
				SO(3)

A4 preserving direction of 7-plet VEV

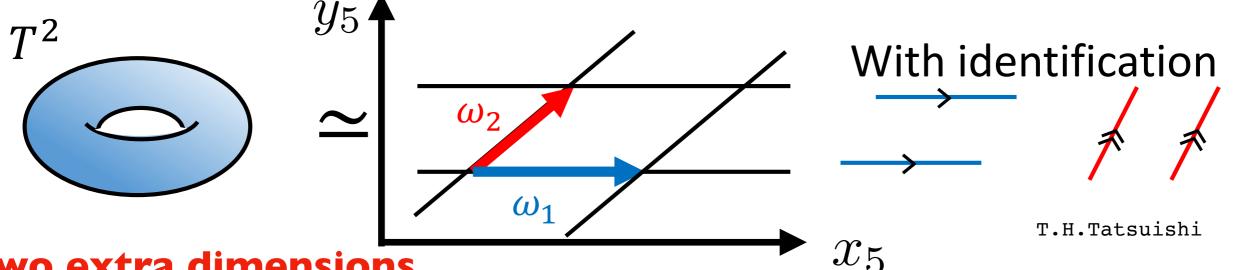
$$\langle \xi_{123} \rangle \equiv \frac{v_{\xi}}{\sqrt{6}}, \quad \langle \xi_{111} \rangle = \langle \xi_{112} \rangle = \langle \xi_{113} \rangle = \langle \xi_{133} \rangle = \langle \xi_{233} \rangle = \langle \xi_{333} \rangle = 0$$



Possibility 2: Extra dimensions (string theory)

G.Altarelli and F.Feruglio, hep-ph/0512103
R.de Adelhart Toorop, F.Feruglio and C.Hagedorn, 1112.1340
F.Feruglio, 1706.08749; J.C.Criado and F.Feruglio, 1807.01125; J.T.Penedo and S.T.Petcov 1806.11040; P.P.Novichkov, J.T.Penedo, S.T.Petcov and A.V.Titov, 1811.04933, 1812.02158;
T.Kobayashi, K.Tanaka and T.H.Tatsuishi,1803.10391; F.de Anda,S.F.K.,E.Perdomo,1812.05620
T.Kobayashi, N.Omoto, Y.Shimizu, K.Takagi, M.Tanimoto and T.H.Tatsuishi,1808.03012;
G.J.Ding, S.F.King and X.G.Liu, 1903.12588

The structure of a torus $T^2 \simeq$ The structure of a lattice on \mathbb{C} -plane



 y_5

two extra dimensions compactified on torus

Without loss of generality,

$$(\omega_1, \omega_2) \to \left(1, \frac{\omega_2}{\omega_1}\right) \equiv (1, \tau)$$

complex extra dimension

Possibility 2: Extra dimensions (string theory)

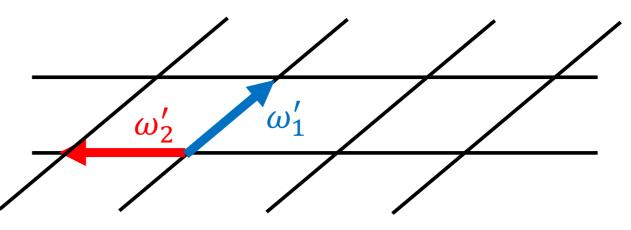
There are two independent lattice invariant transformations.

Modular Symmetry SL(2,Z):

$$\tau \to (a\tau + b)/(c\tau + d)$$

S-transformation au o -1/ au

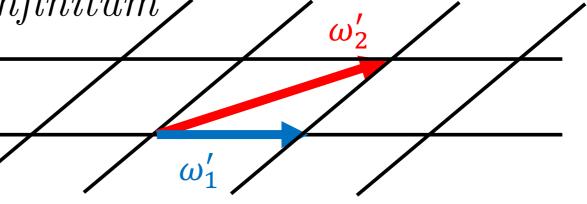
$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} \omega_2 \\ -\omega_1 \end{pmatrix}$$



T-transformation au o au + 1 $ad\ infinitum$

$$\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 + \omega_1 \end{pmatrix}$$

where S², (ST)³=I (infinite)



S, T are generators of A₄ if $T^3=1$, S₄ if $T^4=1$, A₅ if $T^5=1$, ...

Flavour symmetries may be identified as finite subgroups of the infinite modular group

Modular Forms

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

Level 3 Weight 2 acts as A4 triplet:
$$Y = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1 + 12q + 36q^2 + 12q^3 + 84q^4 + 72q^5 + \dots \\ -6q^{1/3}(1 + 7q + 8q^2 + 18q^3 + 14q^4 + \dots) \\ -18q^{2/3}(1 + 2q + 5q^2 + 4q^3 + 8q^4 + \dots) \end{pmatrix}$$

$$q \equiv e^{i2\pi\tau}$$
 free modulus $\tau = \frac{\omega_2}{\omega_1}$

Weinberg
$$\frac{1}{\Lambda}(H_u H_u \ LL(Y)) \longrightarrow m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix} \frac{v_u^2}{\Lambda}$$
 operator A4: 3 3 3

A4 Modular Symmetry

Models		maga matricoa	assignment	weigh	nt			
l.	loders	mass matrices	$ ho_{E^{c}_{1,2,3}}$	$k_{E_{1,2,3}^c}$	k_L	k_{N^c}		
	$\mathcal{A}1$	W1, C1	1,1,1	1, 3, 5	1	_		
	$\mathcal{A}2$	W1, C2	1', 1', 1'	1, 3, 5	1	_		
	$\mathcal{A}3$	W1, C3	1'', 1'', 1''	1, 3, 5	1	_		
Weinberg	$\mathcal{A}4$	W1, C4	1, 1, 1'	1, 3, 1	1	_		
	$\mathcal{A}5$	W1, C5	1, 1, 1''	1, 3, 1	1	_		
operator	$\mathcal{A}6$	W1, C6	1', 1', 1	1, 3, 1	1	_		
	$\mathcal{A}7$	W1, C7	1", 1", 1;	1, 3, 1	1	_		
	$\mathcal{A}8$	W1, C8	${f 1}'',{f 1}'',{f 1}'$	1, 3, 1	1	_		
	$\mathcal{A}9$	W1, C9	${f 1}',{f 1}',{f 1}''$	1, 3, 1	1	_		
	$\mathcal{A}10$	W1, C10	1, 1'', 1'	1,1,1	1	_		
	$\mathcal{B}1(\mathcal{C}1)[\mathcal{D}1]$	S1(S2)[S3], C1	1,1,1	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}2(\mathcal{C}2)[\mathcal{D}2]$	S1(S2)[S3], C2	1', 1', 1'	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}3(\mathcal{C}3)[\mathcal{D}3]$	S1(S2)[S3], C3	1'', 1'', 1''	0(3)[1], 2(5)[3], 4(7)[5]	2(-1)[1]	0(1)[1]		
Type I	$\mathcal{B}4(\mathcal{C}4)[\mathcal{D}4]$	S1(S2)[S3], C4	1 , 1 , 1 '	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}5(\mathcal{C}5)[\mathcal{D}5]$	S1(S2)[S3], C5	1 , 1 , 1 ''	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
see-saw	$\mathcal{B}6(\mathcal{C}6)[\mathcal{D}6]$	S1(S2)[S3], C6	1', 1', 1	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}7(\mathcal{C}7)[\mathcal{D}7]$	S1(S2)[S3], C7	${f 1}',{f 1}',{f 1}''$	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}8(\mathcal{C}8)[\mathcal{D}8]$	S1(S2)[S3], C8	1", 1", 1	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}9(\mathcal{C}9)[\mathcal{D}9]$	S1(S2)[S3], C9	1'', 1'', 1'	0(3)[1], 2(5)[3], 0(3)[1]	2(-1)[1]	0(1)[1]		
	$\mathcal{B}10(\mathcal{C}10)[\mathcal{D}10]$	S1(S2)[S3], C10	1, 1'', 1'	0(3)[1], 0(3)[1], 0(3)[1]	2(-1)[1]	0(1)[1]		

Comprehensive study of 40 simplest cases without flavons

Minimal Models:

Modela	Models Ordering		Modola	Models Ordering		Models	Orde	ring	Models	Orde	ring
Moders	NO	IO	Models	NO	IO	noders	NO	IO	noders	NO	IO
$\mathcal{A}1$	×	X	B 1	1	/	<i>C</i> 1	X	X	$\mathcal{D}1$	1	/
$\mathcal{A}2$	X	X	$\mathcal{B}2$	/	/	C2	X	X	$\mathcal{D}2$	1	/
$\mathcal{A}3$	×	X	B 3	1	/	<i>C</i> 3	X	X	$\mathcal{D}3$	1	/
$\mathcal{A}4$	X	X	$\mathcal{B}4$	X	X	C4	X	X	$\mathcal{D}4$	X	1
$\mathcal{A}5$	×	X	$\mathcal{B}5$	X	X	C5	X	X	$\mathcal{D}5$	1	X
$\mathcal{A}6$	X	X	B 6	X	/	<i>C</i> 6	X	X	$\mathcal{D}6$	V	X
$\mathcal{A}7$	×	X	<i>B</i> 7	X	X	<i>C</i> 7	X	×	07	/	V
$\mathcal{A}8$	×	X	<i>B</i> 8	Y	X	C8	X	×	$\mathcal{D}8$	1	/
$\mathcal{A}9$	×	X	$\mathcal{B}9$	1	~	C 9	X	×	$\mathcal{D}9$	1	1
$\mathcal{A}10$	X	X	B 10	'	V	C10	X	X	$\mathcal{D}10$	'	V

 $\mathcal{B}_9, \, \mathcal{B}_{10}, \, \mathcal{D}_5 \sim \mathcal{D}_{10}$

8 inputs for 12 observables

(6 lepton masses, 6 PMNS)

Large nu mass, deltaCP

A5 Modular Symmetry

Models		mass matrices	assignment	weight		
Moder	5	mass mattices	$(ho_{E^c}, ho_L, ho_{N^c})$	$k_{E_{1,2,3}}$	$k_{E_{1,2,3}} \mid k_L \mid k$	
	$\mathcal{A}1$	W1	(1, 3, -)	_	1	_
	$\mathcal{A}2$	W2	(1 , 3 ',-)	_	1	_
	$\mathcal{A}3$	S1	(1, 3, 3)	_	2	0
With	A4	S2	(1, 3, 3)	_	-1	1
flavons	$\mathcal{A}5$	S3	$({f 1},{f 3}',{f 3})$	_	2	0
	$\mathcal{A}6$	S4	$({f 1},{f 3},{f 3}')$	_	2	0
	$\mathcal{A}7$	S5	$({f 1},{f 3}',{f 3}')$	_	2	0
	$\mathcal{A}8$	S6	$({f 1},{f 3}',{f 3}')$	_	-1	1
	$\mathcal{B}1$	C1 , $W1$	$({f 1},{f 3},-)$	1,3,5	1	_
	$\mathcal{B}2$	C2, $W2$	(1 , 3 ',-)	1,3,5	1	_
	$\mathcal{B}3$	C1 , $S1$	(1,3,3)	0, 2, 4	2	0
Without	$\mathcal{B}4$	C1 , $S2$	(1,3,3)	3,5,7	-1	1
flavons	$\mathcal{B}5$	C2 , $S3$	$({f 1},{f 3}',{f 3})$	0, 2, 4	2	0
	$\mathcal{B}6$	C1 , $S4$	$({f 1},{f 3},{f 3}')$	0, 2, 4	2	0
	<i>B</i> 7	C2 , $S5$	$({f 1},{f 3}',{f 3}')$	0, 2, 4	2	0
	B 8	C2, $S6$	$({f 1},{f 3}',{f 3}')$	3, 5, 7	-1	1

Comprehensive study of simplest cases with and without flavons

Results very dependent on free modulus

	Models	free input parameters p_i	overall factors	
	$\mathcal{A}1, \mathcal{A}2$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	v_u^2/Λ	
With	$\mathcal{A}4, \mathcal{A}5, \mathcal{A}6, \mathcal{A}8$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau\}$	$g^2 v_u^2/\Lambda$	
flavons	$\mathcal{A}3,\mathcal{A}7$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau, g_1/g_2 , \operatorname{Arg}(g_1/g_2)\}$	$g_2^2 v_u^2/\Lambda$	
	$\mathcal{B}1,\mathcal{B}2$	$\mathbb{R} \left\{ \operatorname{Re} \tau, \operatorname{Im} \tau, \beta/\alpha, \gamma_1/\alpha, \gamma_2/\alpha , \operatorname{Arg}(\gamma_2/\alpha) \right\} \right\}$	$\alpha v_d, v_u^2/\Lambda$	
Without	$\mathcal{B}4$, $\mathcal{B}5$, $\mathcal{B}6$, $\mathcal{B}8$	$\{\operatorname{Re} \tau, \operatorname{Im} \tau, \beta/\alpha, \gamma_1/\alpha, \gamma_2/\alpha , \operatorname{Arg}(\gamma_2/\alpha)\}$	$\alpha v_d, g^2 v_u^2/\Lambda$	
flavons	B 3, B 7	{Re τ , Im τ , β/α , γ_1/α , $ \gamma_2/\alpha $, Arg (γ_2/α) , $ g_1/g_2 $, Arg (g_1/g_2) }	$\alpha v_d, g_2^2 v_u^2 / \Lambda$	

$$\tau = \frac{\omega_2}{\omega_1}$$

Modular Symmetry and orbifolds

Consider a finite modular symmetry

$$\bar{\Gamma}_M \simeq \{S, T | S^2 = (ST)^3 = T^M = \mathbb{I}\}/\{\pm 1\}$$

Represented by the modular transformations (level M>2)

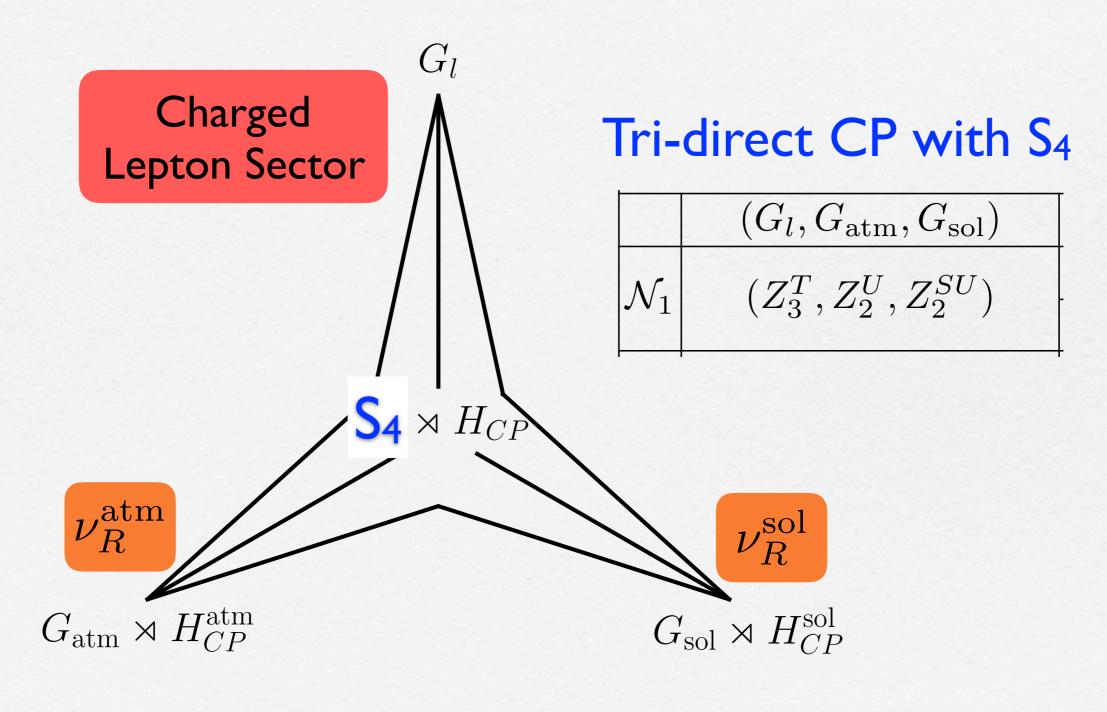
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T_{(M)} = \begin{pmatrix} e^{-2i\pi/M} & 0 \\ 1 & e^{2i\pi/M} \end{pmatrix}$$

We show that for the orbifold T^2/\mathbb{Z}_2 the **fixed points** are only invariant for a particular level M=3 and **fixed modulus** $\omega=e^{i2\pi/3}$

$$\bar{\Gamma}_3 = A_4 \text{ with } \tau = \omega \text{ or } \tau = \omega + 1.$$

G.J.Ding, S.F.K. and C.C.Li, 1807.07538, 1811.12340

Littlest Seesaw from S4



Littlest Seesaw from S₄

Tri-direct CP with S₄ gives the structure

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta} \begin{pmatrix} 1 & 2-x & x \\ 2-x & (x-2)^2 & (2-x)x \\ x & (2-x)x & x^2 \end{pmatrix}$$



Original Littlest Seesaw

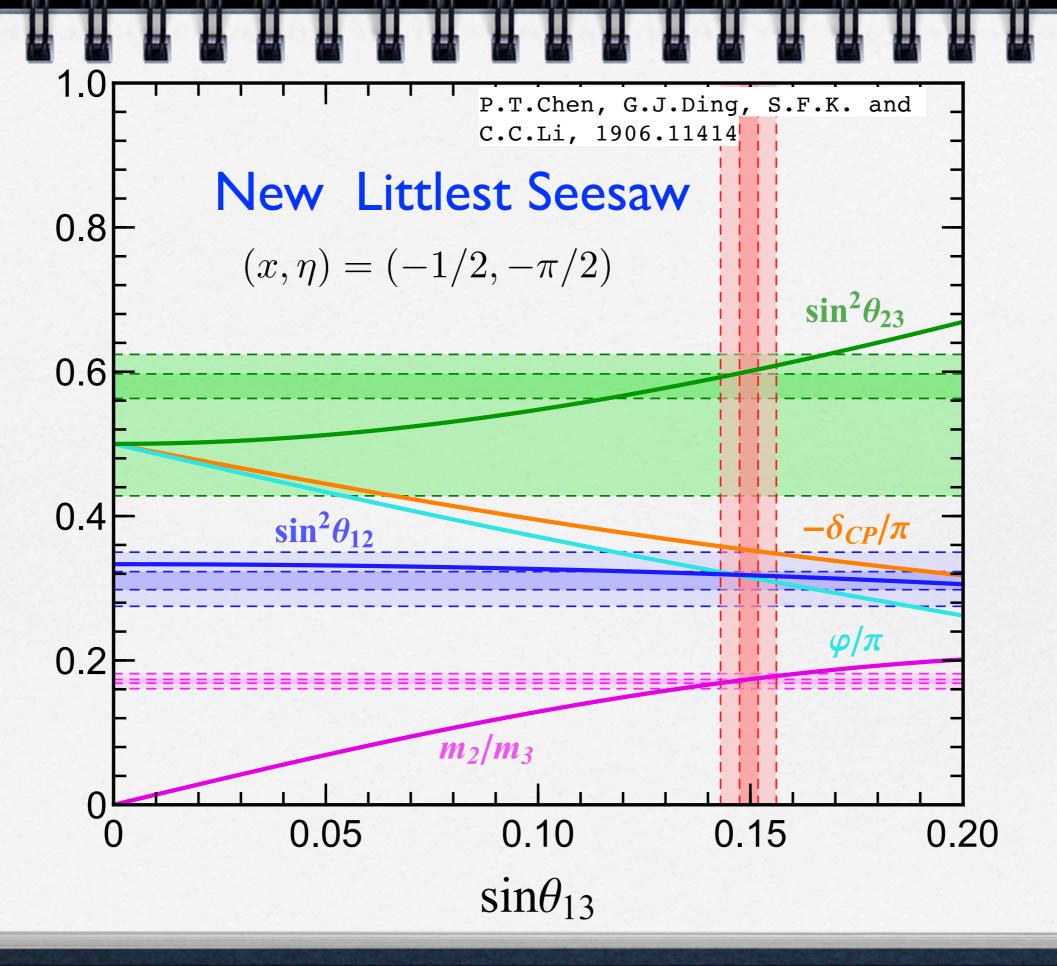
$$(x, \eta) = (3, 2\pi/3), (-1, -2\pi/3)$$

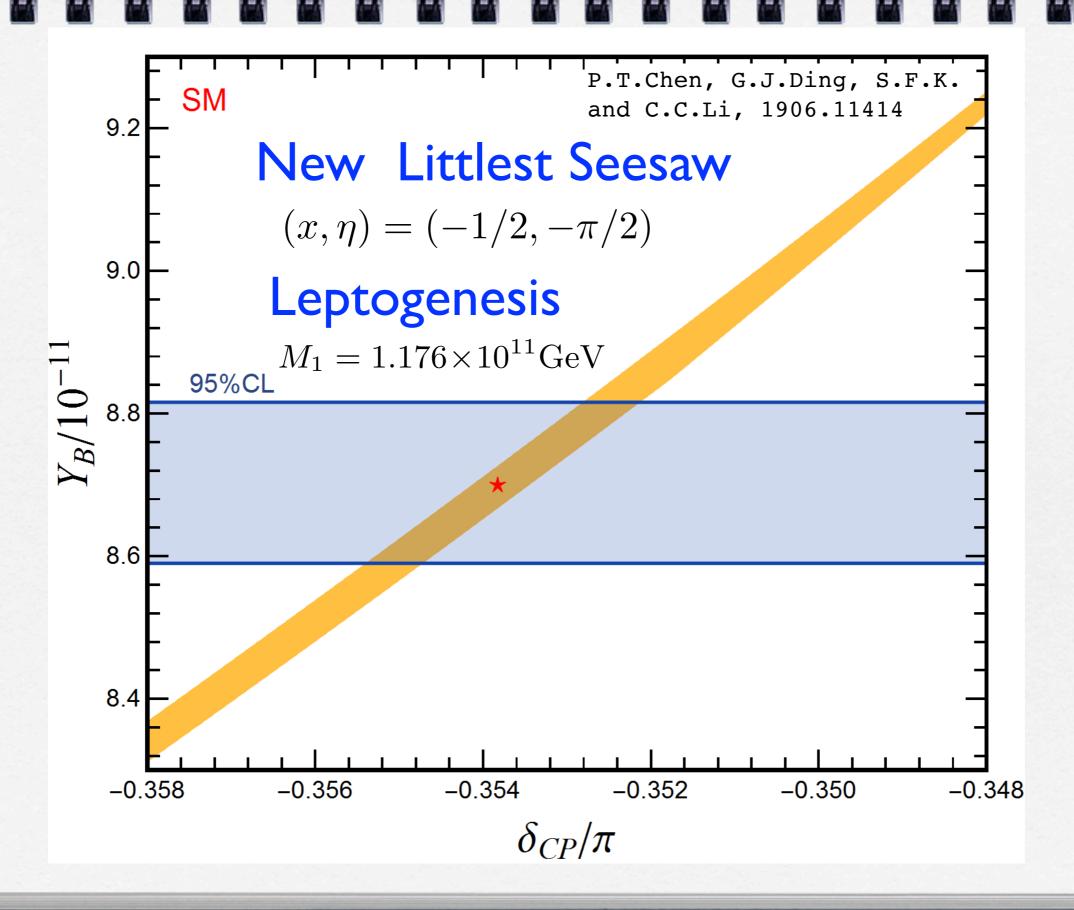
 $\sin^2 \theta_{23} \approx 0.5 \quad \delta_{CP} \approx -\pi/2$

New Littlest Seesaw

$$(x, \eta) = (-1/2, -\pi/2)$$

 $0.593 \le \sin^2 \theta_{23} \le 0.609$ UO
 $-0.358 \le \delta_{CP}/\pi \le -0.348$





Littlest Inverse Seesaw

Another Possibility
$$M_{\nu} = \begin{pmatrix} 0_{3\times3} & m_D & 0_{3\times2} \\ m_D^T & 0_{2\times2} & M \\ 0_{2\times3} & M^T & \mu \end{pmatrix} \quad \begin{array}{c} \text{cLFV, collider...} \\ \text{Talk by Antusch} \\ \end{array}$$

$$m_D \sim \left(egin{array}{cc} 0 & b \ a & 3b \ a & b \end{array}
ight),$$

$$M \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mu \sim \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix},$$

$$\mu \sim \left(\begin{array}{cc} 1 & 0 \\ 0 & \omega \end{array} \right)$$

$$\omega = e^{\frac{2\pi i}{3}}.$$

$$m_{\nu} = -m_D (M^T)^{-1} \mu M^{-1} m_D^T$$

Talk by Valle

Same low
$$m_{\nu} = m_{\nu a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_{\nu b} \omega \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$
 energy matrix

Minimal Type Ib seesaw

Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'
Q_i	3	2	1/6	0
u_i^c	$\overline{3}$	1	-2/3	0
d_i^c	$\overline{3}$	1	1/3	0
L_i	1	2	-1/2	0
e^c_i	1	1	1	0
$ u^c$	1	1	0	1
$\overline{ u^c}$	1	1	0	-1
ϕ	1	1	0	1
H_u	1	2	1/2	-1
H_d	1	2	1/2 $-1/2$	-1

Assume

Light effective neutrino matrix

$$\hat{m}_{ij} = \frac{\epsilon_1 v v'}{M^{\nu}} \left(y_i^{\nu} y_j^{\nu \prime} + y_i^{\nu \prime} y_j^{\nu} \right)$$

Unitarity violation due to large y

$$\eta_{ij} = \frac{1}{2M^{\nu 2}} \left(v^2 y_i^{\nu *} y_j^{\nu} + \epsilon_1^2 v'^2 y_i^{\nu \prime *} y_j^{\nu \prime} \right) \simeq \frac{v^2}{2M^{\nu 2}} y_i^{\nu *} y_j^{\nu}$$

Minimal Type Ib seesaw

