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Tensor models

• Extend Matrix models [Ambjørn et al. ‘90; Sasakura ‘90, Boulatov ‘92; Ooguri ‘92]:
Models for quantum gravity/random discrete geometry in any D

• Admit a (new) large ‘t Hooft N expansion: melonic diagrams (talk by Dario) [Gurau
‘10 ‘11; Gurau, Rivasseau ‘11, Bonzom, Gurau, Riello, Rivasseau ‘11]

• Extend to Group Field Theory [Oriti ‘06] for gravity

• Recent development: TM have the same large N limit that the
Sachdev-Ye-Kitaev-model (condensed matter model, integrable, test for AdS/CFT
correspondence/holography). [Witten ‘16, Gurau, 16’ .....]
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Observables and Correlators in TM

• Key objects for tensor models: interactions/observables ≡ invariants of classical Lie
groups, U(N),O(N).

• Observables ≡ contractions of tensor fields.

• Correlators compute in terms of Feynman graphs and their combinatorics.

The calculations heavily relies on diagrammatics and combinatorics.
Do we have an algebraic way of representing the same computations?
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A formulation of QFT in symmetric group language and its representation theory

Why embedding your results in a different formulation?

→ to shed a different light on your results

→ to discover new and genuine effects

→ to bridge theories and therefore discover new correspondences between theories which
from the outset look rather different (new bijections between different-looking objects)

At the computational level:

→ to gain confidence when implementing computations by softwares; computations could
have been otherwise very difficult to handle by hand. (In particular, for permutation
groups, there are quite a lot of resources!)

→ to guide our intuition with computational experiments ...

→ and to ask new questions
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Switching to the symmetric group and its representation theory

⇒ Theoretical Physics

Matrix models: integrable models, 2D gravity, Riemann surfaces, String theory.

→Understanding the half-BPS sector of N = 4 SYM. [de Mello Koch & Ramgoolam,
Rodrigues, Mattioli, Diaz, .....]

→Highlighting new correspondences between countings in QFT, Matrix Model, and
String theory

→Quantum information processing

⇒ Math: Combinatorics, algebra .....

⇒ Linguistic [Kartsaklis, Ramgoolam, Sadrzadeh].
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Switching to the symmetric group and its representation theory: Tensor Models

⇒ Revelation of hidden structures: Combinatorics and algebra

→ Exact enumeration the observables/invariants

→ Connection to topological field theory (TFT): a geometrical interpretation of the
counting

→ Generation an algebra of observables with interesting properties (semi-simplicity,
orthogonal bases, graduation)

→ Simplification and discovery new integer sequences [OEIS]

→ Discover computable sectors for correlators in TM

⇒ Link with Theoretical Computer Science
→ Computational Complexity Theory

- Counting of tensor invariants relates to the Kronecker coefficient
- recurrent theme for the problem NP vs P.
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Goals

• Invitation to
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Goals

• Invitation to SIMPLY COMPUTE

TENSOR
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Outline
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Building blocks: Complex and real tensors

• A covariant complex or real tensor Tp1,...,pd (distinguished indices) with transformation
rule

TR
p1,...,pd =

∑
qk

R(1)
p1q1

. . .R(d)
pdqdTq1,...,qd , R(a) ∈ U(Na), O(Na) (1)

• Tensor contractions = unitary or orthogonal invariants

complex : S int
b (T , T̄ ) = Trb(T̄ · T . . . T̄ · T )

real : S int
b (T ) = Trb(T · T · · · · T ) (2)

• If you are doing QG: T is viewed as a (d − 1)-simplex. S int
b “is” a gluing of simplexes

and represents a d-polytope geometry (Dario’s talk)

• In the following, all illustrations are made at fixed rank d = 3 but generally extends in
any d .
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Unitary invariants

S int
b (T , T̄ ) = Trb(T̄ · T . . . T̄ · T )

• Coding unitary invariants: b bi-partite colored graphs

T T̄

Tr2(T̄T )

• Rank D = 1,Vectors: ||φ|| =
∑

a |φa|2, 1 invariant.
• Rank D = 2, Matrices: Tr[(M†M)n], ∀n ≥ 1, cyclic graphs.
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Orthogonal invariants

S int
b (T ) = Trb(T · T . . .T · T ) (3)

• Coding orthogonal invariants b colored graphs

2

11

3

3

2

2

11

3

3

2
1

3

2

Tr2(T 2) This one is new!
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Tensor correlators

• Gaussian measure

dµ(T , T̄ ) ≡
∏
ik

dTi1 i2...id dT̄i1 i2...id e
−

∑
ik

Ti1 i2...id
T̄i1 i2...id (4)

• Correlators:

Ob(T , T̄ ) = Trb(T · T̄ . . .T · T̄ )

〈Ob(T , T̄ )〉 =

∫
dµ(T , T̄ )Ob(T , T̄ ) . (5)
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Counting complex TM observables

[BG, Ramgoolam, AIHP D ‘14] Illustration in rank 3:

1
2
3 1

2

3 1

2

3

1 3

2

1 3

2

1 3

2

σ1

σ2

T2 TnT1

T2 TnT1

σ3

Counting permutation triples (σ1, σ2, σ3) ∈ (Sn × Sn × Sn) up to the equivalence

(σ1, σ2, σ3) ∼ ( γ1σ1γ2, γ1 σ2γ2, γ1σ3γ2 ) , γi ∈ Sn . (6)

Counting eléments of the double quotient Diag(Sn) \(Sn × Sn × Sn)/Diag(Sn) .
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Counting orbits: Apply Burnside’s lemma

|H1 \G/H2| =
1

|H1||H2|
∑
h1∈H1

∑
h2∈H2

∑
g∈G

δ(h1gh2g
−1) (7)

• Number of invariants

Z3(n) =
1

(n!)2

∑
σ1,2,3∈Sn

∑
γ1,γ2∈Sn

δ(γ1σ1γ
−1
2 σ−1

1 )δ(γ1σ2γ
−1
2 σ−1

2 )δ(γ1σ3γ
−1
2 σ−1

3 )

(8)

→Programming in Gap, and Mathematica [OEIS: A110143 (isomorphism of graph
coverings)] Illustration at rank d = 3

1; 4; 11; 43; 161; 901; 5579; 43206; 378360; 3742738, ... (9)
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Topological Field Theory

→TFT2 on toric lattice

Z3(n) =
1

(n!)2

∑
σ1,2,3∈Sn

∑
γ1,γ2∈Sn

δ(γ1σ1γ
−1
2 σ−1

1 )δ(γ1σ2γ
−1
2 σ−1

2 )δ(γ1σ3γ
−1
2 σ−1

3 )

(10)

After some manipulations (gauge fixing one σi and introduce another variable), one
arrives at

Z3(n) =
1

n!

∑
τ0,τ1,τ2∈Sn

∑
γ∈Sn

δ(γτ1γ
−1τ−1

1 )δ(γτ2γ
−1τ−1

2 )δ(γτ0γ
−1τ−1

0 )δ(τ0τ1τ2)(11)

3 generators with a single relation, that is the fundamental group of S2 with 3 punctures.
Joseph Ben Geloun (LIPN, IG) Counting observables in TM 18 / 34
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Representation of the symmetric group: basics

• Irreps of symmetric group Sn are labelled by Young diagrams or R ` n partition of n.

n = 7, R = (1, 2, 4) = (12)

• DR
ij (σ) = 〈R, j |σ|R, i〉 the real matrix representation of σ in the irrep R ` n (dimension

d(R))

Orthogonality :
∑
σ∈Sn

DR
ij (σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl ;

Clebsch−Gordan :
∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

τ ∈ [[1,C(R1,R2,R3)]]
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Revisiting the counting

• A small calculation

Z3(n) =
1

(n!)2

∑
σi∈Sn

∑
γ1,γ2∈Sn

δ(γ1σ1γ
−1
2 σ−1

1 )δ(γ1σ2γ
−1
2 σ−1

2 )δ(γ1σ3γ
−1
2 σ−1

3 )

=
1

(n!)2

∑
γi∈Sn

∑
Ri`n

χR1 (γ1)χR1 (γ2)χR2 (γ1)χR2 (γ2)χR3 (γ1)χR3 (γ2)

=
∑

R1,R2,R3`n

(C(R1,R2,R3))2 (13)

where the symbol

C(R1,R2,R3) =
1

n!

∑
σ∈Sn

χR1 (σ)χR2 (σ)χR3 (σ) (14)

is the Kronecker coefficient.
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Kronecker coefficient C(R1,R2,R3) = 1
n!

∑
σ∈Sn χ

R1 (σ)χR2 (σ)χR3 (σ)

• Counts
→ multiplicity of the one-dimensional (trivial) representation in the tensor product
R1 ⊗ R2 ⊗ R3.
• Number of invariants ≡ dimension of vector space K(n) ?

• Link with Computational Complexity theory:
→Finding a combinatorial rule to characterize them in general (Munurghan 1938,
Stanley 2000)

What we find:∑
R1,R2,R3`n

(C(R1,R2,R3))2 = #Rank − 3 tensor model observables (15)

Challenge

Find a proper refinement of that problem to make progress in the above problematic.
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K(n), the double coset graph algebra

• Group algebra C(Sn), i.e. an element of which writes a =
∑
σ∈Sn λσσ, λσ ∈ C

• Double coset formulation in C(Sn)⊗3: Consider the orbits

(σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ3, γ1σ3γ2) (16)

• Define K(n) ⊂ C(Sn)⊗3 is the vector space over C

K(n) = SpanC

{ ∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, σ1, σ2, σ3 ∈ Sn

}
(17)

→A fact dimCK(n) = Z3(n).
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The graph algebra

• Convenient normalization

Aσ1,σ2,σ3 =
1

(n!)2

∑
γ1,γ2∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2 (18)

• Multiplication

Aσ1,σ2,σ3Aσ4,σ5,σ6 =
1

n!

∑
τ∈Sn

Aσ1τσ4, σ2τσ5, σ3τσ6 (19)
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K(n), the double coset graph algebra

→The product of K(n) is associative and admits a unit.
→K(n) is an associative unital subalgebra of C(Sn)⊗3 which is semi-simple with the
pairing

δ3(⊗3
i=1σi ;⊗3

i=1σ
′
i ) =

3∏
i=1

δ(σiσ
′−1
i ) (20)

Wedderburn-Artin theorem explains the sum of squares:∑
R1,R2,R3`n

(C(R1,R2,R3))2 (21)

this is decomposition of K(n) in direct matrix subspaces.
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K(n) decomposes in matrix blocks

• Introduce the Fourier basis of C(Sn)

QR
ij =

κR

n!

∑
σ∈Sn

DR
ij (σ)σ (22)

∑
il ,jl ,k

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
′

j1,j2;j3︸ ︷︷ ︸
Make it legs/momentum invariant

∑
σ1,σ2

ρL(σ1)ρR(σ2)︸ ︷︷ ︸
Make it L,R invariant

QR1
i1j1
⊗ QR2

i2j2
⊗ QR3

i3j3︸ ︷︷ ︸
Ordinary base of C(Sn)⊗3

= QR1,R2,R3
τ,τ ′ (23)

• The set {QR1,R2,R3
τ,τ ′ } forms an orthogonal matrix base of K(n).

Multiply like matrices QR,S,T
τ1,τ2

QR′,S′,T ′

τ ′2 ,τ3
= δRR

′
δSS
′
δTT

′
δτ2τ

′
2
QR,S,T
τ1,τ3

(24)

• At fixed [R1,R2,R3], QR1,R2,R3
τ,τ ′ is matrix with C(R1,R2,R3)2 entries.

→This is the Wedderbun-Artin basis for K(n).
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Correlators

At rank d = 3, consider the Gaussian model

Z =

∫
dΦdΦ̄ e

− 1
2

∑
il

Φi1 i2 i3
Φ̄i1 i2 i3 (25)

• The Wick theorem

〈Oσ1,σ2,σ3〉 =
∑
µ∈Sn

Nc(µσ1)+c(µσ2)+c(µσ3) = N#Faces (26)

c(α) is the number of cycles of α.
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Outline

1 Introduction: Tensor models and permutation groups

2 Complex and real tensors: Basics

3 Complex tensor models: Enumeration and algebra

4 Extension to real tensors: Enumeration and algebra

5 Conclusion
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Counting orthogonal invariants

Illustration in rank 3:

Counting permutation triples (σ1, σ2, σ3) ∈ (S2n × S2n × S2n) up to the equivalence

(σ1, σ2, σ3) ∼ ( γ1σ1γ, γ2 σ2γ, γ3σ3γ ) , γi ∈ Sn[S2],γ ∈ Sn . (27)

Elément of the double quotient
Sn[S2]× Sn[S2]× Sn[S2] \(S2n × S2n × S2n)/Diag(S2n) .

Number of invariants
1; 5; 16; 86; 448; 3580; 34981; 448628; 6854130; 121173330
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Resulting TFT and algebra

• TFT

1

1

1

2 2

3

3

3

 

 
 

  

  

• The algebra Ko(n)

Ko(n) = SpanC

{ ∑
γi∈Sn [S2];γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ, σ1, σ2, σ3 ∈ S2n

}
(28)

• Ko(n) is an associative unital semi-simple algebra. By WA, it is decomposable in matrix blocks.
• The dimension in representation:

Zo;3(n) =
∑

Ri`2n; Ri even

C(R1,R2,R3) (29)

• Invariant orthogonal base (NOT Wedderburn-Artin base)

QR1,R2,R3;τ = κ~R

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1; tr
p1

BR2; tr
p2

BR3; tr
p3

QR1
p1q1
⊗ QR2

p2q2
⊗ QR3

p3q3
(30)

BR; r,νr
i ; mr

= 〈R, i |r ,mr , νr 〉 = 〈r ,mr , νr |R, i〉 . (31)
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Conclusion

Unitary TM Orthogonal TM

Counting observables (d=3) 1; 4; 11; 43; 161; (d=3) 1; 5; 16; 86; 448;
TFT2 branched covers of the 2-sphere Covers of torus with defects

Algebraic structure graded unitary semi simple graded unitary semi simple
Invariant ortho. rep. base

√ √

Wedderburn-Artin decomp
√

X

1-pt and 2-pt correlators
√ √

• Possible applications:
- Computable sectors can be found; extract physics needs more work;
- Re-express melons in terms of permutations;
- The success of applying this method on Matrices rests on the connection with strings.
Finding first the dual of tensor models, and all the mathematics will ready to be used.
• Application to Theoretical Computer Science: Master refined countings (to tackle
challenges like finding a combinatorial interpretation of the Kronecker).
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Multiplication of graphs: Complex TM

σ1

σ2

σ3

σ4

σ5

σ6

σ1

σ2

σ3

σ4

σ5

σ6

τ
τ
τ

∑
τ

(32)
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Correlators

At rank d = 3, consider the Gaussian model

Z =

∫
dΦdΦ̄ e

− 1
2

∑
il

Φi1 i2 i3
Φ̄i1 i2 i3 (33)

Oσ1,σ2,σ3 =
∑
il ,jl ,kl

Φi1j1k1 Φi2j2k2 . . .Φin jnkn Φ̄iσ1(1)jσ2(1)kσ3(1)
Φ̄iσ1(2)jσ2(2)kσ3(2)

. . . Φ̄iσ1(n)jσ2(n)kσ3(n)
(34)

• The Wick theorem

〈Oσ1,σ2,σ3〉 =
1

Z

∫
dΦdΦ̄ e−

1
2

∑
i,j,k Φijk Φ̄ijkOσ1,σ2,σ3

=
∑
il ,jl ,kl

∑
µ∈Sn

δi1 iµ(σ1(1))
δi2 iµ(σ1(2))

. . . δin iµ(σ1(n))

×δj1jµ(σ2(1))
δj2jµ(σ2(2))

. . . δjn jµ(σ2(n))
δk1kµ(σ3(1))

δk2kµ(σ3(2))
. . . δknkµ(σ3(n))

=
∑
µ∈Sn

Nc(µσ1)+c(µσ2)+c(µσ3) (35)

c(α) is the number of cycles of α.
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Gaussian correlators in orthogonal TM

• Gaussian measure

dν(T ) =
∏
jl

dTj1j2...jd e
−O2(T ) , O2(T ) =

∑
jk

(Tj1j2...jd )2 . (36)

• The Wick theorem for an observable Oσ1,σ2,σ3 :

〈Oσ1,σ2,σ3〉 =
∑
µ∈Sn

Nc(µσ̃1)+c(µσ̃2)+c(µσ̃3) (37)

where σ̃ = σ−1ξσ , ξ = (12)(34) . . . (2n − 1, 2n).

Joseph Ben Geloun (LIPN, IG) Counting observables in TM 34 / 34


	Introduction: Tensor models and permutation groups
	Complex and real tensors: Basics
	Complex tensor models: Enumeration and algebra
	Extension to real tensors: Enumeration and algebra
	Conclusion

