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Renormalizable Gravity

One-loop quantum corrections to General relativity in
4-dimensional spacetime produce ultraviolet divergences of
curvature-squared structure.
G. ’t Hooft and M. Veltman, Ann. Inst. Henri Poincaré 20, 69 (1974)

Inclusion of
∫
d4x
√
−g(−αCµνρσCµνρσ + βR2) terms ab initio

into the gravitational action leads to a renormalizable D = 4
theory, but at the eventual price of a loss of unitarity owing to the
ghost modes arising from the αCµνρσC

µνρσ term, where Cµνρσ is
the Weyl tensor. K.S.S., Phys. Rev. D16, 953 (1977)

[In D = 4 spacetime dimensions, this (Weyl)2 term is equivalent,
up to a topological total derivative via the Gauss-Bonnet theorem,
to the combination −α(RµνR

µν − 1
3R

2)].
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The “classical” gravitational action from which we will start is thus

I =

∫
d4x
√
−g(γR − Λ− αCµνρσCµνρσ + βR2) .

By expanding this action about flat space (gµν = ηµν + hµν for
Λ = 0) and separating the dynamics into the separate spins, one
deduces the particle content of the flat-space linearized theory:

positive-energy massless spin-two,

negative-energy massive spin-two with m2
2 = γ/(2α) and

positive-energy massive spin-zero with m2
0 = γ/(6β) .

K.S.S., Gen.Rel.Grav. 9 (1978) 353
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Despite the apparent ultra-high energy nonphysical behavior,
quadratic-curvature gravities have been explored in a variety of
contexts:

• Cosmology: Starobinsky’s model for inflation was based on a∫
d4x
√
−g(M2

PlR + βR2) model.
A.A. Starobinsky 1980; Mukhanov & Chibisov 1981

This early model has been quoted as a good fit to CMB
fluctuation data from the Planck satellite.
J. Martin, C. Ringeval and V. Vennin, arXiv:1303.3787

Note, however, a curious feature of the Starobinsky inflation
model: in order for it to work, the R2 coefficient must be very
large, β ∼ 1010, giving m0 ∼ 10−5MPl. How does such a large
coefficient arise?

• The asymptotic safety scenario considers a non-Gaussian
renormalization-group fixed point for dimensionless versions of
Newton’s constant and the cosmological constant
S. Weinberg 1976, M. Reuter 1996, M. Niedermaier 2009&10
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Asymptotic Safety

One approach to asymptotic safety focuses on the renormalizable
set of operators in Einstein-plus-quadratic-curvature gravity and
argues that the existence of a non-Gaussian fixed point for
dimensionless versions of Newton’s constant and the cosmological
constant can be determined directly from perturbation theory.
Niedermaier 2009&10

A key feature of the Einstein-plus-quadratic-curvature system is
that the (Weyl)2 term is asymptotically free in the sense that for
α = 1/g2

2 , one finds g2 → 0 at large momenta, as in Yang-Mills
theory. E.S. Fradkin & A.A. Tseytlin 1981, 1982; I.G Avramidy & A.O. Barvinsky 1985 So the
interactions permitting decay into the negative-energy states turn
off as one approaches the regime where this becomes kinematically
possible.

This is also true for the R2 term, although in the large-momentum
asymptotic limit, the β coefficient becomes negative, giving a
tachyonic m2

0 at ultra-high scales. I.G Avramidy & A.O. Barvinsky 1985
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Renormalization group equations

Niedermaier’s approach to asymptotic safety is based upon
one-loop renormalization group flows.

Let γ = µ2/g̃ and Λ = µ4λ for the ordinary Einstein-Hilbert and
cosmological terms and also α = 1/(2σ) and β = ω/(3σ) for the
quadratic curvature terms. The four coefficients g̃ , λ , σ and ω are
all dimensionless.

The parameter µ is the renormalization scale, so at a low-energy
reference scale one may take γ0 = µ20/g̃(µ0) = M2

Pl, i.e.
µ0 =

√
g̃MPl, where MPl =

√
16πG .
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The renormalization group equations are then

µ
d

dµ
g̃ = fg̃ (g̃ , λ, σ, ω) µ d

dµλ = fλ(g̃ , λ, σ, ω)

µ
d

dµ
σ = − 133

160π2
σ2 µ d

dµω = −25+1098ω+200ω2

960π2 σ

where fg̃ and fλ are certain functions of all the couplings.

Niedermaier’s result was that these dimensionless couplings tend as
µ→∞ to a fixed point (g̃∗ , λ∗ , σ∗ , ω∗) with

σ∗ = 0 ω∗ ≈ 0.0228 ,

with the σ∗ value reproducing the asymptotic freedom result for
the curvature-squared terms in the action, and

g̃∗ ≈ .42 λ∗/10 ≈ 1.18

for the pure higher-derivative gravity system without matter. The
fixed-point values can change when matter is included.
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262 M. Niedermaier / Nuclear Physics B 833 [PM] (2010) 226–270

Fig. 2. Gauge-independent Wilsonian 1-loop flow (5.28), (5.29) for HD gravity.

Table 1
Coupling values for the flow (5.28), (5.29) initial data at μ = 1 in range 0 < g0

N
, λ0/10 < 2; all given digits are signifi-

cant.

μ gN λ/10

10 0.4(1) 0.8(2)

100 0.418(3) 1.116(8)

1000 0.41945(4) 1.1826(1)

After the flow lines have merged the trajectory approaches very slowly the fixed point. Even
at μ = 109 there are still 1% deviations from the fixed point values. To illustrate the rate of
approach we propagated the μ = 1000 values up to μ = 109 with the results listed in Table 2.

Eventually the trajectory becomes tangent to the analytic curve

�(g) = 1

(g1 − g∗
N)2

{
g1

g
g∗
N

(
g∗
N�1 − g1λ∗

)− 2g1
(
g∗
N�1 − g1λ∗

)
+ g
(
g1�1 − 2g1λ∗ + g∗

Nλ∗
)}

, (5.30)

̃

Renormalization-group trajectories in coupling-constant space ending on a non-Gaussian

fixed point with finite dimensionless g̃∗ and dimensionless cosmological constant λ∗.
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When should one be afraid of ghosts?

Simple analogous kinematics with a scalar ghost in its rest frame

mb

◀

ma

m2 (0,E2=-m2)

(-p,Eb)

(p,Ea)
→

→

ghost emission 

→

Let m2 � ma , mb

|~p |2 =
1

4m2
2

(
m2

2 − (ma + mb)2(m2
2 − (ma −mb)2

)
' m2

2

4
− 1

2(m2
a + m2

b) + · · ·

requires at least |~p | ∼ m2/2 for ghost production
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Catching up to the ghost as it runs

Approaching the fixed point, take γ ∼ µ2

g̃∗
and since µdσ

dµ = −cσ2

(with c = 133
160π2 ∼ 0.08) one has a running ghost

m2
2(µ) = γ(µ)

2α(µ) ∼
µ2

cg̃∗ ln(µ/µ0)
.

For the relevant momentum scale, take µ ∼ |~p | ∼ 1
2m2(µ). Then

since µ0 = MPl

√
g̃(µ0) and taking g̃(µ0) ∼ g̃∗ ∼ 0.42 for g̃(µ)

slowly moving, one finds

µ ∼ µ0 exp(
1

4cg̃∗
) ∼ e7MPl ∼ 103MPl

The main point to take home is that it is hard to catch up with
the running spin-two ghost. So, whatever the ultimate fate of the∫
R − Λ− C 2 + R2 effective theory, it should remain valid and

unbothered by ghosts for a very large range of super-Planckian
scales.
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Finite Euclidean action

Given the renormalizability, asymptotic safety and at least
temporary safety from ghosts, one can now trust the∫
R − Λ− C 2 + R2 theory up to super-Planckian energies. If one

then considers transition amplitudes in the early universe,
calculated in the Euclidean formulation as a sum over paths
weighted by the action, then one obtains a contribution to this
sum only if the action is well-defined and not divergent.

This motivates the following condition, motivated by quantum
mechanics: all physical solutions relevant to the early universe
should have finite action.

We assume that the spatial volume of the universe is finite,
approaching zero volume as the time coordinate t tends to zero.
Then at fixed (but arbitrarily large) scale µ, we impose the
requirement that the time integral in the action does not diverge
as t → 0.
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Anisotropies

Now consider a Bianchi type IX metric as a model early-universe
metric. This will allow us to investigate the fate of general
anisotropies under the finite-action requirement.

ds2IX = −dt2 +
∑
m

(
lm
2

)2

σ2m

where σ1 = sinψ dθ − cosψ sin θ dϕ,
σ2 = cosψ dθ + sinψ sin θ dϕ, and σ3 = −dψ + cos θ dϕ are
differential forms on S3 with coordinate ranges 0 ≤ ψ ≤ 4π,
0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. One can then rescale

l1 = a e
1
2(β++

√
3β−) , l2 = a e

1
2(β+−

√
3β−) , l3 = a e−β+

in which a represents the spatial volume and the βi parametrize
the shapes of the spatial slices. When β− = β+ = 0 one recovers
the isotropic case.
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The Einstein-Hilbert action in these coordinates is given by

SEH =

∫
d4x
√
−g R

2

= 2π2
∫

dt a

(
−3ȧ2 +

3

4
a2(β̇2+ + β̇2−)− U(β+, β−)

)
where the anisotropy parameters evolve subject to the effective
potential

U(β+, β−) = −2
(
e2β+ + e−β+−

√
3β− + e−β++

√
3β−
)

+
(
e−4β+ + e2β+−2

√
3β− + e2β++2

√
3β−
)

Simplifying the on-shell action using the Friedman equation
3H2 = 3(ȧ/a)2 = 3

4 β̇
2
+ + 3

4 β̇
2
− + 1

a2
U(β+, β−), the on-shell

Einstein-Hilbert action becomes

Son−shell
EH =

∫
d4x
√
−g R

2
= −4π2

∫
dt a U(β+, β−)
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Now take as an illustrative example a solution with β− = 0. The
anisotropy potential reduces to U(β+, 0) = e−4β+ − 4e−β+ and the
asymptotic solution is given by

a(t) = a0t
1/3 eβ+ = b+t

−2/3

As t → 0 the anisotropy diverges, i.e. β+ →∞. The on-shell
Einstein-Hilbert action can then be approximated by

Son−shell
EH = −4π2

∫ t1

t0

dt a U(β+, 0) ≈ 16π2
a0
b+

∫ t1

t0

dt t

where the approximate expression holds for small t. This action
nonetheless remains finite as t0 → 0, so one obtains no obstruction
to a highly anisotropic solution of this kind in pure Einstein theory.
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Consequences of the curvature-squared terms
The absence of any limitations on the initial anisotropy in pure
Einstein theory persists when one considers a more general
power-law ansatz

a ∝ ts e
√
3β− ∝ tm eβ+ ∝ tp

provided s ≥ 1/3, which is characteristic of the general chaotic
mixmaster solutions that one obtains.

Now consider, however, what happens to the action when the
quadratic-curvature terms are included. Requiring t0 → 0 finiteness
of the integrated (Weyl)2 and R2 terms leads to the conditions

s ≥ 1

3
, −1

2
(1 + s) ≤ p ≤ 1

4
(1 + s) , −1

2
(1 + s) ≤ p ±m ≤ 1 + s .

These conditions are only satisfied if s = 1 , p = 0 , m = 0, i.e. if
the anisotropy parameters β± become constant near t = 0.
However, even then one finds that the action still diverges
logarithmically unless β+ = β− = 0. The finite action requirement
thus suppresses the anisotropies altogether at the earliest times.
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Inhomogenieties

In order to investigate inhomogeneities, consider a metric of the
Lemâıtre-Tolman-Bondi class,

ds2 = −dt2 +
A′2

F 2
dr2 + A2(dθ2 + sin2 θdφ2)

where now the scale factor A depends both on time and on the
radial coordinate r , i.e. A = A(t, r) and A′ = ∂A/∂r .

The function F (r) describes the inhomogeneity in the r coordinate.
For simplicity, spherical symmetry is maintained in the remaining
spatial directions. When F (r) = 1, a field redefinition returns the
metric to the standard flat Robertson-Walker form.
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As in the discussion of anisotropies, now make an ansatz that the
scale factor has a power-law time dependence in the approach to
A = 0, i.e. suppose that A(t, r) ∼ ts near t = 0, where s ≥ 0 .

The Einstein-Hilbert action then has two different types of terms:
those related to the time evolution of the scale factor, such as∫
t0
dt Ȧ

2A′

F ∼
∫
t0
dt t3s−2 ∼ t3s−10 , which require s ≥ 1/3 for

convergence, and those related to the inhomogeneity, such as∫
t0
dtA′F ∼

∫
t0
dt ts ∼ ts+1

0 . The latter are always convergent for
s ≥ 1/3 > 0.

So initial inhomogeneities do not lead to a divergence of the
Einstein-Hilbert action and would consequently be acceptable in
the context of pure Einstein theory.
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Now redo the analysis including the quadratic-curvature terms.
Similarly to what happens in the anisotropy analysis, both the
integrated R2 and (Weyl)2 terms lead to temporal scalings of the
forms ∫

t0

dt t3s−4,

∫
t0

dt ts−2,

∫
t0

dt t−s

where the last term arises from inhomogeneity terms like
∫
dt A

′F 4

A2F
.

Convergence near t0 = 0 then requires

s > 1 , s < −1

where the second requirement arises from the inhomogeneity
contributions, and is clearly in conflict with the first requirement.
Thus, near t0 = 0 the inhomogeneity must be damped out so that
F (r)→ 1 and the solution tends to a form equivalent to the
standard flat Robinson-Walker metric.

Accordingly, only initially homogeneous early universes are allowed,
with a scale factor undergoing an accelerated expansion, A ∼ ts ,
with s ≥ 1.
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Conclusions
• Renormalizable

∫
R − Λ− C 2 + R2 gravity is asymptotically

free for the (Weyl)2 and R2 terms and asymptotically safe for
the dimensionless g̃ , λ coefficients of the Einstein-Hilbert and
cosmological terms. This gives an effective theory that one
may trust up to energy scales well beyond the Planck scale.

• Imposing the requirement of finite Euclidean action as t0 → 0
does not give any restrictions on the initial form of the metric
in pure Einstein theory, but the inclusion of the (Weyl)2 and
R2 terms in the action does give restrictions on the initial
metric that require vanishing initial anisotropy and
inhomogeneity at t0 = 0.

• These initial conditions for the early universe give a vanishing
initial Weyl curvature tensor, thus dynamically deriving Roger
Penrose’s Weyl curvature hypothesis, which he proposed as an
explanation for the low initial entropy of the universe which is
required to derive the second law of thermodynamics.
R. Penrose, Ann. N.Y. Acad. Sci. 571 (1989) 249
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